
An ACE Up the Sleeve
Designing Active Directory DACL Backdoors

Andy Robbins and Will Schroeder
SpecterOps

@_wald0

▪ ...▪ Job: Adversary Resilience Lead at
SpecterOps

▪ Co-founder/developer: BloodHound
▪ Trainer: BlackHat 2016
▪ Presenter: DEF CON, DerbyCon, ekoparty,

Paranoia, ISSA Intl, ISC2 World Congress,
various Security BSides

▪ Other: ask me about ACH

@harmj0y

▪ Job: Offensive Engineer at SpecterOps
▪ Co-founder/developer: Veil-Framework,

Empire/EmPyre, PowerView/PowerUp,
BloodHound, KeeThief

▪ Trainer: BlackHat 2014-2016
▪ Presenter: DEF CON, DerbyCon, ShmooCon,

Troopers, BlueHat Israel, various BSides
▪ Other: PowerSploit developer and Microsoft

PowerShell MVP

tl;dr

▪ DACL/ACE Background
▪ Enumeration of AD DACLs
▪ DACL Misconfiguration and Abuse
▪ Analysis with BloodHound
▪ Designing ACL Based Backdoors
▪ Case Studies and Demos
▪ Defenses

Disclaimer

▪ There is no exploit/CVE/whatnot here, just
ways to purposely implement Active Directory
DACL misconfigurations

▪ These backdoors are post-elevation
techniques that require some type of
elevated access to the objects you’re
manipulating

Why Care?

▪ It’s often difficult to determine whether a specific
AD DACL misconfiguration was set maliciously or
configured by accident

▪ These changes also have a minimal forensic
footprint and often survive OS and domain
functional level upgrades
□ This makes them a great chance for subtle, long-term

domain persistence!

▪ These may have been in your environment for
YEARS!

“As an offensive researcher,
if you can dream it,
someone has likely already
done it...and that someone
isn’t the kind of person who
speaks at security cons”

Matt Graeber
“Abusing Windows Management Instrumentation
(WMI) to Build a Persistent, Asynchronous, and
Fileless Backdoor” - BlackHat 2015

Background
From ACLs to ACEs

1.

https://www.sstic.org/2014/presentation/chemins_de_controle_active_directory/

Previous Work

Previous Work

https://www.sstic.org/2014/presentation/chemins_de_controle_active_directory/

Previous Work

https://blogs.technet.microsoft.com/pfesweplat/2017/01/28/forensics-active-directory-ac
l-investigation/

Previous
(Offensive) Work?

https://habrahabr.ru/post/90990/

Securable Objects

▪ Any securable object in a Windows environment
contains a SECURITY_DESCRIPTOR structure
that contains:
□ A set of control/inheritance bits in the header
□ The security identifier (SID) of the object’s owner
□ The SID of the object’s primary group (not used)
□ A discretionary access control list (DACL)
□ A system access control list (SACL)

▪ This is a binary structure, but can be described
with a Security Descriptor Definition Language
(SDDL) string

SECURITY_DESCRIPTOR

https://msdn.microsoft.com/en-us/library/windows/hardware/ff556610(v=vs.85).aspx

ACLs, DACLs, and SACLs

▪ Access Control List (ACL) is basically
shorthand for the DACL/SACL superset

▪ An object’s Discretionary Access Control List
(DACL) and Security Access Control List
(SACL) are ordered collections of Access
Control Entries (ACEs)
□ The DACL specifies what principals/trustees have

what rights over the object
□ The SACL allows for auditing of access attempts to

the object

▪ All ACEs include:
□ A 32-bit set of flags that control auditing
□ A 32-bit access mask that specifies access rights

allowed
□ A security identifier (SID) that identifies the

principal/trustee that has the given rights

ACEs

https://msdn.microsoft.com/en-us/library/windows
/desktop/aa374896(v=vs.85).aspx

DS_CONTROL_ACCESS

▪ AD access mask bit that grant privileges that
aren’t easily expressed in the access mask

▪ Interpreted a few different ways

▪ If the ObjectAceType of an ACE with
CONTROL_ACCES set is the GUID of a
confidential property or property set, this bit
controls read access to that property
□ E.g. in the case of the Local Administrator Password

Soltution (LAPS)

DS_CONTROL_ACCESS
and Extended Rights

▪ If the ObjectAceType GUID matches a
registered extended-right GUID in the schema,
then control_access grants that particular
“control access right”

▪ Examples:
□ User-Force-Change-Password on user objects
□ DS-Replication-Get-Changes and

DS-Replication-Get-Changes-All on the domain
object itself

▪ In Windows and AD, the Kernel-Mode Security
Reference Monitor (SRM) is in charge of
deciding the outcome of access requests,
based on the canonical order of ACEs on the
target object, and the access being requested.

