
An ACE Up the Sleeve
Designing Active Directory DACL Backdoors

Andy Robbins and Will Schroeder
SpecterOps

@_wald0

▪ Job: Adversary Resilience Lead at SpecterOps
▪ Co-founder/developer: BloodHound
▪ Trainer: BlackHat 2016
▪ Presenter: DEF CON, DerbyCon, ekoparty,

Paranoia, ISSA Intl, ISC2 World Congress, various
Security BSides

▪ Other: ask me about ACH

@harmj0y

▪ Job: Offensive Engineer at SpecterOps
▪ Co-founder/developer: Veil-Framework,

Empire/EmPyre, PowerView/PowerUp, BloodHound,
KeeThief

▪ Trainer: BlackHat 2014-2016
▪ Presenter: DEF CON, DerbyCon, ShmooCon,

Troopers, BlueHat Israel, various BSides
▪ Other: PowerSploit developer and Microsoft

PowerShell MVP

tl;dr

▪ DACL/ACE Background
▪ DACL Misconfiguration and Abuse
▪ Analysis with BloodHound
▪ Designing ACL Based Backdoors
▪ Case Studies and Demos
▪ Defenses

Disclaimer

▪ There is no exploit/CVE/whatnot here, just
ways to purposely implement Active Directory
DACL misconfigurations

▪ These backdoors are post-elevation
techniques that require some type of
elevated access to the objects you’re
manipulating

Why Care?

▪ It’s often difficult to determine whether a specific AD
DACL misconfiguration was set maliciously or
configured by accident

▪ These changes also have a minimal forensic footprint
and often survive OS and domain functional level
upgrades
□ This makes them a great chance for subtle, long-term

domain persistence!
▪ These may have been in your environment for YEARS!

“As an offensive researcher, if
you can dream it, someone has
likely already done it...and that
someone isn’t the kind of
person who speaks at security
cons” Matt Graeber

“Abusing Windows Management Instrumentation
(WMI) to Build a Persistent, Asynchronous, and
Fileless Backdoor” - BlackHat 2015

Background
From ACLs to ACEs

1.

https://www.sstic.org/2014/presentation/chemins_de_controle_active_directory/

Previous Work

Previous Work

https://blogs.technet.microsoft.com/pfesweplat/2017/01/28/forensics-active-directory-acl-investigation/

Previous Work

https://bitbucket.org/iwseclabs/bta/

https://habrahabr.ru/post/90990/

Previous (Offensive) Work

SECURITY_DESCRIPTOR

https://msdn.microsoft.com/en-us/library/windows/hardware/ff556610(v=vs.85).aspx

ACLs, DACLs, and SACLs

▪ Access Control List (ACL) is basically shorthand for
the DACL/SACL superset

▪ An object’s Discretionary Access Control List
(DACL) and Security Access Control List (SACL) are
ordered collections of Access Control Entries (ACEs)
□ The DACL specifies what principals/trustees have what

rights over the object
□ The SACL allows for auditing of access attempts to the

object

The Access
Control
Mask
(GUI Edition)

DS_CONTROL_ACCESS

▪ AD access mask bit that grants privileges that aren’t
easily expressed in the access mask

▪ Interpreted a few different ways...
▪ If the ObjectAceType of an ACE with

CONTROL_ACCESS set is the GUID of a confidential
property or property set, this bit controls read
access to that property
□ E.g. in the case of the Local Administrator Password

Soltution (LAPS)

DS_CONTROL_ACCESS
and Extended Rights
▪ If the ObjectAceType GUID matches a registered

extended-right GUID in the schema, then
control_access grants that particular “control access
right”
□ User-Force-Change-Password on user objects
□ DS-Replication-Get-Changes and DS-Replication-Get-

Changes-All on the domain object itself

SRM and Canonical ACE Order

DACL
(Mis)configurations
Object Takeover and Abuse

2.

Elevation vs. Persistence

▪ Our work in this area was first motivated by a desire
to find AD misconfigurations for the purposes of
domain privilege escalation
□ I.e. searching for specific ACE relationships that result in a

lesser-privileged object modifying a higher-privileged one

▪ This presentation is about modifying/adding ACEs
(or chains of ACEs) in order to provide persistence in
a domain environment

▪ The two takeover primitives are forcing a password
reset, and targeted Kerberoasting through SPN
modification (to recover creds)

▪ So the additional rights we care about are:
□ WriteProperty to all properties
□ WriteProperty to servicePrincipalName
□ All extended rights
□ User-Force-Change-Password (extended)

▪ Abusable through Set-DomainObjectOwner and Set-
DomainUserPassword

Target: User Objects

▪ The main takeover primitive involves adding a
user to the target group

▪ So the additional rights we care about are:
□ WriteProperty to all properties
□ WriteProperty to the member property

▪ Abusable through Add-DomainGroupMember

Target: Group Objects

▪ If LAPS is enabled:
□ We care about DS_CONTROL_ACCESS or GenericAll to

the ms-MCS-AdmPwd (plaintext password) property

▪ Otherwise, we don’t know of a practical way to
abuse a control relationship to computer
objects :(
□ If you have any ideas, please let us know!

