An ACE Up the Sleeve

Designing Active Directory DACL Backdoors

Andy Robbins and Will Schroeder
SpecterOps

i




@_waldO

Job: Adversary Resilience Lead at
SpecterOps

Co-founder/developer: BloodHound
Trainer: BlackHat 2016

Presenter. DEF CON, DerbyCon, ekoparty,
Paranoia, ISSA Intl, ISC2 World Congress,
various Security BSides

Other: ask me about ACH




@harmjOy

Job: Offensive Engineer at SpecterOps
Co-founder/developer: \Veil-Framework,
Empire/EmPyre, PowerView/PowerUp,
BloodHound, KeeThief

Trainer: BlackHat 2014-2016

Presenter. DEF CON, DerbyCon, ShmooCon,
Troopers, BlueHat Israel, various BSides
Other: PowerSploit developer and Microsoft
PowerShell MVP




tl;dr

DACL/ACE Background
Enumeration of AD DACLs

DACL Misconfiguration and Abuse
Analysis with BloodHound
Designing ACL Based Backdoors
Case Studies and Demos
Defenses




Disclaimer @

m There is no exploit/CVE/whatnot here, just

ways to purposely implement Active Directory
DACL misconfigurations

These backdoors are post-elevation
techniques that require some type of
elevated access to the objects you’re
manipulating




Why Care?

It’s often difficult to determine whether a specific
AD DACL misconfiguration was set maliciously or

configured by accident

These changes also have a minimal forensic
footprint and often survive OS and domain

functional level upgrades
0 This makes them a great chance for subtle, long-term

domain persistence!

m These may have been in your environment for
YEARS!




“As an offensive researcher,
it you can dream it,

someone has likely already
done it...and that someone

isn’t the kind of person who
speaks at security cons”

Matt Graeber
“Abusing Windows Management Instrumentation

(WMI) to Build a Persistent, Asynchronous, and
Fileless Backdoor” - BlackHat 2015




Background

From ACLs to ACEs




Previous Work

Chemins de contrdle en
environnement Active Directory

Chacun son root, chacun son chemin

Lucas Bouillot, Emmanuel Gras

Agence Nationale de 1la
Sécurité des Systémes
d’Information

SSTIC 2014 - 4 juin 2014

https://www.sstic.org/2014/presentation/chemins de controle active directory/




Previous Work

o beta

A-WIN-PC1$

. System
o Account Operators o admin

o DLivingstone ° i ° Policies
o System

DSI-HNI a
o TRue o o Enterprise Admins
e 1B2F340-0 @ Creator Owner
lomain Admins

U
o Eame ° WeBreckenridge ° -

o Administrator
o Administrators

o BGyuri

o Domain .-- ollers

Eu!llm
https://www.sstic.org/2014/presentation/chemins de controle active directory/




Previous

Connect | ForestInfo | Connection Info
® Domain ) Config ) Schema () Custom
Server: Part:

MNaming Context: [] Credentials

| Connect | | List Domains |

Browse Options
’7 ® 0U's ) All Objects [ Show Deleted

;I\.Iudes

§1 DC=contoso,DC=com

ork

AD ACL Scanner

Advanced |

. Scan Options | Additional Options | Default SD._
. Scan Type
®) DACL (Access) _) SACL {Audit)

Scan Depth

® Base ) One Level ) Subtree
Objects to scan

® OUs ) Containers () All Objects
View in report

View Owner [] DACL Size

[] Inherited [] Inheritance
Permissions Disabled

[] Skip Default [] D Modified date
Permissions

[[] Skip Protected
Permissions

[] ObjectClass

Output Options

Compare | Filter | Effective R{g‘r‘.ts.

Enable Compare

You can compare the current state with

a previously created CSV file.

C5V Template File
Ch\Scripts\Win_2012_R2_Default DACL_MNC.csv

Select Template|

| lv| Use nodes from template.
| [] Faster compare using USNs of the

NT5ecurityDescriptor, This requires that your
template to contain USMs.Requires 5D Modified
date selected when creating the template.

Replace DN in file with current domain DN,

E.g. DC=contoso, DC=com

Type the old DN to be replaced:

Replace principals prefixed domain name with
current domain. E.g. CONTOS0

Scanning...

