
What’s on the Wireless? Automating RF Signal Identification

Michael Ossmann Dominic Spill
Great Scott Gadgets

Abstract

Software Defined Radio (SDR) equipment is well suited
to support spectrum monitoring applications. We present
new software that makes spectrum monitoring with SDR
easier and more effective.

1 Introduction

Users of Software Defined Radio receivers tend to be
familiar with software that presents a waterfall visu-
alization of radio signals. A waterfall plot is a two-
dimensional moving spectrogram, showing frequency on
one axis and time on another with signal strength repre-
sented by color or brightness.

Figure 1: gr-fosphor, waterfall visualization software for SDR

While useful for many applications, waterfalls suffer
from limitations that curb their utility for spectrum mon-
itoring. They present information about only a small
time window, and they are also limited in the amount
of RF bandwidth displayed. A typical waterfall imple-

mentation displays bandwidth equal to the sample rate
of the SDR platform. For example, operation at 20 mil-
lion samples per second yields a visible bandwidth of
20 MHz, only a small fraction of the tuning range of a
general-purpose SDR platform.

SDR experts are often able to identify signal features
including modulation with a glance at a waterfall plot,
but this ability requires considerable knowledge and ex-
perience. Additional experience is needed to be able to
distinguish atypical signals from those normally present
in a given environment. For a spectrum monitoring so-
lution to be usable by non-experts, it must have features
supporting signal identification and annotation.

2 Spectrum Analysis

A traditional tool for spectrum monitoring is the spec-
trum analyzer, a test instrument that is more expensive
than many of today’s SDR platforms. Spectrum analyz-
ers work by rapidly sweeping through a wide range of
frequencies, measuring signal strength at one frequency
(or over a narrow range of frequencies) at a time. The
sweeping function of a spectrum analyzer allows it to an-
alyze and visualize a very wide range of frequencies.

Because SDR platforms now feature tuning ranges
comparable to spectrum analyzers, it is possible to im-
plement spectrum analysis with SDR. Software such as
rtl power [3] implements a basic spectrum analysis func-
tion by measuring signal strength over a bandwidth less
than or equal to the sample rate and then making such
measurements successively across a range of tuning fre-
quencies. The output of rtl power can by post-processed
for visualization by heatmap.py [2] or visualized in real
time with QSpectrumAnalyzer [4].



Figure 2: QSpectrumAnalyzer using rtl power to monitor the FM
broadcast band

3 Rapid Sweeping

A significant drawback of SDR-based spectrum analy-
sis software compared to special-purpose spectrum an-
alyzers is the sweep rate achieved. The sweep rate of
a spectrum analyzer can vary widely depending on con-
figuration but is typically many sweeps per second. In
contrast, the sweep rate of rtl power over a wide tuning
range is many seconds per sweep. The SDR device must
be re-tuned many times per sweep, and each tuning re-
quires time not only for the device to settle on a new
frequency but also for the tuning command to be com-
municated (over USB in most cases) to the device by the
software.

We have achieved a much faster sweep implementa-
tion in the open source HackRF [1] project by locat-
ing the frequency control in firmware of HackRF One,
eliminating the need for the host computer to issue tun-
ing commands over USB many times per sweep. This
approach results in a sweep rate of 8 GHz per second
(0.75 seconds per sweep across the entire 6 GHz tun-
ing range), a much more useful rate for spectrum analy-
sis. Our hackrf sweep tool produces output comparable
to rtl power and is compatible with QSpectrumAnalyzer
for real-time spectrum monitoring.

Figure 3: QSpectrumAnalyzer using hackrf sweep to monitor the
2.4GHz ISM band

In order to avoid problems with both the DC offset
and the band-edge roll-off typically found in the out-
put of SDR receivers, hackrf sweep uses an interleaved
tuning scheme. It operates at 20 million samples per
second, capturing 20 MHz of bandwidth at each tun-
ing step. Instead of analyzing the entire 20 MHz, how-
ever, hackrf sweep only produces output for two 5 MHz
bands, separated by a 5 MHz gap in the center of the 20
MHz bandwidth. The next tuning step analyzes another
pair of 5 MHz bands interleaved with those of the previ-
ous step. In this way, 20 MHz of bandwidth is analyzed
with two interleaved steps instead of a single step.

FFT

FFT

5 MHz 5 MHz

frequency

ti
m

e

Figure 4: hackrf sweep’s interleaved tuning scheme captures time do-
main samples at two different center frequencies, converts them to the
frequency domain with the Fast Fourier Transform (FFT), and then dis-
cards portions of the output of each FFT.

4 Integration with Existing Software

hackrf sweep features a novel Inverse Fast Fourier
Transform (IFFT) mode that produces time domain out-
put instead of frequency domain output, allowing it to in-
tegrate with existing software intended for analysis and
visualization of time domain samples produced by SDR
receivers. At each tuning step, one or more frequency
bins are measured within each 5 MHz band. After each
sweep, the bins from each step are concatenated together
into a contiguous set of frequency domain samples span-
ning the entire sweep range. This set is processed with
the IFFT, resulting in a simulated time domain signal at
a sample rate equal to the sweep range.

For example, when configured to sweep across 6 GHz,
hackrf sweep’s IFFT mode produces a short burst of sim-
ulated samples at 6 billion samples per second every 0.75
seconds (the sweep period). The number of samples in
each burst is related to the bin width configuration; when
configured to the default 1 MHz bin width, 6000 samples
are produced in each burst.

