
AUTOMATED DETECTION OF AUTOMATED DETECTION OF AUTOMATED DETECTION OF
VULNERABILITIES IN VULNERABILITIES IN VULNERABILITIES IN

BLACK-BOX ROUTERSBLACK-BOX ROUTERSBLACK-BOX ROUTERS
How to Find Vulnerabilities in Dozens of Router Models Without Using IDAHow to Find Vulnerabilities in Dozens of Router Models Without Using IDAHow to Find Vulnerabilities in Dozens of Router Models Without Using IDA

Adi Sosnovich, Orna Grumberg and Gabi NakiblyAdi Sosnovich, Orna Grumberg and Gabi NakiblyAdi Sosnovich, Orna Grumberg and Gabi Nakibly

gabin@rafael.co.ilgabin@rafael.co.il

INTRODUCTION – GABI NAKIBLYINTRODUCTION – GABI NAKIBLYINTRODUCTION – GABI NAKIBLY

 Chief research scientist at the National Cyber and  Chief research scientist at the National Cyber and
Electronics Research CenterElectronics Research Center
 Operated by Rafael – Advanced Defense Systems ltd. Operated by Rafael – Advanced Defense Systems ltd.

 A former Visiting Scholar at Stanford University A former Visiting Scholar at Stanford University

 Senior adjunct lecturer and research associate at the  Senior adjunct lecturer and research associate at the
Technion – Israel institute of TechnologyTechnion – Israel institute of Technology

 I mostly spend my days doing network security  I mostly spend my days doing network security
research.research.

OUTLINEOUTLINEOUTLINE

 Motivation Motivation

 The method we propose The method we propose

 What is symbolic execution What is symbolic execution

 Unique optimizations that make our method scalable Unique optimizations that make our method scalable

 Application of the method to Cisco’s OSPF implementation Application of the method to Cisco’s OSPF implementation

 The vulnerabilities we have found The vulnerabilities we have found

MOTIVATIONMOTIVATIONMOTIVATION

 Network protocols are based on open standards Network protocols are based on open standardsNetwork protocols are based on open standards

 However, the Internet runs mostly on proprietary and closed-source routers However, the Internet runs mostly on proprietary and closed-source routers

 A hidden deviation of a device’s implementation from a protocol standard may create a
logical vulnerability

 A hidden deviation of a device’s implementation from a protocol standard may create a
logical vulnerabilitylogical vulnerability

 However, finding deviations in closed-source routers demands great efforts. However, finding deviations in closed-source routers demands great efforts.

RESEARCH GOALRESEARCH GOALRESEARCH GOAL

 An automated formal black-box method that unearths implementation deviations in  An automated formal black-box method that unearths implementation deviations in
closed-source network devices
An automated formal black-box method that unearths implementation deviations in
closed-source network devices
 Black-box: no need to access the binary or source code of the device!Black-box: no need to access the binary or source code of the device!

 Formal: a systematic method based on rigorous foundations  Formal: a systematic method based on rigorous foundations

 Automated: once a manual setup phase is compete no manual assistance is needed. Automated: once a manual setup phase is compete no manual assistance is needed.

THE BASIC IDEA IN A NUTSHELLTHE BASIC IDEA IN A NUTSHELLTHE BASIC IDEA IN A NUTSHELL

 Compare the behavior of a router (called SUT) to that of a model that captures the  Compare the behavior of a router (called SUT) to that of a model that captures the
standard functionality of the network protocol (or part of it).standard functionality of the network protocol (or part of it).
 SUT = System Under Test SUT = System Under Test

THE BASIC IDEA IN A NUTSHELLTHE BASIC IDEA IN A NUTSHELLTHE BASIC IDEA IN A NUTSHELL

 Compare the behavior of a router (called SUT) to that of a model that captures the  Compare the behavior of a router (called SUT) to that of a model that captures the
standard functionality of the network protocol (or part of it).standard functionality of the network protocol (or part of it).
 SUT = System Under Test SUT = System Under Test

Model Real devices (SUT)

attacker

Model Real devices (SUT)
attacker

attacker

standard
routerrouter

compare
standard

router

compare

router

standard
router

standard
router

router

router

standard
routerrouter

THE BASIC IDEA IN A NUTSHELL (CONT.)THE BASIC IDEA IN A NUTSHELL (CONT.)THE BASIC IDEA IN A NUTSHELL (CONT.)

 A naïve approach: manually select tests based on predefined heuristics A naïve approach: manually select tests based on predefined heuristics

 Our approach: automatically generate tests based on symbolic execution that covers  Our approach: automatically generate tests based on symbolic execution that covers
the entire model functionality.the entire model functionality.