Currently scanning 1 of 4 objects

. e old NETBIOS name to be replaced:

oad CSV templates for comparing with

_ n\rironment:

pad CSV Templates|

https://blogs.technet.microsoft.com/pfesweplat/2017/01/28/forensics-active-directory-ac

l-investigation/




Previous
(Offensive) Work?

Xao6paxabp

Meoprum LLyknuH gamarao

[NMonb3oBaTensb

404

14 anpens 2010 s 21:10

Bbakaop B active directory cBoMmMu pykamu

WTak, Mbl BCce 3HaeM npo noansix nons3osartener ¢ UID=0 B uniX, KOTOpbIX MOXeT ObiTb 60nbLWeE 0AHOrO.
NMocMOTPUM, Kak Takoe xe (a Ha caMoMm aene, gaxke 6onee cTpalwHoe) opraHM30BbIBAETCA B MHMpacTpyKType
Windows. PasymMmeeTcs, Mbl roBOpuUTL 6yAEM He NPO NoKaNbHbIE BUHAOBLIE YUETHLIE 3anMcK, a nNpo Active

Directory, T.e. rosoputb byaem 06 agmMmHucTpaTope gomeHa. Mnu, aaxe, xyxe, o6 enterprise administrator.

WUTak, uctmHa HoMep oauH: y 06bekToB B active directory ectb aTpubyThl M Npasa AocTyna.
NcTuHa HoMep ABa: 3T aTpubyTbl MOXHO MEHSATb.

https://habrahabr.ru/post/90990/




Securable Objects

m Any securable object in a Windows environment
contains a SECURITY_DESCRIPTOR structure
that contains:

O

Ol
Ol
Ol
Ol

A set of control/inheritance bits in the header
The security identifier (SID) of the object’s owner
The SID of the object’s primary group (not used)
A discretionary access control list (DACL)

A system access control list (SACL)

This is a binary structure, but can be described
with a Security Descriptor Definition Language
(SDDL) string




SECURITY_DESCRIPTOR

typedef struct SECURITY DESCRIPTOR {
UCHAR Revision;
UCHAR Sbzl;
SECURITY DESCRIPTOR CONTROL Control;

PSID Owner;
PSID Group;
PACL Sacl:;
PACL Dacl:;
} SECURITY DESCRIPTOR, *PISECURITY DESCRIPTOR;

https://msdn.microsoft.com/en-us/library/windows/hardware/ff556610(v=vs.85).aspx




ACLs, DACLs, and SACLs @

Access Control List (ACL) is basically
shorthand for the DACL/SACL superset

An object’s Discretionary Access Control List
(DACL) and Security Access Control List
(SACL) are ordered collections of Access

Control Entries (ACEs)

0 The DACL specifies what principals/trustees have
what rights over the object

0 The SACL allows for auditing of access attempts to
the object




ACEs

m All ACEs include:

O A 32-bit set of flags that control auditing

O A 32-bit access mask that specifies access rights
allowed

O A security identifier (SID) that identifies the
principal/trustee that has the given rights

a0

20

28

27|26 |25

24

23

222120 19 (18|17

16

15

14

13

12

HMafe |8 (7|6 (54

el

GE

Feserved

Standard access rights

O bjectzpecific aceess rights

3R —=Generic_Read
G —= Generic W rite
E —% Generic_Execute
GA —Generic_ALL
A5 —FFRightto access SACL

https.://msdn.microsoft.com/en-us/library/windows

/desktop/aa374896(v=vs.85).aspx




Principal:  harmjly (harmj0y@testlab.local) | Select a principal

Permission Entry for

Type: Allow

L

Applies to: | This object and all descendant objects

Permissions:

[ ] Full control

List contents

Read all properties
[ ] Write all properties
[ ] Delete

[ ] Delete subtree
Read permissions
Modify permissions
Modify owner

[ ] All validated writes
[ ] Al extended rights

Properties:
[ ]Read all properties

[w] Write all properties

[ ] Create all child objects

[ ] Delete all child objects

[ ] Create ms-net-ieee-80211-GroupPolicy objects
[ ] Delete ms-net-ieee-80211-GroupPolicy objects
[ ] Create ms-net-ieee-8023-GroupPolicy objects
[ ] Delete ms-net-ieee-8023-GroupPolicy objects
[ ] Allowed to authenticate

