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What I’ll show...

1. Model accuracy claimed by security ML researchers is 
misleading

2. It’s generally biased in an overly optimistic direction

3. → Estimating the severity of that bias is important, and will help 
you make sure that your model isn’t… garbage.



ƒ(input) =  output

ƒ(http://www.trustus.evil.ru/paypal/login/) = .944780
ƒ(https://www.facebook.com/) =.019367

Machine Learning



input → 

http://www.trustus.evil.ru/paypal/login/
http://gsbyntwqmem.mrjz5viern.ru/start_page.exe

https://www.facebook.com/
http://imgur.com/r/cats/omgn4Zv

→ output
.944780
.99981683
.019367
.008448

ƒ(input)=
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← Supposed to 

represent “real world” 
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(Supervised) Machine Learning

“fitted” model ƒ 

TESTING

Test Data
dwprgbyfykriizylpqcltzx.biz/, 1
http://git.demo.nick.net.nz/, 0

ƒ(input)

Test Accuracy
.99 (error ≈ .01)
.01 (error ≈ .01)

Training Data
http://www..evil.ru/paypal/login/, 1
http://gsbynr.ru/start_page.exe, 1

https://www.facebook.com/, 0
http://imgur.com/r/cats/omgn4Zv, 0
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(Supervised) Machine Learning

“fitted” model ƒ 

TRAINING

Training Data
http://www..evil.ru/paypal/login/, 1
http://gsbynr.ru/start_page.exe, 1

https://www.facebook.com/, 0
http://imgur.com/r/cats/omgn4Zv, 0

Test Data
dwprgbyfykriizylpqcltzx.biz/, 1
http://git.demo.nick.net.nz/, 0

ƒ(input)

Deployment Data!
???.evil.com

???.good.com

Deployment 
Accuracy?
???, ???
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Train / Test “Sensitivity Analysis”: Identifying training 
data that leads to improved and consistent performance on new datasets

Train and test the same model across different datasets, 
and evaluate the results: 

1. What training datasets generalize better to others?

2. How sensitive is a model’s accuracy to changes in test datasets?



Test Data A Test Data CTest Data B

Train Data A Train Data CTrain Data B



Train / Test “Sensitivity Analysis”

IRL!



Train / Test “Sensitivity Analysis”

1. Model Used

2. Accuracy Metric Used: AUC

3. Datasets Used

4. Results!
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URL Model

 A Character-Level Convolutional Neural 
Network with Embeddings For Detecting 
Malicious URLs, File Paths and Registry 
Keys

Joshua Saxe, Konstantin Berlin



URL Model

 A Character-Level Convolutional Neural 
Network with Embeddings For Detecting 
Malicious URLs, File Paths and Registry 
Keys

Joshua Saxe, Konstantin Berlin

→ output
.999583
.001491

input → 
http://www.trustus.evil.ru/paypal/login/

https://www.facebook.com/

ƒ(input)=



Train / Test “Sensitivity Analysis”

1. Model Used

2. Accuracy Metric Used: AUC

3. Datasets Used

4. Results!



AUC = “Area Under the [ROC] Curve”
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10 million URLs from 
January 2017
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10 million URLs from 
January 2017*

≈ 20k malware samples

* plus pre-Jan ‘17 phishtank malicious 
URLs, due to lack of data
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(January ‘17 data) (January ‘17 data)(January ‘17 data)
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VirusTotal 
test data

CommonCrawl & PT 
test data

Sophos 
test data

(Feb-Apr ‘17 data) (Jan-Apr ‘17 data)(Jan-Apr ‘17 data)

(January ‘17 data) (January ‘17 data)(January ‘17 data)

CommonCrawl & PT 
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Train / Test “Sensitivity Analysis”

1. Model Used

2. Accuracy Metric Used: AUC

3. Datasets Used

4. Results!















Sophos Model Tested On Sophos Test Data



What did we learn?

- Model accuracy is extremely dependent on the 
training and test datasets used

- Which datasets generalize better

- Expected variance in accuracy on new, inherently different 
data
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How minimize the probability… of failing 
spectacularly

Models are liable to fail on different, future data.

Especially when we lack deployment test data, we need to map the limitations of 
our models using train / test dataset sensitivity analyses.

This technique can help us choose better training datasets and gain a better 
understanding of how sensitive model accuracy is to new test data 
distributions. This allows us to develop models that work in the real world, 
not just in idealized laboratory settings.



Thanks!


