Proceedings of

Blackhat 2017
July 26-July 27,2017, Las Vegas, USA

GARBAGE IN, GARBAGE OUT: HOW PURPORTEDLY GREAT ML MODELS CAN BE
SCREWED UP BY BAD DATA

Hillary Sanders
Data scientist
Sophos Group

ABSTRACT

As machine learning has become more common within com-
puter security, researchers have focused on improving machine
learning architectures to better detect attacks. But what if the
data we’re using to train and evaluate our models is sub-optimal?

Cybersecurity machine learning researchers face two main
problems when acquiring data to train models. First, any avail-
able data is necessarily old and potentially outdated in compari-
son to the environment the model will face on deployment. Sec-
ond, researchers may not even have access to relevant past data,
often due to privacy concerns.

The greatest model, trained on data inconsistent with the
data it actually faces in the real world, will at best perform un-
reliably, and at worst fail catastrophically. In short, the worse
the data that goes into a machine learning system, the worse the
results that come out. How do we mitigate this problem in a
security context?

In this paper, we describe one remediation that we’ve found
helps us estimate the impact of, and mitigate this issue. Specif-
ically, we present sensitivity results from the same deep learn-
ing model designed to detect malicious URLSs, trained and tested
across 3 different sources of URL data. We review the method-
ology, results, and learnings from this analysis.

NOMENCLATURE
AUC Area under the curve, where the curve is a ROC curve
(Receiver Operating Characteristic). A value of .5 is
bad - it represents the predictive capability of a coin flip,
whereas 1 represents perfectly ordered predictions.
train set Data used to train a machine learning model. Indepen-
dent (separate) from the test set data.

Joshua Saxe
Chief Data Scientist
Sophos Group

test set Data used to test a machine learning model. Indepen-
dent (separate) from the training data. Often, test data
is referred to as ‘holdout’ data, because it is withheld
from training so as to be used for testing.

INTRODUCTION

As the volume and sophistication of new cyber threats has
grown, signature based attack detection methods have struggled
to keep up. The security community has adapted by increasingly
pursuing machine learning based detection approaches.

Often, papers and discussions focus only on the machine
learning systems themselves, with little mention of identifying
the right data with which to train and test these systems. But
in a cybersecurity context, where attackers and networks evolve
over time and data differs from network to network, the training
and test data we use to create and evaluate our systems matters
greatly.

How do we pick the best data with which to train our sys-
tems, and how do we use our data to predict how well our systems
will detect attacks once we deploy them in a new data environ-
ment?

In cybersecurity machine learning, we never have perfect
data with which to train and test our machine learning models,
due to several factors:

1. By the time we deploy our models, our data will already be
‘old” with respect to the evolution of our adversaries and the
evolution of our customers’ networks.

2. We often don’t have access to the types of data our models
will face upon deployment, generally due to privacy reasons.
(For example, we may want to develop an accurate URL

detector, but don’t have access to all customers’ past private
URL histories).

These two issues are very important to keep in mind during
development, because model accuracy is incredibly dependent on
factors other than just model architecture - namely, the training
and test data used. In short, the more our training and test data
differs from deployment data, the worse and more unpredictable
our deployment accuracy is going to be. Because of this, it’s
important to be able to predict and mitigate the effects of these
two issues.

The first issue can be dealt with by using time decay analy-
sis - training a model on past data up to time ¢, and then testing
it on data from different intervals after time . Model configura-
tions and training data should be selected based on these results,
rather than the results from classical holdout sets (withholding
a random percentage of training data to be used as test data, or
performing k-fold cross validation).

The second issue, however, is harder to deal with. If we’re
unable to accurately simulate the data we want our model to
eventually perform on, we can’t be sure of how it will do on
deployment - which is essential.

When precise deployment test data simulation is not possi-
ble, it is still possible to map how sensitive a given model is to
changes in test data distributions. In this paper, we showcase a
sensitivity analysis that allows us to assess the impact training
and test data selection has on model accuracy. An ideal model
is consistently accurate across a wide variety of test data circum-
stances. Even if a model is extremely accurate on one set of test
data, if it proves unable to handle significant variation in input
data (assuming consistent labels), it may not be safe to deploy.