[ ] Change password

[ | Receive as

Reset password

[ ]5end as

[ ]Read msDS-OperationsForAzTaskBL

[ ]Read msDS-parentdistname




DS CONTROL_ACCESS @

AD access mask bit that grant privileges that
aren’t easily expressed in the access mask

Interpreted a few different ways

If the ObjectAceType of an ACE with
CONTROL_ACCES set is the GUID of a
confidential property or property set, this bit

controls read access to that property

0 E.g. in the case of the Local Administrator Password
Soltution (LAPS)




DS_CONTROL ACCESS @
and Extended Rights

m If the ObjectAceType GUID matches a
registered extended-right GUID in the schema,
then control_access grants that particular
“control access right”

m Examples:
0 User-Force-Change-Password on user objects
0 DS-Replication-Get-Changes and
DS-Replication-Get-Changes-All on the domain
object itself




SRM and Canonical ACE @
Order

m In Windows and AD, the Kernel-Mode Security
Reference Monitor (SRM) is in charge of
deciding the outcome of access requests,
based on the canonical order of ACEs on the
target object, and the access being requested.
By understanding the order of evaluation the
SRM uses for these access decisions, an
attacker may more effectively hide malicious
ACEs, or even entire security principals from
defenders.




SRM and Canonical ACE @
Order

m The “canonical” order of ACE evaluation:
o Explicit DENY
Explicit ALLOW

]
o Inherited DENY
o Inherited ALLOW

m Inherited privileges are further complicated by
generational distance from which the object
inherits that ACE: generationally closer
inherited ACEs are given priority




2.

DACL Enumeration

You Don’t Know
What You Can’t Find




.NET/LDAP

m The SecurityMasks property of a .NET
DirectorySearcher object can be set to
retrieve the DACL, SACL, and/or Owner
information for an object through LDAP

using System.DirectoryServices;

DirectorySearcher src = new DirectorySearcher(".."):
src.PropertiesToLoad = new string[] {ntSecurityDescriptor,..};

src.SecurityMasks = SecurityMasks.Dacl | SecurityMasks.Owner;
SearchResultCollection res = src.FindAll();

https://msdn.microsoft.com/en-us/library/system.directoryservices.securitymasks(v=vs.110).aspx




PowerView @

m PowerView’s Get-DomainObjectACL function
wraps the .NET/LDAP method to enumerate
the DACLs for any given domain object

O The security descriptor is parsed and individual
ACEs are output on the pipeline
o0 The -ResolveGUIDs flag will build an
environment-specific mapping of right GUIDS to
display names
m By default, any domain authenticated user
can enumerate DACLs for most objects in

the domain!




PowerView

PS C:\Users\dfm.a\Desktop> Get-DomainObjectAc]l -Identity harmjOy -ResolveGUIDs

? {$_.SecurityIdentifier -match $(ConvertTo-SID eviluser)}

AceQualifier
DbjectDN
ActiveDirectoryRights
DbjectAceType
bJeCTSID
TnheritanceFlags
BinaryLength
AceType
pbjectAceFlags
TsCallback
PronagationFlaas
SecurityIdentifier
ACCESSMasK
AuditFlags
ITsInherited

TnheritedObjectAceType
DpaqueLength

: AccessAllowed

: CN=harmijOy,CN=Users,DC=testlab,DC=local

: WriteProperty

: Script-Path
S-1-5-21-883232822-274137685-4173207997-1111
: None

56

: AccessAllowedObject
: ObjectAceTypePresent

False

* _None

: 5-1-5-21-883232822-274137685-4173207997-1115

52

: None

False

; None
o
: D




3.

DACL
(Mis)configurations

And Abuse!




Elevation vs. Persistence @

Our work in this area was first motivated by a
desire to find AD misconfigurations for the

purposes of domain privilege escalation

o l.e. searching for specific ACE relationships that
result in a lesser-privileged object modifying a
higher-privileged one

This presentation is about modifying/adding
ACEs (or chains of ACEs) in order to provide
persistence in a domain environment




AD Generic Rights @

m GenericAll
o Allows ALL generic rights to the specified object
0 Also grants “control rights” (see next slide)

m GenericWrite
o Allows for the modification of (almost) all properties
on a specified object

m Both are abusable with PowerView’s
Set-DomainObject, and these two rights
generally apply to most objects for takeover




AD Control Rights @

m Rights that allow a trustee/principal to gain
control of the object in some way