▪ By understanding the order of evaluation the
SRM uses for these access decisions, an
attacker may more effectively hide malicious
ACEs, or even entire security principals from
defenders.

SRM and Canonical ACE
Order

▪ The “canonical” order of ACE evaluation:
□ Explicit DENY
□ Explicit ALLOW
□ Inherited DENY
□ Inherited ALLOW

▪ Inherited privileges are further complicated by
generational distance from which the object
inherits that ACE: generationally closer
inherited ACEs are given priority

SRM and Canonical ACE
Order

DACL Enumeration
You Don’t Know
What You Can’t Find

2.

.NET/LDAP

▪ The SecurityMasks property of a .NET
DirectorySearcher object can be set to
retrieve the DACL, SACL, and/or Owner
information for an object through LDAP

https://msdn.microsoft.com/en-us/library/system.directoryservices.securitymasks(v=vs.110).aspx

PowerView

▪ PowerView’s Get-DomainObjectACL function
wraps the .NET/LDAP method to enumerate
the DACLs for any given domain object
□ The security descriptor is parsed and individual

ACEs are output on the pipeline
□ The -ResolveGUIDs flag will build an

environment-specific mapping of right GUIDS to
display names

▪ By default, any domain authenticated user
can enumerate DACLs for most objects in
the domain!

PowerView

DACL
(Mis)configurations
And Abuse!

3.

Elevation vs. Persistence

▪ Our work in this area was first motivated by a
desire to find AD misconfigurations for the
purposes of domain privilege escalation
□ I.e. searching for specific ACE relationships that

result in a lesser-privileged object modifying a
higher-privileged one

▪ This presentation is about modifying/adding
ACEs (or chains of ACEs) in order to provide
persistence in a domain environment

AD Generic Rights

▪ GenericAll
□ Allows ALL generic rights to the specified object
□ Also grants “control rights” (see next slide)

▪ GenericWrite
□ Allows for the modification of (almost) all properties

on a specified object

▪ Both are abusable with PowerView’s
Set-DomainObject, and these two rights
generally apply to most objects for takeover

AD Control Rights

▪ Rights that allow a trustee/principal to gain
control of the object in some way

▪ WriteDacl grants the ability to modify the DACL
in the object security descriptor
□ Abusable with PowerView: Add-DomainObjectAcl

▪ WriteOwner grants the ability to take ownership
of the object
□ Object owners implicitly have full rights!
□ Abusable with PowerView: Set-DomainObjectOwner

Target:
User Objects

▪ The two takeover primitives are forcing a
password reset, and targeted Kerberoasting
through SPN modification (to recover creds)

▪ So the additional rights we care about are:
□ WriteProperty to all properties
□ WriteProperty to servicePrincipalName
□ All extended rights
□ User-Force-Change-Password (extended)

▪ Abusable through Set-DomainObjectOwner
and Set-DomainUserPassword

Target:
Group Objects

▪ The main takeover primitive involves adding a
user to the target group

▪ So the additional rights we care about are:
□ WriteProperty to all properties
□ WriteProperty to the member property

▪ Abusable through Add-DomainGroupMember

Target:
Computer Objects

▪ If LAPS is enabled:
□ We care about DS_CONTROL_ACCESS or

GenericAll to the ms-MCS-AdmPwd (plaintext
password) property

▪ Otherwise, we don’t know of a practical way to
abuse a control relationship to computer
objects :(
□ If you have any ideas, please let us know!

Target:
Domain Objects

▪ The main takeover primitive involves granting a
user domain replications rights (for DCSync)

▪ So the main effective right we care about is
WriteDacl, so we can grant a principal DCSync
rights with Add-DomainObjectAcl

Target:
Group Policy Objects

▪ The main takeover primitive involves the right
to edit the group policy (that’s then linked to
an OU/site/domain)
□ This gives the ability to compromise

users/computers in these containers

▪ So the additional rights we care about are:
□ WriteProperty to all properties
□ WriteProperty to GPC-File-Sys-Path

▪ GPOs can be edited on SYSVOL

BloodHound Analysis
Arroooooooooo

4.