2



This technique makes it possible to integrate
hackrf sweep with existing, unmodified software such as
gr-fosphor [5] or inspectrum [7] for spectrum monitor-
ing applications. However, it is important for the user
to recognize the difference between the simulated time
domain signal produced by hackrf sweep and an actual
high sample rate signal. The IFFT output causes events
that occurred at different times across a single sweep to
appear to have occurred at the same time. It is also sparse
in the time domain, skipping a significant amount of time
between each burst of samples.

Figure 5: hackrf sweep monitoring 0 to 6 GHz with IFFT output visu-
alized in real time with gr-fosphor

Figure 6: hackrf sweep monitoring the 2.4 GHz band with IFFT output
visualized by inspectrum

5 Integrated Waterfall and Sweep

When monitoring RF spectrum it is often useful to be
able to more closely analyze a particular frequency of
interest. To support this workflow we have extended
ShinySDR [6], a web-based waterfall application, to en-
able switching back and forth between sweep mode and
traditional waterfall mode. This allows a user to drill
down and investigate a signal that was observed in sweep
mode.

To further support spectrum monitoring, we have en-
hanced ShinySDR’s annotation system, making it eas-
ier to import spectrum usage information from regula-
tory agencies or other external data sources. Additionally

we support user annotation, allowing users to document
spectrum usage in their own environments and easing the
detection of anomalous activity.

Figure 7: ShinySDR monitoring the 2.4 GHz band with IFFT output
from hackrf sweep

We are currently working on an additional modifica-
tion to ShinySDR that enables Automatic Modulation
Classification (AMC). This feature will further reduce
the expertise required to identify radio signals with SDR.

6 Performance

While developing the hackrf sweep functionality we
faced trade-offs between sweep rate and data quality. We
were able to make some of these choices user config-
urable, whereas others are fixed but could be improved
with further work.

6.1 FFT Bin Width

The balance between FFT bin width (frequency resolu-
tion) and throughput is directly related to the processing
power of the host system. By default we use a bin width
of 1 MHz, which provides more horizontal resolution in
a 6 GHz wide waterfall plot than most monitors can dis-
play. It is possible to reduce this to a 4 kHz bin width for
even greater resolution. However, modern laptops strug-
gle to process this in real time.

6.2 Interleaved Receive

The interleaved receive method described in section 3
was a decision between data quality and sweep speed.
As we receive two overlapping 20 MHz blocks to pro-
duce 20 MHz of FFT output, our sweep rate is half of
our theoretical maximum rate. Additionally we have im-
plemented a linear (non-interleaved) sweep mode which
uses the whole of each 20 MHz block without throwing
out the frequency bins at the top and bottom ends or the
bins around the central DC spike.

3



There may be scenarios where the speed of linear
mode is a worthwhile trade-off for the lower quality out-
put data featuring DC spikes every 20 MHz, especially
when dealing with radio signals that are wideband with
short packet lengths or low duty cycles. For example,
when monitoring Wi-Fi bands the majority of packets
will be several MHz wide, so the DC spike and filter roll-
off at the band edges will not prevent packets from being
detected. However, while looking for unknown signals it
is important to have the highest data quality possible to
reduce ambiguity.

6.3 Tuning Delay
As we tune the HackRF One to a new frequency we drop
around 820 µs of samples that are received while the mi-
crocontroller issues serial commands to the front-end fre-
quency synthesizers and the synthesizers settle. It may
be possible to reduce this delay in at least some cases,
but we do not believe that it will drastically improve the
sweep rate for most uses. For this reason we have elected
to fix the delay to 820 µs which accommodates the worst
case tuning time of HackRF One.

6.4 Antenna Choice
There are very few antennas which support 0 to 6 GHz,
so we are greatly limited in our antenna options for wide-
band spectrum monitoring. To mitigate this problem
we have designed an antenna switching module, code-
named “Opera Cake” that allows the HackRF One to
change antennas in less time than is required to tune to
a new frequency. We have written firmware to control
the module that is aware of which antenna is appropriate
for a given frequency band. This tool allows us to use an
array of antennas and automatically switch to the most
appropriate antenna while re-tuning. Opera Cake is able
to switch quickly enough to keep up with hackrf sweep.

7 Conclusion

With appropriate software, general-purpose SDR sys-
tems can rival or even exceed the usefulness of special-
purpose spectrum analyzers for spectrum monitoring
tasks. Our approach of implementing rapid frequency
sweeping in firmware combined with enhancement of
user interfaces such as ShinySDR demonstrates the util-
ity of SDR for spectrum monitoring.

8 Acknowledgments

We thank Mike Walters, Kevin Reid, Ellie Puls, Jacob
Graves, and Michal Krenek for software contributions to
this project.

References
[1] GREAT SCOTT GADGETS. HackRF.

http://greatscottgadgets.com/hackrf/.

[2] KYLE KEEN. Rtl Power: Basic scripting.
http://kmkeen.com/rtl-power/.

[3] MARKGRAF, S., ET AL. rtl-sdr.
https://osmocom.org/projects/sdr/wiki/rtl-sdr.

[4] MICHAL KRENEK. qspectrumanalyzer.
https://github.com/xmikos/qspectrumanalyzer.

[5] MUNAUT, S. gr-fosphor.
https://osmocom.org/projects/sdr/wiki/Fosphor.

[6] REID, K. ShinySDR. https://kpreid.github.io/shinysdr/.

[7] WALTERS, M. inspectrum. https://github.com/miek/inspectrum.

Great Scott Gadgets Technical Report 2017-1
Copyright 2017 Great Scott Gadgets

License: CC BY 4.0
http://greatscottgadgets.com/tr/

4