WriteDacl grants the ability to modify the DACL

in the object security descriptor
0 Abusable with PowerView: Add-DomainObjectAcl

WriteOwner grants the ability to take ownership

of the object
o Object owners implicitly have full rights!
0 Abusable with PowerView: Set-DomainObjectOwner




Target: @
User Objects

The two takeover primitives are forcing a
password reset, and targeted Kerberoasting
through SPN modification (to recover creds)

So the additional rights we care about are:
0 WriteProperty to all properties

0  WriteProperty to servicePrincipalName

0 All extended rights

0 User-Force-Change-Password (extended)

Abusable through Set-DomainObjectOwner
and Set-DomainUserPassword




Target: @
Group Objects

The main takeover primitive involves adding a
user to the target group

So the additional rights we care about are:
0 WriteProperty to all properties
0 WriteProperty to the member property

Abusable through Add-DomainGroupMember




Target: e

Computer Objects

It LAPS is enabled:
0 We care about DS_CONTROL_ACCESS or
GenericAll to the ms-MCS-AdmPwd (plaintext

password) property

Otherwise, we don’t know of a practical way to
abuse a control relationship to computer

objects (
O If you have any ideas, please let us know!




Target:
Domain Objects

The main takeover primitive involves granting a
user domain replications rights (for DCSync)

So the main effective right we care about is
WriteDacl, so we can grant a principal DCSync
rights with Add-DomainObjectAcl




Target: @
Group Policy Objects

The main takeover primitive involves the right
to edit the group policy (that’s then linked to

an OU/site/domain)
0 This gives the ability to compromise
users/computers in these containers

So the additional rights we care about are:
0 WriteProperty to all properties
0 WriteProperty to GPC-File-Sys-Path

GPOs can be edited on SYSVOL




4.

BloodHound Analysis

Arroooo000000




BloodHound Analysis

BloodHound enables simple, graphical analysis
of control relationships in AD

Defenders can use this for least privilege
enforcement, identitying misconfigured ACLS,
and detecting non-stealthy ACL-enabled
backdoors

Attackers can use this to identifty
ACL-enabled escalation paths, select targets
for highly stealthy backdoors, and understand
privilege relationships in the target domain




BloodHound Analysis

ORGANIZATION MANAG%%NE[“@INTERNAL.LOCAL . L e ft ° P r i n C i p a ls
N\ N

N with direct control
- U over the “Domain
Admins” group
Several Exchange
S, | — security groups
- have “GenericAll”
rights over the
“Domain Admins”

group

S

ADMINISTRATORS@INTERNAL.LOCAL

BACKUP2@INTERNAL.LOCAL




BloodHound Analysis

&)

SBEARD@IN&RNAL.LOCAL

LAVERY@IN@RNAL.LO},CAL g:j

-
SECRET@INTERNAL.LOCAL o
AROTE@INTERNAL.LOCAL BACKUP1@INLERNAL.LOCAL E} Z

/ Ny fE% ER ADMINS@INTERNAL.LOBACKUP2@INTERI .LOCAL
ASANDERS.ADMII&INTERNA .LOCAL i

BREYES.ADMIN@INTERNAL.LOCAL @

EXCH-001 .IN@RNAL’.LOCAL

e EXCH-OOZ.IN&RNAL.LOCA'L
e JFERNAN DEZADM@@INTERNAL. L@ON‘I!‘OO:”N@RNAL LOCAL.

: EXCHANGE-TRUSTED SUBSYSTEM@INTERNAL.LOCAL
RYANCYGINTERNACLOCAL Ui E@IN&RNAL;I,OCAL EXCH—OO4.INEFN AETOCAL~

0.0

DOMAIN ADMINS@INTERNAL.LOCAL

PFREEMAN@lNTERNAT:;LOQA[EXCH-OOS.IN@RNAL.LOCAL

\_EXCH-006.1

SN *

CB ARCLAY@,NTEMM@[ION MANAGEMENT@INTERNAL.LOCAL

NAL.LOCAL

G /
e,' ALANDRETH@INTERNAL TOGAL EXCHANGE RECIPIENT ADMINISTRATORS@INTERNAL.LOCAL

RBARKAN@n\gRNAL.LOCAL 5_?