The rest of the paper is structured as follows. To contextu-
alize our analysis, we survey some machine learning research on
sensitivity analyses and training data selection. Then, we de-
scribe the methodology of the sensitivity analysis. Then, we
describe the data and model used in our example. Finally, we
describe our results and discuss how they informed our training
dataset selection.

Related Work

Sensitivity analyses are the study of how uncertainty in the
output of a system (like test accuracy) can be attributed to differ-
ent sources of uncertainty in its inputs (like what our deployment
data looks like). In our case, we’re uncertain about our deploy-
ment test data, and so we perform a sensitivity analysis by track-
ing how our test accuracy changes as we change the training and
test datasets used.

The use of sensitivity analyses in machine learning is not
novel, and similar approaches have been used in machine learn-
ing.

- Hunter et al. [1] uses a sensitivity analysis to see how AUC
changes with input features used in a neural net, in order to
best pick the input features. This is similar to what we do,
except instead of trying to pick the best input features, we
are trying to pick the best training datasets, and modifying
both the training and test data sources to do so.

- Vasilakos et al. [2] does the same (sensitivity analysis of
input features for a neural net), but for fire ignition risks.

- Gevrey et al. [3] does the same, but with two-way input
variables.

- Zhang et al. [4] performs a sensitivity analysis on a convo-
lutional neural nets, to explore the effect of model architec-
ture components on model performance.

Our method is very similar, though instead of exploring the
uncertainty surrounding feature selection, we’re exploring the
uncertainty surrounding dataset selection, which is particularly
relevant in cybersecurity since deployment dataset distributions
are always unknown to at least some extent. In other words -
instead of being unsure about which features to use, we’re un-
sure about what data to use, and we want to better understand
how severely a model’s accuracy can change as a result of using
different datasets for training and testing.

Golbraikh et al. [5] focuses on train and test set selection
based on diversity principals, as a means to produce models
that generalize well to data not used during model development.
However, this is done in the context of QSAR modeling and uses
different methods.

Our core contribution has to do with our results and findings,
which are specific to our proprietary URL model, described in
detail here [6]. Our actual methodology should not be considered
novel (though perhaps underutilized), because at its core, it’s just
a specific way to implement a sensitivity analysis.

Method

Sensitivity analyses help estimate uncertainty in the output
of a model, based on uncertainty in its inputs. Because we’re
uncertain about future data models will face in the wild, it can be
useful to see how our accuracy metrics change as we change our
definition of training and test sets. This can help us understand
how much we can expect our accuracy to vary on deployment,
and which training datasets tend to generalize better to others.

This method can be especially useful when we expect the
data our model will eventually face in deployment to be signif-
icantly different than our training data. The idea is to see how
sensitive our model’s accuracy is to changes in training and test-
ing data.

First attain K inherently different datasets, ideally covering
the same general type of data (for example, URLs) over the same
period of time. Ideally, the differences in our datasets should
attempt to mimic the types of differences we expect might ex-

TABLE 1.

Dataset Descriptions

Data Sources

Training Sets

Test Sets

Preprocessing

VirusTotal

10 million URLs from Jan-
vary 1-31st 2017, 400,000
labeled as malicious, the rest
benign.

28,981,874 URLs ranging
from February Ist 2017 -
March 31st 2017.

Each observation (scan) from VirusTotal is
annotated with a number of vendors who
classified the item (at the time of scan) as
either malicious or benign. We gave URLs
with 0 malicious vendor flags a label of 0,
URLs with 5 or more vendor flags a label
of 1, and discarded the rest.

Sophos Inter-
nal Test Data

10 million URLs from Jan-
uvary 1-31st 2017, 400,000
labeled as malicious, the rest
benign.

3,812,130 URLs ranging
from February 1st 2017 -
March 31st 2017.

This dataset is a sample of unique URLSs
from internal Sophos URL test data, with
whitelisted URLs and domains removed.

