_—

{
(-
o 1
kel o ; i
l‘l S oy
T A5
.‘-a i._;:

Intercepting iCloud
Keychain

Alex Radocea
Longterm Security, Inc.

LONGTERM

Alex Radocea

Co-founder at Longterm Security, Inc.

Recovering CTF Addict

contact@longterm.io
@defendtheworld

LONGTERM

http://longterm.io

What is iCloud Keychain?

LONGTERM

Secret Syncing & Recovery
in the Cloud

Designed to be Highly
Secure

e Strong end-to-end cryptography

* Resilient against a compromised
backend, rogue insiders

* Resilient when an attacker has
obtained a target’s Apple ID
password

* Need an additional password or
a trusted device

Critical Flaws
Now Fixed

e \We found critical flaws in
undocumented, open-source
compoments of the protocol

* Agenda: We'll describe previous
work, how iCloud Keychain Syncing
works, and the flaws in detail

Prior Work & Presentations
Covering iCloud Keychain

Andrey Belenko/ViaForensics - https://speakerdeck.com/belenko/on-the-
security-of-the-icloud-keychain

Andrey Belenko/ViaForensics - CVE-2015-1065 - buffer overflows in
keychain sync with MITM capabillity

lvan Krstic/®& - Behind the Scenes with iOS Security: Secret
Synchronization - https://www.blackhat.com/docs/us-16/materials/us-16-
Krstic.pdf

Vladamir Katalov/Elcomsoft - https://conference.hitb.org/
hitbsecconf2017ams/sessions/commsec-when-two-factor-authentication-
is-a-foe-breaking-apples-icloud-keychain/

1I0S 10 Security Guide - https://www.apple.com/business/docs/
I0OS_Security_Guide.pdf

QO

LONGTERM

https://speakerdeck.com/belenko/on-the-security-of-the-icloud-keychain
https://speakerdeck.com/belenko/on-the-security-of-the-icloud-keychain
https://www.blackhat.com/docs/us-16/materials/us-16-Krstic.pdf
https://www.blackhat.com/docs/us-16/materials/us-16-Krstic.pdf
https://conference.hitb.org/hitbsecconf2017ams/sessions/commsec-when-two-factor-authentication-is-a-foe-breaking-apples-icloud-keychain/
https://conference.hitb.org/hitbsecconf2017ams/sessions/commsec-when-two-factor-authentication-is-a-foe-breaking-apples-icloud-keychain/
https://conference.hitb.org/hitbsecconf2017ams/sessions/commsec-when-two-factor-authentication-is-a-foe-breaking-apples-icloud-keychain/

Robert Morris

(Harry Naltchayan/THE WASHINGTON POST)

"Never
underestimate the
attention, risk,
money and time
that an opponent
will put Into
reading traffic.”

LLLLLLLL

ICloud Keychain
Components

Features: Recovery Syncing

LLLLLLLL

Features: Recovery Syncing

HSM-Based

Escrow
System

QO

LONGTERM

Features: Recovery

HSM-Based SMS

Verification

Escrow
System

QO

LONGTERM

Features: Recovery

iCloud Security

HSM-Based Code (ICSC) or

SMS :
=SCrow Verification pevice
System Passcode

required

QO

LONGTERM

Features:

HSM-Based
Escrow
System

Recovery

SMS
Verification

iCloud Security
Code (ICSC) or
Device
Passcode
required

Secure
Remote
Protocol (SRP)

Code
Verification

QO

LONGTERM

Features: Recovery Syncing

Sync’d Secrets
Across All

Trusted
Devices

QO

LONGTERM

Features: Syncing

Sync’d Secrets
Across All End to End

Trusted Encryption
Devices

QO

LONGTERM

Features: Syncing

Sync’d Secrets
Across All End to End
Trusted Encryption
Devices

Circle of Trust

QO

LONGTERM

Features: Syncing

Sync’d Secrets Approval or

Across All End to End Gircle of Trust Two-Factor/
Trusted Encryption ICSC required

Devices to join

QO

LONGTERM

ICloud Keychain Sync

. . .