EXCHANGE ORGANIZATION ADMINISTRATORS@INTERNAL.LOCAL
CHOPEWELL@INTERNAL.LOCAL @




BloodHound Analysis

. o0— ,
o : O~ . © —_CBARCLAY@INTERNAL.LOCAL @
~ LAPTOP ADMINS@INTERNAL.LOCAL {_ P ~ OREANIZATION MANAGEMENT@INTERNAL.LOCAL
th's — (™y—TNEVES@INTERNAL.LOCAL 2 ‘
TWILSON.ADMIN@INTERNAL.LOCAL eDESKTOPADM[NS@INTERNAL.LOCAI&J ALANDRETH@INTERNAL.LOCAL
TELLIOTT.ADMIN@INTERNAL.LOCAL HELPDESK@INTERNAL.LOCAL
PFREEMAN@INTERNAL.LOCAL

EXCH-001.INTERNAL LOCAL

EXCH-002.INTERNAL.LOEAL"

(&) e 8‘3

JFERNANDEZ ADMIN@INTERNAL LOCAL EXCH-0RRMEGROAFHOSFHD SUBSYSTEM@INTERNAL.LOCAL

o CHOPEWELL@INTERNAXCA@AM. INTERNAT LOCAL
AROTE@INTERNALEOCAL &
S EXCH-005.INTERNAL.LOCAL
LAVERY@INTERNAL LOCAL — €29 SN
SECRET@INTERNAL.LOCAL EXCH-006.INTERNAL.LOCAL
SBEARD@INTERNAL.LOCAL N

\, - 4 DdMAIN ADMINS@INTERNAL.LOCAL
Rm%ﬁﬁmmmﬁﬂﬂmﬁs@mmﬂﬂtg TERNAL.LOCAL

MCLUNE@INTERNAL.LOCAL &)
O—_ ADMINISTRATORS@!
O BACKUP1@INTERNAL.LOCAL — {9 C
RYANCY@INTERNAL.LOCAL SERVER ADMINS@INTERWEKUBREINTERNAL. LOCAL
MSCHMIDT.ADMIN@INTERNAL.LOCAL




o.

Desighing Active
Directory DACL
Backdoors

Primitives for Pwnage




Objective

m We want to implement an Active Directory

DACL-based backdoor that:

0 Facilitates the regaining of elevated control in the
AD environment

o Blends in with normal ACL configurations (“hiding in
plain sight”), or is otherwise hidden from easy
enumeration by defenders

m Let’'s see what we can come up with!




Stealth Primitive: @
Hiding the DACL

m Effectively hiding DACLs from defenders
requires two steps

Change the object owner from “Domain
Admins” to the attacker account.

Add a new explicit ACE, denying the
“‘Everyone” principal the “Read Permissions”

privilege.




Stealth Primitive:
Hiding the DACL

Permission Entry for Jeff Dimmack

Principal:  Everyone Select a principal

Type: | Deny

Applies to: |Thi5 object and all descendant objects

Permissions:

Properties:

[C]Full contral

[] List contents
[]Read all properties
[]Write all properties
[] Delete

[+ Read permissions

odiTy permissions
[] Medify owner

[ Al validated writes

[] Al extended rights

[]Read all properties

[] write all properties

[] Create all child objects

[] Delete all child objects

[] Create ms-net-ieee-80211-GroupPolicy objects
[] Delete ms-net-ieee-20211-GroupPelicy ohjects
[] Create ms-net-ieee-8023-GroupPolicy objects
[] Delete ms-net-ieee-8023-GroupPelicy objects
[] Allowed to authenticate

[[] Change password

[]Receive as

[] Reset password

[]Send as

[]Read msDS-OperationsFor&zTaskBL

[[]Read msDS-parentdistname

OK

| | Cancel




Stealth Primitive: @
Hiding the Principal

m Hiding a principal from defenders requires

three steps:
Change the principal owner to itself, or another
controlled principal.
Grant explicit control of the principal to either
itself, or another controlled principal.
On the OU containing your hidden principal,
deny the “List Contents” privilege to “Everyone”




Stealth Primitive:

@ [ @ @
Hiding the Principal
E Active Directory Users and Computers

File Action View Help

4 F4 contoso.com

| Builtin

[
|| Computers
A

a2 | Contoso Users
3| Audit
3| DistnbutionGroup
2 | Executives
z | Finance
3| Invisible Objects
t- 2] Deny-Read-To-ACEs
2 | Invisible-To-Domain-Admins

[ 2| Target Groups
[[]]




S
Primitives: Summary

We know which ACEs result in object takeover

We can control who can enumerate the DACL

We can hide principals/trustees that are
present in a specific ACE




6.