BloodHound Analysis

▪ BloodHound enables simple, graphical analysis
of control relationships in AD

▪ Defenders can use this for least privilege
enforcement, identifying misconfigured ACLs,
and detecting non-stealthy ACL-enabled
backdoors

▪ Attackers can use this to identify
ACL-enabled escalation paths, select targets
for highly stealthy backdoors, and understand
privilege relationships in the target domain

BloodHound Analysis

● Left: Principals
with direct control
over the “Domain
Admins” group

● Several Exchange
security groups
have “GenericAll”
rights over the
“Domain Admins”
group

BloodHound Analysis

BloodHound Analysis

Designing Active
Directory DACL
Backdoors
Primitives for Pwnage

5.

Objective

▪ We want to implement an Active Directory
DACL-based backdoor that:
□ Facilitates the regaining of elevated control in the

AD environment
□ Blends in with normal ACL configurations (“hiding in

plain sight”), or is otherwise hidden from easy
enumeration by defenders

▪ Let’s see what we can come up with!

Stealth Primitive:
Hiding the DACL

▪ Effectively hiding DACLs from defenders
requires two steps

▪ Change the object owner from “Domain
Admins” to the attacker account.

▪ Add a new explicit ACE, denying the
“Everyone” principal the “Read Permissions”
privilege.

Stealth Primitive:
Hiding the DACL

▪ Hiding a principal from defenders requires
three steps:
a. Change the principal owner to itself, or another

controlled principal.
b. Grant explicit control of the principal to either

itself, or another controlled principal.
c. On the OU containing your hidden principal,

deny the “List Contents” privilege to “Everyone”

Stealth Primitive:
Hiding the Principal

Stealth Primitive:
Hiding the Principal

Primitives: Summary

▪ We know which ACEs result in object takeover

▪ We can control who can enumerate the DACL

▪ We can hide principals/trustees that are
present in a specific ACE

Backdoor Case Studies
“If you can dream it…”

6.

A Hidden DCSync
Backdoor

▪ Backdoor:
□ Add DS-Replication-Get-Changes and

DS-Replication-Get-Changes-All on the domain
object itself where the principal is a user/computer
account the attacker controls

□ The user/computer doesn’t have to be in any special
groups or have any other special privileges!

▪ Execution:
□ DCSync whoever you want!

Exploitation

AdminSDHolder

▪ Backdoor:
□ Attacker grants themselves the

User-Force-Change-Password right on
CN=AdminSDHolder,CN=System

□ Every 60 minutes, this permission is cloned to every
sensitive/protected AD object through SDProp

□ Attacker “hides” their account using methods
described

▪ Execution:
□ Attacker force resets the password for any

adminCount=1 account

Exploitation

LAPS

▪ Microsoft’s “Local Administrator Password
Solution”

▪ Randomizes the a machine’s local admin
password every 30 days. Password stored in
the confidential ms-Mcs-AdmPwd attribute
on computer objects

▪ Administered with the AdmPwd.PS cmdlets
□ Find-AdmPwdExtendedRights - “Audit”

who can read ms-Mcs-AdmPwd

https://technet.microsoft.com/en-us/mt227395.aspx

Who can read AdmPwd?

▪ DS_CONTROL_ACCESSS where the ACE
□ applies to AdmPwd and all descendant computers
□ applies to AdmPwd and all descendant objects
□ applies to any object and all descendant objects
□ applies to any object and all descendant computers

▪ Above checks are necessary for GENERIC_ALL

▪ Object control == Ability to grant the above rights
□ You are the owner
□ You can become the owner:

□ WriteDACL, WriteOwner, DS-Set-Owner

Shortcomings of
Find-AdmPwdExtendedRights

▪ DS_CONTROL_ACCESSS where the ACE
□ applies to AdmPwd and all descendant computers
□ applies to AdmPwd and all descendant objects*
□ applies to any object and all descendant objects
□ applies to any object and all descendant computers

▪ Above checks are necessary for GENERIC_ALL

▪ Object control == Ability to grant the above rights
□ You are the owner
□ You can become the owner