CommonCrawl
& PhishTank

9,982,107 CommonCrawl
URLs from January 1-31st
2017, and 17,893 PhishTank

18,141,565 URLs ranging
from February Ist 2017 -
March 31st 2017.

URLSs gathered from CommonCrawl were
assumed benign, and observations gath-
ered from PhishTank were labeled as ma-

URLs from on or before
January 31, 2017 (in an
attempt to get more data).

licious. Note that the number of malicious
files PhishTank has available is quite small.

ist in future deployment data. For example - if we are certain
that deployment data will always use a certain type of character
encoding, we shouldn’t include datasets that use different encod-
ings.

1. For each dataset i in 1:K:

(a) Split the dataset i up into two disjoint groups: the train

set train;, containing data from before date d, and a
test set test;, containing data after a date d. (If this is
not possible, simply split the datasets into two disjoint
groups using other means).
The number of each label class observations (for us,
malicious and benign URLSs) should be roughly equal
across all K datasets (the amount of data in the valida-
tion sets matter less). d should also be the same across
all K datasets.

(b) Train a model M; on the training set train;.

2. After all K models have been separately trained, for each
model M; foriin 1:K:

(a) for each test dataset test; for jin 1:K:

i. evaluate model M; on test dataset fest; in the man-
ner of your choice. Example metrics: AUC, AUC
by day, or detection rates at selected fixed false
positive rates.

For single-point evaluation metrics, this should yield a KxK
accuracy matrix: M; X test; (training set source X test set source).

There are two main aspects of the evaluation.

First is the general variability of your test accuracies. If you
expect deployment data to be less different than the difference
between your datasets, then the variability in your test accuracies
can be interpreted as a rough upper-limit estimate as to how accu-
rate your model will be on deployment (given a training dataset
train;). For example, if you’re considering using dataset ¢train; to
train your deployment model, inspect the variability of accuracy
values of column i in your accuracy matrix.

Second is the success each trained model M; had across var-
ious test datasets. Training sets that generalized well across all
test datasets (especially the ones most likely to look like future
deployment data) are best.

In other words, training datasets that result in high average,
low variance accuracy across test sets are ideal.

Model Description

In this paper, we use a deep convolutional neural net devel-
oped at Sophos to classify short strings. The structure of the
model is out of scope for this document, but more can be learned
about it from [6].

Data Description
To showcase the problems we are describing and attempting
to track and mitigate, we use three separate sources of data. Each

AUC

VirusTotal

0.5879 0.9993 0.9645

Hold-out Testing Data (February & March 2017)
Sophos

0.985 0.7951

0.9531

CommonCrawl & Phishtank

All - 10m CommonCrawl & Phishtank Sophos VirusTotal

Training Data (January)

FIGURE 1. Above, AUC rates are shown. Each box represents the
outcome of a model trained (x-axis) and tested (y-axis) on a different
dataset. Note that VirusTotal x VirusTotal AUC would usually be in the
high 90’s, but in this dataset, a single popular domain’s labels flipped
over time in VirusTotal data (many URLs), which caused AUC to drop
significantly. See the appendix, specifically figure 8 for more details.

source contains 10 million URLs from January 2017 (for train-
ing), and a secondary, independent set of test URLs from January
2017 to March 2017. All analyses and plots shown in this paper
refer to these data (unless otherwise specified, as is done in the
appendix). Details are shown in Table 1.

Results

In what follows, we outline the results we obtained from
applying the train test sensitivity analysis method to the model
architecture and datasets described above. Along with the mod-
els trained with the three datasets described in table 1, we’ve also
included a model trained on a random third of each of the three
original training datasets.

The sensitivity plots above (figures 1 & 2) yield two insights:

1. First, we have a better idea of how variable our models’ ac-
curacies can be when trained and tested on different datasets.

2. Second, we get information about what datasets we should
use to train our deployment model. Training on VirusTotal
data yielded a model that’s dramatically better at generaliz-
ing to the other sources of test data, while Sophos did best
by far on its own holdout dataset.