Backdoor Case Studies

“If you can dream it...”




A Hidden DCSync
Backdoor

m Backdoor:

0 Add DS-Replication-Get-Changes and
DS-Replication-Get-Changes-All on the domain
object itself where the principal is a user/computer
account the attacker controls

0 The user/computer doesn’t have to be in any special
groups or have any other special privileges!

m Execution:
o DCSync whoever you want!




Exploitation




AdminSDHolder

m Backdoor:

0 Attacker grants themselves the
User-Force-Change-Password right on
CN=AdminSDHolder,CN=System
Every 60 minutes, this permission is cloned to every
sensitive/protected AD object through SDProp

O Attacker “hides” their account using methods
described

m Execution:
0 Attacker force resets the password for any
adminCount=1 account




Exploitation




S
LAPS

Microsoft’s “Local Administrator Password

Solution”
Randomizes the a machine’s local admin

password every 30 days. Password stored in

the confidential ms-Mcs-AdmPwd attribute

on computer objects

Administered with the AdmPwd.PS cmdlets

0 Find-AdmPwdExtendedRights - “Audit”
who can read ms-Mcs-AdmPwd

https://technet.microsoft.com/en-us/mt227395.aspx




Who can read AdmPwd?

m DS_CONTROL_ACCESSS where the ACE
0 applies to AdmPwd and all descendant computers
0 applies to AdmPwd and all descendant objects
0 applies to any object and all descendant objects
|

0 applies to any object and all descendant computers

m Above checks are necessary for GENERIC_ALL

m Object control == Ability to grant the above rights
O You are the owner

O You can become the owner:
0 WriteDACL, WriteOwner, DS-Set-Owner




Shortcomings of )
Find-AdmPwdExtendedRights

m DS_CONTROL_ACCESSS where the ACE
0 applies to AdmPwd and all descendant computers
0 applies to AdmPwd and all descendant objects*
0 applies to any object and all descendant objects
0 applies to any object and all descendant computers

m Above checks are necessary for GENERIC_ALL

m Object control == Ability to grant the above rights
O You are the owner

O You can become the owner
o WriteDACL, WriteOwner
0 DS-Set-Owner Extended Right




Exploitation

m Backdoor:

0o Add an ACE to OU or Computer that applies to the
AdmPwd property and any descendant object

$RawObject = Get-DomainOU -Raw Servers

$TargetObject = $RawObject.GetDirectoryEntry()

$AdmPwdGuid = (Get-DomainGUIDMap).GetEnumerator() | °
?{$_.value -eq 'ms-Mcs-AdmPwd'} | select -ExpandProperty name

$ACE = New-ADObjectAccessControlEntry -InheritanceType Descendents °
-AccessControlType Allow -PrincipalIldentity "Domain Users" °
-Right ExtendedRight -ObjectType $AdmPwdGuid

$TargetObject.PsBase.ObjectSecurity.AddAccessRule($ACE)

$TargetObject.PsBase.CommitChanges()




Normal user can’t access I°)i
ms-mcs-AdmPwd

PS C:\> whoami
corpwest\johnsmith

ObjectDN : OU=Servers,DC=corpwest,DC=1ocal
ExtendedRightHolders : {NT AUTHORITY\SYSTEM, CORPWEST\Domain Admins, CORPWEST\ServerAdmins}

ObjectDN : CN=Exchange,OU=Servers,DC=corpwest,DC=local
ExtendedRightHolders : {NT AUTHORITY\SYSTEM, CORPWEST\Domain Admins}

PS C:\> Get-DomainComputer Exchange -Properties name,ms-mcs-AdmPwd

name

Exchange




Privileged attacker adds
backdoor to Servers OU

PS C:\> whoami
corpwest\itadmin
C:\> $RawObject = Get-DomainOU -Raw Servers
C:\> $TargetObject = $RawObject.GetDirectoryEntry()
C:\> $AdmPwdGuid = (Get-DomainGUIDMap).GetEnumerator() |
?{$_.value -eq 'ms-Mcs-AdmPwd'} | select -ExpandProperty name

$ACE = New-ADObjectAccessControlEntry -InheritanceType Descendents °

-AccessControlType Allow -Principalldentity "Domain Users" °

-Right ExtendedRight -ObjectType $AdmPwdGuid
$TargetObject.PsBase.ObjectSecurity.AddAccessRule($ACE)
$TargetObject.PsBase.CommitChanges()

C:\5




Domain user can access
AdmPwd! LAPS cmdlet
doesn’t detect it!