Protocols:

Signed
Syncing Circle
Establishes
Trusted
Devices

Join Circle with
Apple ID
Password and
Trusted Device
Approval

Join Circle with
Apple ID
Password and

ICSC/Device
Passcode

256-bit ECDSA
on secp256r1i
with SHA256

QO

LONGTERM

Circle Protocol lllustrated

1. A creates a Circle

Alice Peer Info

Identity A ldentity
Pubkey A Sig

ApplelD
Password
Signature

Identity Key A
Signature

QO

LONGTERM

Circle Protocol lllustrated

2. B requests to join

Bob Application Ticket

|dentity B Identity
Pubkey B Sig

ApplelD
Password
Signature

QO

LONGTERM

Circle Protocol lllustrated

3. A approves

Alice Peer Info Bob Peer Info

Identity = Identity Identity = Identity
Pubkey A | Sig A Pubkey B = Sig B

ApplelD A ldentity
Password Key
Signature Signature o0

LONGTERM

Circle Protocol lllustrated

4. B countersigns

Alice

Peer Info Bob Peer Info

Identity Identity Identity | Identity
Pubkey A = Sig A Pubkey B | Sig B

ApplelD A ldentity B Identity
Password Key Key
Signature Signature Signature

QO

LONGTERM

Circle Protocol lllustrated

5. Third device approved by B...

Alice Bob Peer C Peer
Peer Info Info Info

Identity Identity Identity Identity Identity Identity
Pubkey A = Sig A Pubkey B Sig B Pubkey C Sig C

ApplelD B Identity
Password Key
Signature Signature

QO

LONGTERM

Circle Protocol lllustrated

6. Countersigned by all parties

Alice Bob Peer C Peer
Peer Info Info Info

Identity Identity Identity Identity Identity Identity
Pubkey A = Sig A Pubkey B Sig B Pubkey C Sig C

ApplelD A ldentity B Identity C Identity
Password Key Key Key
Signature Signature Signature Signature

QO

LONGTERM

What happens when devices
are lost while traveling?

LLLLLLLL

ICloud Keychain Passwords Overview

Default

Two-Factor
Enabled
Account

Join Circle With
Approving
Device

Apple ID
Password

Apple ID
Password +
2FA Approval

Join Circle
Without
Approving
Device

Apple ID
Password +
SMS + iCloud

Security Code
(ICSC)

Apple ID
Password +
SMS + Device

Passcode
QO

LONGTERM

How Does A New Device
Join Without Approval?

» Circle does not reset when this happens

» Joining the circle requires a trusted device to sign the
updated circle with an identity key...

* And Identity Keys not in the escrow
kSecAttrAccessibleWhenPasscodeSetThisDeviceOnly

The class kSecAttrAccessibleWhenPasscodeSetThisDeviceOnly

behaves the same as kSecAttrAccessibleWhenUnlocked, however it is only

available when the device is configured with a passcode. This class exists only in the

system keybag; they don't sync to iCloud Keychain, aren’t backed up, and aren't included

in escrow keybags. If the passcode is removed or reset, the items are rendered useless by m

discarding the class keys. LONGTERM

—————

Uncovering a hidden peer

» Undocumented, speculating this is for streamlining usability

- When a Circle is first established an “iCloud Identity” Key is
also created as a “hidden” peer

- Key is created with kSecAttrAccessibleWhenUnlocked,
kSecAttrSynchronizable

» Available from iCloud Keychain Recovery

» Can be used to update the Syncing Circle, and trigger
automatic coutersigning from all peers

QO

LONGTERM

Updated Circle lllustration -

One Peer

Alice Peer Info Cloud Peer
Info

Identity Identity Cloud Cloud
Pubkey A = Sig A Identity Sig

ApplelD A ldentity Cloud
Password Key Identity Key
Signature Signature Signature

QO

LONGTERM

Updated Circle lllustration -
Two Peers

Cloud Peer
Info

Identity Identity Cloud Cloud
Pubkey B ' Sig B Identity Sig

Alice Peer Info Bob Peer Info

Identity = Identity
Pubkey A =~ Sig A

Cloud
|ldentity

Key
Signature

ApplelD A ldentity B ldentity
Password Key Key
Signature Signature Signature

QO

LONGTERM

Which Backups Contain the
Cloud Identity Key?

» Cloud Peer Backup sounds tricky, seems okay
- If available in iCloud Backup Keybags...

- UID Key wrapping prevents Apple/Malicious Insider
from accessing the data

» ICloud Keychain Escrow contains Cloud Identity Keys
(kSecAttrSynchronizable)

* Not available without SMS and either iCSC or
passcode with two-factor authentication

LONG

Protocols: “SOSCircle”

ECDH Key

Forward Exchange, 128-AES-CTR
Secrecy & Verified with | Encryption w/
Deniability Peer Identity | Rotating Keys
Keys

End to End
Encryption

QO

LONGTERM

ICloud Keychain Sync Transmits
Data Across Apple Services

LLLLLLLL

E2E: Plaintext material only
available on trusted devices

recent modification date will be synced. Items are skipped if the other member has
the item and the modification dates are identical. Each item that is synced is encrypted
specifically for the device it is being sent to. It can't be decrypted by other devices

or Apple. Additionally, the encrypted item is ephemeral in iCloud; it's overwritten with

each new item that’s synced.