While we expected the CommonCrawl / PhishTank trained
models to do fairly badly when it came to generalizing to Sophos
and VirusTotal URLs (due to lack of malicious data volume, and

Detection Rates at .001

bad good
T .

0.5247

VirusTotal

0.842 0.5105

Hold-out Testing Data (February & March 2017)
Sophos

0.7086 0.7592 0}

CommonCrawl & Phishtank

All - 10m CommonCrawl & Phishtank Sophos VirusTotal

Training Data (January)

FIGURE 2. Above, detection rates at a fixed false positive rate of
1073 are shown. Each cell represents the outcome of a model trained
(x-axis) and tested (y-axis) on a different dataset.

PhishTank focusing on solely Phishing websites), we weren’t
sure how Sophos and VirusTotal trained models would per-
form. Sophos data performed fairly well, but VirusTotal was
the clear winner in terms of generalizing to the other datasets.
The poor performance between CommonCrawl and Sophos sug-
gests that their distributions differ significantly, while the Virus-
Total model’s success suggests that it contains patterns common
to both CommonCrawl and Sophos data. Another possible expla-
nation is that the benign data on VirusTotal tends to look more
suspicious, and is thus closer to the malicious / benign decision
boundary, which might make for a better model.

Even if we theoretically had access to all Sophos client
URLs, these results suggest that we still might want to include
VirusTotal data in an attempt to keep from overfitting to past
Sophos client data, which may not fully represent future Sophos
data.

The leftmost column of the plots above (figures 1 & 2) show
amodel trained on a third of each of our original dataset (totaling
10 million training observations). Test accuracies across all three
datasets are near or even higher than the maximum of the rows
to each cell’s right!

In this example, we used three entirely different sources of
URL data. This isn’t at all necessary: you could also run the
same analysis training and testing on, for example, VirusTo-
tal data with different labeling schemes, or data from different
months, etc... The basic idea is to train and test on inherently dif-
ferent set of data, evaluate the results, and hopefully learn some-
thing about the sensitivity and generalizability of each trained
model.

Summary

Deep learning uses a massive amount of unseen complex
features to predict results, which enables them to fit beautifully
to datasets. But it also means that if the training and testing data
are even slightly biased with respect to the real-world test case
data, some of those unseen complex features will end up dam-
aging accuracy instead of bolstering it. Even with great labels
and a lot of data, if the data we use to train our deep learning
models doesn’t mimic the data it will eventually be tested on in
deployment, our models are liable to fail in deployment.

Unfortunately, it’s impossible to train on future data. And
often we don’t have access to that that even mimics past deploy-
ment data. But it is quite possible to simulate the errors we ex-
pect to have upon deployment by analyzing the sensitivity of our
models to differences in training and testing data. By doing this,
we can better develop training datasets and model configurations
that are most likely to perform reliably well on deployment.

ACKNOWLEDGMENT

Thanks to Konstantin Berlin for his work with Joshua Saxe
in developing the convolution neural net model used in this anal-
ysis. Also, thanks to Richard Harang for help with analyzing
encoding differences amongst our datasets, his excellent theories
about the results, and help with editing. And thanks to Madeline
Schiappa for her help in acquiring internal test data.

REFERENCES

[1] Andrew Hunter, Lee Kennedy, Jenny Henry and Ian Fergu-
son. Application of neural networks and sensitivity analysis
to improved prediction of trauma survival. 2000.

[2] Christos Vasilakos, Kostas Kalabokidis, John Hatzopoulos,
and Ioannis Matsinos. Identifying wildland fire ignition fac-
tors through sensitivity analysis of a neural network. 2009.

[3] Muriel Gevrey, loannis Dimopoulos, and Sovan Lek. Two-
way interaction of input variables in the sensitivity analysis
of neural network models. 2006.

[4] Ye Zhang, Byron Wallace. A Sensitivity Analysis of (and
Practitioners’ Guide to) Convolutional Neural Networks for
Sentence Classification. 2016.

[5] Alexander Golbraikh, Alexander Tropsha. Predictive
QSAR modeling based on diversity sampling of experimen-
tal datasets for the training and test set selection. 2002.