PS C:\> whoami
corpwest\johnsmith
PS C:\> Find-AdmPwdExtendedRights -OrgUnit Servers -IncludeComputers | f1

ObjectDN : OU=Servers,DC=corpwest,DC=1ocal
ExtendedRightHolders : {NT AUTHORITY\SYSTEM, CORPWEST\Domain Admins, CORPWEST\ServerAdmins}

ObjectDN : CN=Exchange,OU=Servers,DC=corpwest,DC=1ocal
ExtendedRightHolders : {NT AUTHORITY\SYSTEM, CORPWEST\Domain Admins}

PS C:\> Get-DomainComputer Exchange -Properties name,ms-mcs-AdmPwd

name ms-mcs-admpwd

Exchange n.H54m-]Bq;46#3dtV2&




8
Exchange Strikes Back

m Exchange Server introduces several schema
changes, new nested security groups, and
MANY control relationships to Active Directory,
making it a perfect spot to blend in amongst
the noise.

Pre Exchange Server 2007 SP1, this included
the “WriteDACL” privilege against the domain
object itself, which was distributed down to
ALL securable objects!




8
Exchange Strikes Back

m Backdoor:

O

|dentify a non-protected security group with
local admin rights on one or more Exchange
servers

Grant “Authenticated Users” full control over
this security group

Change the owner of the group to an
Exchange server

Deny “Read Permissions” on this group to the
“Everyone” principal




Exchange Strikes Back

m EXxecution:

O

O

O

Regain access to the Active Directory domain
as any user

Add your current user to the back-doored
security group

Use your new local admin rights on an
Exchange server to execute commands as the
SYSTEM user on that computer.

Exchange Trusted Subsystem often has full
control of the domain, so this may include
DCSync!




Exploitation




Abusing GPOs

m Backdoor:
0 Attacker grants herself GenericAll to any user object
with the attacker as the trustee

o Grant that “patsy” user WriteDacl to the default
domain controllers GPO

m EXxecution:

Force resets the “patsy” account password

Adds a DACL to the GPO that allows write access for
the patsy to GPC-File-Sys-Path of the GPO

Grants the patsy user SeEnableDelegationPrivilege
rights in GptTmplinf

Executes a constrained delegation attack using the
patsy account’s credentials




Exploitation




Defenses

All is (Probably) Not Lost ;)




Event Logs

Proper event log tuning and monitoring is
pretty much your only hope for performing

real “forensics” on these actions

o Butif you weren’t collecting event logs when the
backdoor was implemented, you might not ever
know who the perpetrator was (

For example:
o Event log 4738 (“A user account was changed”),
filtered by the property modified




Replication Metadata

m Metadata remnants fromm domain controller

replication can grant a few clues
0 Specifically, when a given attribute was modified,
and from what domain controller the modification

event occurred on

This points you in the right direction, but needs
to be used with event logs to get the full

picture
0 More information in a post soon on
http://blog.harmjOy.net




8
SACLs

m SACLs contain ACEs that, “specify the types of
access attempts that generate audit records in
the security event log of a domain controller”

m You don’t have to SACL every success/failure

action on every object type and property:
O A great start- build SACLs for all of the attack

primitives we’ve talked about on the specific target
objects we’ve outlined

0 More information: http://bit.ly/2tOAGN7




Sidenote:
Future Work

m \We were not able to utilize NULL DACLs or
otherwise manipulate the header control bits
(i.e. SE_DACL_PRESENT)

0  Any attempts to set ntSecurityDescriptor on an
object remotely ignores any header bits, however
this warrants another look

m Research additional control relationships
o Particularly any relationship that allows for
computer object takeover




Credits

Special thanks to all the people who helped us
with this research and slide deck:

m Lee Christensen (@tifkin )

m Jeff Dimmock (@bluscreenofjeff)
m Matt Graeber (@mattifestation)

m And everyone else at SpecterOps!




Questions?

Contact us at:;

m @ waldO (robbins.andy [at] gmail.com)
B @harmjOy (will [at] harmjOy.net)




