Garbage In, Garbage Out

How purportedly great ML models can be screwed up by bad data

Hillary Sanders Data Scientist - operations team lead

What I'll show...

 Model accuracy claimed by security ML researchers is misleading

2. It's generally biased in an overly optimistic direction

3. \rightarrow Estimating the severity of that bias is important, and will help you make sure that your model isn't... garbage.

Machine Learning

f(input) = output

f(http://www.trustus.evil.ru/paypal/login/) = .944780 f(https://www.facebook.com/) =.019367

Machine Learning

tp://www.trustus.evil.ru/paypal/login/ sbyntwqmem.mrjz5viern.ru/start_page.exe

https://www.facebook.com/ http://imgur.com/r/cats/omgn4Zv TRAINING

(Supervised) Machine Learning

https://www.facebook.com/, 0 http://imgur.com/r/cats/omgn4Zv, 0

TRAINING

(Supervised) Machine Learning

"fitted" model f

TRAINING

f(input)

TEST accuracy

Training accuracy

Training accuracy

(Supervised) Machine Learning

Training Data

Test Data

"fitted" model f

TESTING

(Supervised) Machine Learning

Training Data

Test Data

"fitted" model f

TESTING

Test Accuracy

.99 (error ≈ .01)

DEPLOYMENT accuracy

(Supervised) Machine Learning

Training Data http://www.evil.ru/paypal/login/,1 http://gstynr.ru/start_page.exe,1 https://www.facebook.com/,0 http://imgur.com/r/cats/omgn4Zv,0

Test Data

"fitted" model f

TRAINING

(input)

Deployment Data!

???.evil.com ???.good.com

Deployment Accuracy? ,???,???

Train / Test "Sensitivity Analysis": Identifying training data that leads to improved and consistent performance on new datasets

Train and test the same model across different datasets, and evaluate the results:

- 1. What training datasets generalize better to others?
- 2. How sensitive is a model's accuracy to changes in test datasets?

IRL!

1. Model Used

2. Accuracy Metric Used: AUC

- 3. Datasets Used
- 4. Results!

1. Model Used

2. Accuracy Metric Used: AUC

- 3. Datasets Used
- 4. Results!

URL Model

A Character-Level Convolutional Neural Network with Embeddings For Detecting Malicious URLs, File Paths and Registry Keys

Joshua Saxe, Konstantin Berlin

URL Model

input \rightarrow

http://www.trustus.evil.ru/paypal/login/ https://www.facebook.com/

→ output

.999583 .001491

A Character-Level Convolutional Neural Network with Embeddings For Detecting Malicious URLs, File Paths and Registry Keys

Joshua Saxe, Konstantin Berlin

1. Model Used

2. Accuracy Metric Used: AUC

3. Datasets Used

4. Results!

AUC = "Area Under the [ROC] Curve"

1. Model Used

2. Accuracy Metric Used: AUC

- 3. Datasets Used
- 4. Results!

CommonCrawl & PhishTank

VirusTotal

10 million URLs from January 2017*

≈ 20k malware samples

10 million internal
URLs from January
2017
≈ 4% malware

10 million URLs from January 2017

≈ 4% malware

* plus pre-Jan '17 phishtank malicious URLs, due to lack of data

CommonCrawl & Phishtank

10 million URLs from January 2017*

≈ 20k malware samples

* plus pre-Jan '17 phishtank malicious URLs, due to lack of data

Sophos

VirusTotal

10 million internal
URLs from January
2017
≈ 4% malware

10 million URLs from January 2017

≈ 4% malware

CommonCrawl & Phishtank

10 million URLs from January 2017*

≈ 20k malware samples

* plus pre-Jan '17 phishtank malicious URLs, due to lack of data

Sophos

10 million internal
URLs from January
2017
≈ 4% malware

VirusTotal

10 million URLs from January 2017

≈ 4% malware

CommonCrawl & Phishtank

10 million URLs from January 2017*

≈ 20k malware samples

10 million internal
URLs from January
2017
≈ 4% malware

VirusTotal

10 million URLs from January 2017

≈ 4% malware

* plus pre-Jan '17 phishtank malicious URLs, due to lack of data

(January '17 data)

(January '17 data)

(January '17 data)

(Jan-Apr '17 data)

VirusTotal

Sophos

CommonCrawl & PT test data

CommonCrawl & PT

(January '17 data)

(January '17 data)

VirusTotal model

(January '17 data)

1. Model Used

2. Accuracy Metric Used: AUC

3. Datasets Used

4. Results!

Tested on VirusTotal

date

Tested on Sophos

date

What did we learn?

- Model accuracy is *extremely* dependent on the training and test datasets used
- Which datasets generalize better
- Expected variance in accuracy on new, inherently different data

What did we learn?

- Model accuracy is *extremely* dependent on the training and test datasets used
- Which datasets generalize better
- Expected variance in accuracy on new, inherently different data

What did we learn?

- Model accuracy is *extremely* dependent on the training and test datasets used

- Which datasets generalize better

 Expected variance in accuracy on new, inherently different data

Test Data (Feb & March)

How minimize the probability... of failing spectacularly

Models are liable to fail on different, future data.

Especially when we lack deployment test data, we need to map the limitations of our models using **train / test dataset sensitivity analyses**.

This technique can help us choose better training datasets and gain a better understanding of how sensitive model accuracy is to new test data distributions. This allows us to develop models that work in the <u>real world</u>, not just in idealized laboratory settings.

Thanks!