QO

LONGTERM

OTR KEX Messages

Initiator Recelver

OTR KEX Messages

Initiator Recelver

Peer Identity Keys from SOSCircle used for Signature
Verification of Ephemeral DH Keys

-?

OTR KEX Messages

Initiator Recelver

Secure Channel used to establish long-term keys,
exchange messages, and ultimately passwords. No

further encryption of passwords at this point

Pairwise, Fanout
Negotiation

XN
i ol

A A ©

O

LLLLLLLL

Apple’s iICloud Keychain
Security Goals

e “Sync passwords between iOS devices and Mac
computers without exposing that information to Apple”

e Also protect password material:
e When the iCloud account is compromised

e When iCloud is compromised by a rogue insider or
external attackers

e When third parties access user accounts

LONG

ICloud Keychain Sync
Security Layers

TLS
iCloud Services

SOSCircle/

OTR

ICloud Keychain Sync
Remote Attack Graph

Plaintext Password Material

B2. iCloud Account IDS/KVS Access
B3. iCloud Services
B4. TLS

A1. Remote Device
with secd control

Combined With
a. OTR Protocol Flaw

b. Circle Protocol Flaw

QO

LONGTERM

OTR Flaws

e CVE-2017-2448 - OTR Cryptographic Failure
e CVE-2017-2451 - OTR Memory Corruption

e Exacerbated by lack of TLS key pinning on
KVS communications

CVE-2017-2448 - Goto Fall
Redux

CVE-2017-2448 -
SecVerifySignatureAndMac

result = ReadLong(signatureAndMacBytes, signatureAndMacSize,
&xbSize); [1]

require_noerr(result, exit);
require_action(xbSize > 4, exit, result = errSecDecode);

require_action(xbSize <= *xsignatureAndMacSize, exit, result =
errSecDecode);

uint8_t signatureMac[CCSHA256_OUTPUT_SIZE];

cchmac(ccsha256_di(), sizeof(m2), m2, xbSize + 4,
encSigDataBlobStart, signatureMac);

require(xbSize + kSHA256HMAClcOBytes <= *xsignatureAndMacSize, exit);

[2]
QO

LONGTERM

CVE-2017-2448 -
SecVerifySignatureAndMac

result = RgadLong(signatureAndMacBytes, signatureAndMacSize,
&xbSize) 1]

require_noerr(result, exit);
require_action(xbSize > 4, exit, result = errSecDecode);

require_action(xbSize <= *xsignatureAndMacSize, exit, result =
errSecDecode);

uint8_t signatureMac[CCSHA256_OUTPUT_SIZE];

cchmac(ccsha256_di(), sizeof(m2), m2, xbSize + 4,
encSigDataBlobStart, signatureMac);

require(xbSize + kSHA256HMAClcOBytes <= *xsignatureAndMacSize, exit);

[2]
QO

LONGTERM

CVE-2017-2448 -
SecVerifySignatureAndMac

result = RgadLong(signatureAndMacBytes, signatureAndMacSize,
&xbSize) 1]

require _noerr(result, exit);
require_action(xbSize > 4, exit,Ngesult = errSecDecode

require_action(xbSize <= *xsignatureAndMacSize, exit, result =
errSecDecode) ;

uint8_t signatureMac[CCSHA256_OUTPUT_SIZE];

cchmac(ccsha256_di(), sizeof(m2), m2, xbSize + 4,
encSigDataBlobStart, signatureMac);

require(xbSize + kSHA256HMACl60Bytes <= xsignatureAndMacSize, exit);

[2]
QO

LONGTERM

CVE-2017-2448 -
SecVerifySignatureAndMac

result = RgadLong(signatureAndMacBytes, signatureAndMacSize,
&xbSize) 1]

require _noerr(result, exit);
require_action(xbSize > 4, exit, result = errSecDecode);

require_action(xbSize <= *xsignatureAndMacSize, exit, result =
errSecDecode) ;

uint8_t signatureMac[CCSHA256_OUTPUT_SIZE];

cchmac(ccsha256_di(), sizeof(m2), m2, xbSize + 4,
encSigDataBlobStart, signatureMac);

require(xbSize + kSHA256HMACl60OBytes <= *signatureAndMacSize
[2]

LONGTERM

CVE-2017-2448 - Goto Fail
Redux

static 0SStatus SecVerifySignatureAndMac(SecOTRSessionRef session,
bool usePrimes,

const uint8_t =ksignatureAndMacBytes,

size_t *signatureAndMacSize)