Model Real devices (SUT)

attacker

Model Real devices (SUT)
attacker

attacker

standard
routerrouter

compare
standard

router

compare

router

standard
router

standard
router

router

router

standard
routerrouter

OUR METHOD IN A GLANCEOUR METHOD IN A GLANCEOUR METHOD IN A GLANCE

Symbolic Symbolic
execution

1. CREATE A MODEL OF A PROTOCOL1. CREATE A MODEL OF A PROTOCOL1. CREATE A MODEL OF A PROTOCOL

 The model is simply a program that captures the  The model is simply a program that captures the
functionality of the standard (or part of it).functionality of the standard (or part of it).

 The model simulates the execution of the protocol  The model simulates the execution of the protocol
among the standard routers in a given topology.among the standard routers in a given topology.

 The model receives as an input protocol messages sent  The model receives as an input protocol messages sent
by an attacker.by an attacker.
 These messages are the symbolic variables. These messages are the symbolic variables.

SYMBOLIC EXECUTION 101SYMBOLIC EXECUTION 101SYMBOLIC EXECUTION 101

 Symbolic execution allows to trace all execution paths of a  Symbolic execution allows to trace all execution paths of a
program and generate the corresponding input that trigger program and generate the corresponding input that trigger
each path. each path.

2. GENERATE TEST CASES2. GENERATE TEST CASES2. GENERATE TEST CASES

 Run symbolic execution on the model of the protocol to  Run symbolic execution on the model of the protocol to
cover all execution paths of the protocol’s model. Test case examplecover all execution paths of the protocol’s model.

 Each execution path is driven by a specific sequence of Send routing MSG1 to R1

Test case example

 Each execution path is driven by a specific sequence of
rogue protocol messages sent by the attacker.

Send routing MSG1 to R1

rogue protocol messages sent by the attacker.
 Each such execution path represents a test case with an Send routing MSG2 to R2 Each such execution path represents a test case with an

expected outcome.
Send routing MSG2 to R2

expected outcome.

Send routing MSG3 to R1Send routing MSG3 to R1

Expected outcome: routing Expected outcome: routing
states of all routersstates of all routers

3. EXECUTE TESTS3. EXECUTE TESTS3. EXECUTE TESTS

 Each generated test file is executed on Execute test on SUT Each generated test file is executed on
the SUT. Send routing MSG1 to R1

Execute test on SUT

the SUT. Send routing MSG1 to R1

 During the test execution the sequence
Send routing MSG2 to R2

 During the test execution the sequence
of rogue protocol messages are sent to
the network devices.

Send routing MSG2 to R2
of rogue protocol messages are sent to
the network devices.

Send routing MSG3 to R1
the network devices.

 At the end of the test the state of the
Send routing MSG3 to R1

 At the end of the test the state of the
devices are extracted. Actual outcome: routing devices are extracted. Actual outcome: routing

states of all routers in SUTstates of all routers in SUT

Expected outcome: routing Expected outcome: routing
states of all rouetrs in modelstates of all rouetrs in model

4. FIND DEVIATIONS4. FIND DEVIATIONS4. FIND DEVIATIONS

 A failed test represents a deviation of the protocol’s implementation from the  A failed test represents a deviation of the protocol’s implementation from the
protocol standard. protocol standard.

 The failed test is accompanied with traces of all messages exchanged between  The failed test is accompanied with traces of all messages exchanged between
the devices during the run of the test, both on the model and on the SUT. the devices during the run of the test, both on the model and on the SUT.

 Comparing these traces facilitates the analysis of the vulnerability. Comparing these traces facilitates the analysis of the vulnerability.

PATH EXPLOSION PROBLEMPATH EXPLOSION PROBLEMPATH EXPLOSION PROBLEM

 Many tests may be needed to cover the entire functionality a  Many tests may be needed to cover the entire functionality a
complex real-world protocol.complex real-world protocol.

We deal with it using unique optimizations that are tailored to  We deal with it using unique optimizations that are tailored to
testing network protocols.

 We deal with it using unique optimizations that are tailored to
testing network protocols. testing network protocols.

 Our optimizations dramatically reduce the number Our optimizations dramatically reduce the number
generated tests without reducing the coverage of generated tests without reducing the coverage of
the protocol’s model.the protocol’s model.

OUR MAIN OPTIMIZATIONOUR MAIN OPTIMIZATIONOUR MAIN OPTIMIZATION

 The optimization is due to following insight:The optimization is due to following insight:
 Let’s assume we have the following 100 test cases (each is 1 message long):Let’s assume we have the following 100 test cases (each is 1 message long):

Initial
state

State X
state

State X

 Then we shall have additional 100 test cases (each is 2 messages long): Then we shall have additional 100 test cases (each is 2 messages long):

MInitial
State Y

MInitial
state

State X
state

 We can replace the above 100 (2-message) tests with the following single test: We can replace the above 100 (2-message) tests with the following single test:

State Y
M

State X State YState X

OSPF ANALYSISOSPF ANALYSISOSPF ANALYSIS

 We applied our method to find vulnerabilities in the OSPF implementation of  We applied our method to find vulnerabilities in the OSPF implementation of
routers.routers.