□ WriteDACL, WriteOwner
□ DS-Set-Owner Extended Right

Exploitation

▪ Backdoor:
□ Add an ACE to OU or Computer that applies to the

AdmPwd property and any descendant object
$RawObject = Get-DomainOU -Raw Servers

$TargetObject = $RawObject.GetDirectoryEntry()

$AdmPwdGuid = (Get-DomainGUIDMap).GetEnumerator() | `

 ?{$_.value -eq 'ms-Mcs-AdmPwd'} | select -ExpandProperty name

$ACE = New-ADObjectAccessControlEntry -InheritanceType Descendents `

 -AccessControlType Allow -PrincipalIdentity "Domain Users" `

 -Right ExtendedRight -ObjectType $AdmPwdGuid

$TargetObject.PsBase.ObjectSecurity.AddAccessRule($ACE)

$TargetObject.PsBase.CommitChanges()

Normal user can’t access
ms-mcs-AdmPwd

Privileged attacker adds
backdoor to Servers OU

Domain user can access
AdmPwd! LAPS cmdlet
doesn’t detect it!

Exchange Strikes Back

▪ Exchange Server introduces several schema
changes, new nested security groups, and
MANY control relationships to Active Directory,
making it a perfect spot to blend in amongst
the noise.

▪ Pre Exchange Server 2007 SP1, this included
the “WriteDACL” privilege against the domain
object itself, which was distributed down to
ALL securable objects!

Exchange Strikes Back

▪ Backdoor:
□ Identify a non-protected security group with

local admin rights on one or more Exchange
servers

□ Grant “Authenticated Users” full control over
this security group

□ Change the owner of the group to an
Exchange server

□ Deny “Read Permissions” on this group to the
“Everyone” principal

▪ Execution:
□ Regain access to the Active Directory domain

as any user
□ Add your current user to the back-doored

security group
□ Use your new local admin rights on an

Exchange server to execute commands as the
SYSTEM user on that computer.

□ Exchange Trusted Subsystem often has full
control of the domain, so this may include
DCSync!

Exchange Strikes Back

Exploitation

Abusing GPOs

▪ Backdoor:
□ Attacker grants herself GenericAll to any user object

with the attacker as the trustee
□ Grant that “patsy” user WriteDacl to the default

domain controllers GPO
▪ Execution:

□ Force resets the “patsy” account password
□ Adds a DACL to the GPO that allows write access for

the patsy to GPC-File-Sys-Path of the GPO
□ Grants the patsy user SeEnableDelegationPrivilege

rights in GptTmpl.inf
□ Executes a constrained delegation attack using the

patsy account’s credentials

Exploitation

Defenses
All is (Probably) Not Lost ;)

6.

Event Logs

▪ Proper event log tuning and monitoring is
pretty much your only hope for performing
real “forensics” on these actions
□ But if you weren’t collecting event logs when the

backdoor was implemented, you might not ever
know who the perpetrator was :(

▪ For example:
□ Event log 4738 (“A user account was changed”),

filtered by the property modified

Replication Metadata

▪ Metadata remnants from domain controller
replication can grant a few clues
□ Specifically, when a given attribute was modified,

and from what domain controller the modification
event occurred on

▪ This points you in the right direction, but needs
to be used with event logs to get the full
picture
□ More information in a post soon on

http://blog.harmj0y.net

SACLs

▪ SACLs contain ACEs that, “specify the types of
access attempts that generate audit records in
the security event log of a domain controller”

▪ You don’t have to SACL every success/failure
action on every object type and property:
□ A great start- build SACLs for all of the attack

primitives we’ve talked about on the specific target
objects we’ve outlined

□ More information: http://bit.ly/2tOAGn7

Sidenote:
Future Work

▪ We were not able to utilize NULL DACLs or
otherwise manipulate the header control bits
(i.e. SE_DACL_PRESENT)
□ Any attempts to set ntSecurityDescriptor on an

object remotely ignores any header bits, however
this warrants another look

▪ Research additional control relationships
□ Particularly any relationship that allows for

computer object takeover

Credits

Special thanks to all the people who helped us
with this research and slide deck:
▪ Lee Christensen (@tifkin_)
▪ Jeff Dimmock (@bluscreenofjeff)
▪ Matt Graeber (@mattifestation)
▪ And everyone else at SpecterOps!

Questions?

Contact us at:
▪ @_wald0 (robbins.andy [at] gmail.com)
▪ @harmj0y (will [at] harmj0y.net)