Target: Computer Objects

▪ The main takeover primitive involves granting a
user domain replications rights (for DCSync)
□ Or someone who currently have DCSync rights

▪ So the main effective right we care about is
WriteDacl, so we can grant a principal DCSync
rights with Add-DomainObjectAcl
□ Or explicit DS-Replication-Get-Changes/ DS-

Replication-Get-Changes-All

Target: Domain Objects

For more information see Sean Metcalf’s post at https://adsecurity.org/?p=1729

▪ The main takeover primitive involves the right to edit
the group policy (that’s then linked to an
OU/site/domain)
□ This gives the ability to compromise users/computers in

these containers
▪ So the additional rights we care about are:

□ WriteProperty to all properties
□ WriteProperty to GPC-File-Sys-Path

▪ GPOs can be edited on SYSVOL

Target: GPOs

AD Generic Rights

▪ GenericAll
□ Allows ALL generic rights to the specified object
□ Also grants “control rights” (see next slide)

▪ GenericWrite
□ Allows for the modification of (almost) all properties on a

specified object
▪ Both are abusable with PowerView’s Set-

DomainObject, and these two rights generally apply
to most objects for takeover

AD Control Rights

▪ Rights that allow a trustee/principal to gain control of
the object in some way

▪ WriteDacl grants the ability to modify the DACL in the
object security descriptor
□ Abusable with PowerView: Add-DomainObjectAcl

▪ WriteOwner grants the ability to take ownership of the
object
□ Object owners implicitly have full rights!
□ Abusable with PowerView: Set-DomainObjectOwner

BloodHound Analysis
Arroooooooooo

3.

BloodHound Analysis

▪ BloodHound enables simple, graphical analysis of
control relationships in AD

▪ Defenders can use this for:
□ least privilege enforcement
□ identifying misconfigured ACLs
□ detecting “non-stealthy” ACL-enabled backdoors

▪ Attackers can use this to:
□ identify ACL-enabled escalation paths
□ select targets for highly stealthy backdoors
□ understand privilege relationships in the target domain

BloodHound Analysis

Designing Active
Directory DACL
Backdoors
(Stealth) Primitives for Pwnage

4.

Objective

▪ We want to implement an Active Directory
DACL-based backdoor that:
□ Facilitates the regaining of elevated control in the AD

environment
□ Blends in with normal ACL configurations (“hiding in

plain sight”), or is otherwise hidden from easy
enumeration by defenders

▪ Let’s see what we can come up with!

Stealth Primitive:
Hiding the DACL
▪ Effectively hiding DACLs from defenders

requires two steps
▪ Change the object owner from “Domain

Admins” to the attacker account.
▪ Add a new explicit ACE, denying the

“Everyone” principal the “Read Permissions”
privilege.

Stealth Primitive:
Hiding the DACL

▪ Hiding a principal from defenders requires
three steps:

a.Change the principal owner to itself, or another
controlled principal

b.Grant explicit control of the principal to either itself,
or another controlled principal

c.On the OU containing your hidden principal, deny
the “List Contents” privilege to “Everyone”

Stealth Primitive:
Hiding the Principal

Stealth Primitive:
Hiding the Principal

Primitives: Summary

▪ We know which ACEs result in object takeover

▪ We can control who can enumerate the DACL

▪ We can hide principals/trustees that are
present in a specific ACE

Backdoor Case Studies
“If you can dream it…”

5.

A Hidden DCSync
Backdoor
▪ Backdoor:

□ Add DS-Replication-Get-Changes and DS-Replication-
Get-Changes-All on the domain object itself where the
principal is a user/computer account the attacker controls

□ The user/computer doesn’t have to be in any special
groups or have any other special privileges!

▪ Execution:
□ DCSync whoever you want!

For more information see Sean Metcalf’s post at https://adsecurity.org/?p=1729

AdminSDHolder
▪ Backdoor:

□ Attacker grants themselves the User-Force-Change-
Password right on CN=AdminSDHolder,CN=System

□ Every 60 minutes, this permission is cloned to every
sensitive/protected AD object through SDProp

□ Attacker “hides” their account using methods described
▪ Execution:

□ Attacker force resets the password for any adminCount=1
account

For more information see Sean Metcalf’s post at https://adsecurity.org/?p=1906

LAPS

▪ Microsoft’s “Local Administrator Password
Solution”

▪ Randomizes the a machine’s local admin password
every 30 days
□ The password is stored in the confidential ms-Mcs-