{ * Error handling
i gl - G e erroneously returns

ng(signatu reAndMacBytes, signatureAndMacSize, Su CceSSfu I Iy O n parSI n g
&xbSize); [1

require_noerr(result, exit); fallure

require_action(xbSize > 4, exit, result = errSecDecode);

require_action(xbSize <= *signatureAndMacSize, exit, result =
errSecDecode) ;

uint8_t signatureMac[CCSHA256_OUTPUT_SIZE]; ® EnCOding an invalid Size
cchmac(ccsha256_di(), sizeof(m2), m2, xbSize + 4, in an OTR packet

encSigDataBlobStart, signatureMac);

require(xbSize + kSHA256HMACl60Bytes <= *signatureAn eStabl iSheS a DH key
[2]

exchange and bypasses
sighature verification

bzera(ml, sizeof(ml));
bzero(m2, sizeof(m2));
bzero(c, sizeof(c));

return result; m

} LONGTERM

CVE-2017-2448 - Sample
Trigger In 32 Bytes

inti=0;
0x00 0x02 0x12 0x00 payload[i++] = 0x00;
payload[i++] = 0x02; //version 2

payload[i++] = kSignatureMessage; // packet type
0x00 0x00 0x00 0x18

payload[i++] = 0; //xbsize

payload[i++] = 0; //xbsize

payload[i++] = 0; //xbsize

Ox41 0x41 Ox41 0x41 payload[i++] = N-8; //xbsize

payload_length = N;

0x41 0x41 0x41 0x41 ?0TR:AAISAAAAGEFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUE-=.

QO

LONGTERM

Signature Bypass Attack
Impact

MITM Attacker could impersonate existing peers to
negotiate secrets

OTR protocol encrypts using ephemeral keys, verified
with the peer identity keys

Silent attack on targets with 100% reliability

LONG

Apple’s iCloud Keychain
Security Goals (without OTR fix)

e “Sync passwords between iOS devices and Mac
computers without exposing that information to Apple”

e When iCloud is compromised by a rogue insidesr
external attackers

e When third parties access user accounts

e Also protect password material:

e When the iCloud account is compromised

QO

LONGTERM

CVE-2017-2451 - Stack
Clash

e Same Routine as
CVE-2017-2448

result = ReadLong(signatureAndMacBytes,
signatureAndMacSize, &xbSize);

e MITM attacker controls
uint8_t xb[xbSize]; stack allocation size

e Long OTR packet results
In data being allocated
iIn adjacent thread’s
stack

LONGTERM

Stack Overlap Attack
Impact

Potential sandbox escape into secd (as root)

Malicious local application could potentially gain access
to device keychains

Remotely triggerable as well

Tricky to exploit due to guard pages, trigger races against
a crash

LONG

Wrapping up

e EXciting to see strong and usable end-to-end encryption
for the masses

e \We covered the Keychain Sync Protocol in depth

e \We reviewed a critical vulnerability in OTR that
undermined the End to End Encryption

QO

LONGTERM

Next Steps for the Security
Industry

e Should this have been discovered after Goto Fail?
e Strikingly similar, same code project.
e See Crypto Testing Talk
* Are the protocol details sufficiently transparent to users?

* Mostly open source, but we’re still the first to discuss OTR
publicly

* More research needed on the two-factor implementation, and its
interface with iCloud Keychain Recovery and iCloud Keychain
Syncing
QO

LONGTERM

Questions?

LONGTERM

LONGTERM

Circle Protocol Parameters

 Apple ID Password converted to ECC keypair using
PBKDF2 and X9.63

e |dentity Keys are 256-bit keys on the secp256r1 curve

e Stored in Keychain with

kSecAttrAccessibleWhenUnlockedThisDeviceOnly
protection class

e Cloud ldentity Key

kSecAttrAccessibleWhenUnlocked and
synchronizable

QO

LONGTERM

OTR Encryption Parameters

e NIST Curve (secp256r1)

e ECDH with ephemeral keys over secp256r1

e ECDSA signatures over secp256r1 with SHA-256
e SHA256-HMAC-160

e 128-bit AES-CTR used for encryption

LONG

OTR Asynchronous Key
Exchange

BOB ALICE

AES, (¢*), IIASH(g") @ ||. Hash commitment

2
"D-H Coxmit Message” 2. Diffie-Hellman Key Exchange

g9* @

"D-H Key Message”

Mn — \/IACK.,, (9", g%, pubg, keyidp)
r|AES., (Xn),MACK,, (AES (Xn))

"Reveal Signature Meessage”

M4 MACk , (¢¥, g%, pub 4, keyid 4) @
X,y = {p'ubA, %rysz, sig ,(M4)}

E&ES MACK (AESc' (X4))

"Signature Mossage”

3. Encrypted exchange of
long-term keys & signatures

g

https://blog.cryptographyengineering.com/2016/03/21/attack-of-week-apple-imessage/ m

LONGTERM

https://blog.cryptographyengineering.com/2016/03/21/attack-of-week-apple-imessage/