[6] Joshua Saxe, Konstantin Berlin. A Character-Level Convo-
lutional Neural Network with Embeddings For Detecting
Malicious URLs, File Paths and Registry Keys. 2017.

Appendix
Here, we include some extra plots for readers who just can’t
get enough of them!

First, ROC (Receiver Operating Characteristic): each plot
shows how each model did on a specific test dataset.

ROC Curves Across Models
Validation Set: CommonCrawl & Phishtank, February & March '17

True Positive Rate

False Positive Rate (log 10)

FIGURE 3. Model Performances on CommonCrawl data. Note how
poorly Sophos performs on CommonCrawl data, whereas VirusTotal
and the combined dataset perform quite well.

ROC Curves Across Models
Validation Set: Sophos, February & March '17

True Positive Rate

107-6 10%-5 1074 107-3 1072 101 100

False Positive Rate (log 10)

FIGURE 4. Model Performances on Sophos data. Again, not how
VirusTotal and the combined dataset do surprisingly well.

ROC Curves Across Models
Validation Set: VirusTotal, February & March '17

True Positive Rate

Es — Sophos URLS (trained on 10m, January, Soph
I —— VirusTotal URLS (trained on 10m, January, o-
CommonCrawl & Phishtank URLS (trained on y 38
—— Sophos, VirusTotal, CommonCrawl, & Phishtank URLS (trained on 10m, January) AUC=0.9269
T T T T 1
10”-6 10"-5 10"-4 10"-3 10"-2 10”-1 10”0

6
AUC=0.9094

False Positive Rate (log 10)

FIGURE 5. Model Performances on VirusTotal data. Note how
poorly both Sophos and CommonCrawl do. The VirusTotal and com-
bined datasets do significantly better..

Next, we show how accuracies decayed over time. To show
this, we extended each holdout test set to include data from Jan-
uary, April, and May - except for PhishTank. Due to lack of data,
we didn’t have sufficient pre-February malicious PhishTank data
for a holdout test set, so training data was used (bad). As such,
the high accuracy seen from CommonCrawl / PhishTank data in
January should be disregarded.

Tested on CommonCrawl & Phishtank

08

AUC

0.7

0.6

—— Sophos URLS (trained on 10m, January, Sophos labels)

—— VirusTotal URLS (trained on 10m, January, 0-/5+ vendor labeling)
CommonCrawl & Phishtank URLS (trained on 10m, January)

e —— Sophos, VirusTotal, CommonCrawl, & Phishtank URLS (trained on 10m, January)

0.5

Jan Feb Mar Apr
2017

date

FIGURE 6. Model Performances on CommonCrawl data over time.
Because of the way in which CommonCrawl data was downloaded, data
is unfortunately grouped into a small number of dates.

Tested on Sophos

s
- WTNA N A AN AA
"V 7 - oo 2 e\, o . '
SN VaVana¥an A e S PEL ST O WS
N v
g
® |
S
o
=}
<
o
5
2]
8
—_— Sophos labels)
—— VirusTotal URLS (trained on 10m, 1y, 0-/5+ vendor labeling)
- Co Phishtank URLs ed on 10m, January
5' -+ —— Sophos, VirusTotal, CommonCrawl, & Phishtank URLSs (trained on 10m, January)
date
FIGURE 7. Model Performances on Sophos data over time.
Tested on VirusTotal
s
o
g
* |
3
o
=}
<
e
e |
8
s RLs (trained on 10m, January, o- ndor labeling)
“ ‘CommonCrawl & Phishtank URLSs ary)
g - —— Sophos, VirusTotal, CommonCras rained on 10m, January)

Jan Feb Mar T Aor

date

FIGURE 8. Model Performances on VirusTotal data over time. Note
that the significant drop from February onwards in VirusTotal accuracy
is caused almost entirely from a single popular VirusTotal domain (many
URLs), whose labels changed over time as vendors changed their de-
cisions. This drop is a somewhat rare occurrence (usually VirusTotal
trained URL models decay much more slowly on their own data source),
but was nevertheless included.