AdmPwd attribute on computer objects
▪ Administered with the AdmPwd.PS cmdlets

□ Find-AdmPwdExtendedRights “Audits” who can read
ms-Mcs-AdmPwd

https://technet.microsoft.com/en-us/mt227395.aspx

Who can read AdmPwd?*

▪ DS_CONTROL_ACCESSS where the ACE
□ applies to AdmPwd and all descendant computers
□ applies to AdmPwd and all descendant objects
□ applies to any object and all descendant objects
□ applies to any object and all descendant computers

▪ Above checks are also necessary for GENERIC_ALL
▪ Object control == Ability to grant the above rights

□ You are the owner
□ You can become the owner:

□ WriteDACL, WriteOwner

* See the whitepaper for more details - the list here is not comprehensive

Shortcomings of Find-
AdmPwdExtendedRights

▪ DS_CONTROL_ACCESSS where the ACE
□ applies to AdmPwd and all descendant computers
□ applies to AdmPwd and all descendant objects*
□ applies to any object and all descendant objects
□ applies to any object and all descendant computers

▪ Above checks are also necessary for GENERIC_ALL
▪ Object control == Ability to grant the above rights

□ You are the owner
□ You can become the owner

□ WriteDACL, WriteOwner
▪ Only analyzes OUs and (optionally) computers

Normal user can’t access
ms-mcs-AdmPwd

Privileged attacker adds
backdoor to Servers OU

Domain user can access
AdmPwd! LAPS cmdlet doesn’t
detect it!

Exchange Strikes Back

▪ Exchange Server introduces several schema changes,
new nested security groups, and MANY control
relationships to Active Directory, making it a perfect
spot to blend in amongst the noise.

▪ Pre Exchange Server 2007 SP1, this included the
“WriteDACL” privilege against the domain object
itself, which was distributed down to ALL securable
objects!

Exchange Strikes Back

▪ Backdoor:
□ Identify a non-protected security group with local

admin rights on one or more Exchange servers
□ Grant “Authenticated Users” full control over this

security group
□ Change the owner of the group to an Exchange server
□ Deny “Read Permissions” on this group to the

“Everyone” principal

▪ Execution:
□ Regain access to the Active Directory domain as any user
□ Add your current user to the back-doored security group
□ Use your new local admin rights on an Exchange server to

execute commands as the SYSTEM user on that
computer.

□ Exchange Trusted Subsystem often has full control of the
domain, so this may include DCSync!

Exchange Strikes Back

Abusing GPOs

▪ Backdoor:
□ Attacker grants herself GenericAll to any user object with the attacker as

the trustee
□ Grant that “patsy” user WriteDacl to the default domain controllers GPO

▪ Execution:
□ Force resets the “patsy” account password
□ Adds a DACL to the GPO that allows write access for the patsy to GPC-

File-Sys-Path of the GPO
□ Grants the patsy user SeEnableDelegationPrivilege rights in GptTmpl.inf
□ Executes a constrained delegation attack using the patsy account’s

credentials

Defenses
All is (Probably) Not Lost ;)

6.

Event Logs

▪ Proper event log tuning and monitoring is pretty
much your only hope for performing real “forensics”
on these actions
□ But if you weren’t collecting event logs when the

backdoor was implemented, you might not ever know
who the perpetrator was :(

▪ For example:
□ Event log 4738 (“A user account was changed”), filtered by

the property modified

Replication Metadata

▪ Metadata remnants from domain controller
replication can grant a few clues
□ Specifically, when a given attribute was modified, and

from what domain controller the modification event
occurred on

▪ This points you in the right direction, but needs to be
used with event logs to get the full picture
□ More information in a post soon on

http://blog.harmj0y.net

SACLs

▪ SACLs contain ACEs that, “specify the types of
access attempts that generate audit records in the
security event log of a domain controller”

▪ You don’t have to SACL every success/failure action
on every object type and property:
□ A great start- build SACLs for all of the attack primitives

we’ve talked about on the specific target objects we’ve
outlined

□ More information: http://bit.ly/2tOAGn7

▪ We were not able to utilize NULL DACLs or otherwise
manipulate the header control bits (i.e.
SE_DACL_PRESENT)
□ Any attempts to set ntSecurityDescriptor on an object

remotely ignores any header bits, however this warrants
another look

▪ Research additional control relationships
□ Particularly any relationship that allows for computer

object takeover

Future Work

Credits
Special thanks to all the people who helped us
with this research and slide deck:
▪ Lee Christensen (@tifkin_)
▪ Jeff Dimmock (@bluscreenofjeff)
▪ Matt Graeber (@mattifestation)
▪ And everyone else at SpecterOps!

Questions?
Contact us at:
▪ @_wald0 (robbins.andy [at] gmail.com)
▪ @harmj0y (will [at] harmj0y.net)