OSPF is one of the most widely used and most complex routing protocols on the  OSPF is one of the most widely used and most complex routing protocols on the
Internet.

 OSPF is one of the most widely used and most complex routing protocols on the
Internet.Internet.

101OSPF 101OSPF 101OSPF 101

 Every router advertises it’s links’ state (i.e. “who are my neighbors?”). Every router advertises it’s links’ state (i.e. “who are my neighbors?”).
 This is called Link State Advertisement (LSA). This is called Link State Advertisement (LSA).

 The LSAs are flooded throughout the network hop-by-hop.  The LSAs are flooded throughout the network hop-by-hop.

 Every router receives the LSAs of all other routers. Every router receives the LSAs of all other routers.Every router receives the LSAs of all other routers.
 This allows to build the topology map of the entire network. This allows to build the topology map of the entire network.

101OSPF 101 (CONT.)OSPF 101 (CONT.)OSPF 101 (CONT.)

R1 LSA
R1

R2

R1 LSA

R2 LSA
R1

R2 R2 LSA

LSA DB:LSA DB:

R1 R2R1 R2

THE FIGHT-BACK MECHANISMTHE FIGHT-BACK MECHANISMTHE FIGHT-BACK MECHANISM

False Victim LSA
Seq=XSeq=X

Attacker

Router to be
poisonedpoisoned

LSA DB

Fight-Back LSAFight-Back LSA
Seq=X+1

VictimVictim

THE ATTACKERTHE ATTACKERTHE ATTACKER

 Location: inside the network Location: inside the network
 Controls a legitimate router in an arbitrary location Controls a legitimate router in an arbitrary location

 This means it can flood LSAs to its neighbors This means it can flood LSAs to its neighbors

 Goal: persistent poisoning of routers’ routing tables Goal: persistent poisoning of routers’ routing tables

OSPF MODELOSPF MODELOSPF MODEL

 We modeled the OSPF using a Python code  We modeled the OSPF using a Python code
having roughly 1000 LoC.having roughly 1000 LoC.

 The router’s procedure implements the core  The router’s procedure implements the core
functionality of OSPF.
The router’s procedure implements the core
functionality of OSPF.
 relevant to the security against the above type of  relevant to the security against the above type of

attackattack

 The model is at  The model is at
 https://github.com/gnakibli/ospf-model-test https://github.com/gnakibli/ospf-model-test

CISCO TESTBEDCISCO TESTBEDCISCO TESTBED

 To test Cisco’s OSPF implementation we used alternately two network  To test Cisco’s OSPF implementation we used alternately two network
emulation software: GNS3 and VIRL. emulation software: GNS3 and VIRL.
 Both software suites allow to emulate a network of multiple routers, each running an  Both software suites allow to emulate a network of multiple routers, each running an

actual IOS image (identical to the images used in real Cisco routers).actual IOS image (identical to the images used in real Cisco routers).

 We used the following IOS versions: We used the following IOS versions:

most recentmost recent

CISCO RESULTSCISCO RESULTSCISCO RESULTS

 For Cisco we discovered 7 deviations in all three IOS versions. For Cisco we discovered 7 deviations in all three IOS versions.

 6 of those deviations presented logical vulnerabilities.  6 of those deviations presented logical vulnerabilities.

 2 of them are vulnerabilities that exist in the most up-to-date IOS version. 2 of them are vulnerabilities that exist in the most up-to-date IOS version.
 CVE-2017-6770 CVE-2017-6770

 The new vulnerabilities allow an attacker to evade the fight-back mechanism and  The new vulnerabilities allow an attacker to evade the fight-back mechanism and
gain persistent control over the routing state of the network.gain persistent control over the routing state of the network.

 The vulnerabilities affect all IOS, XE and ASA products as some NXOS products. The vulnerabilities affect all IOS, XE and ASA products as some NXOS products.

CISCO VULNERABILITIESCISCO VULNERABILITIESCISCO VULNERABILITIES

 OSPF determines which LSA is newer by examining the following values in order: OSPF determines which LSA is newer by examining the following values in order:
 Sequence Number Sequence Number

 Checksum Checksum

CISCO VULNERABILITIES (CONT.)CISCO VULNERABILITIES (CONT.)CISCO VULNERABILITIES (CONT.)

 An attacker sends a false LSA with  An attacker sends a false LSA with An attacker sends a false LSA with

 Seq=MaxSeq False LSA with invalid links
Seq=MaxSeq

 Seq=MaxSeq

 According to the standard the victim must
Seq=MaxSeq

 According to the standard the victim must
flush the false LSA by sending the FB with:

Attacker
flush the false LSA by sending the FB with:

 Seq=MaxSeq, Age=MaxAge

Attacker

 Seq=MaxSeq, Age=MaxAge

 The FB must include the invalid links.The FB must include the invalid links.

 This is to ensure that checksum values are
identical.

 This is to ensure that checksum values are
identical.

However, Cisco sends the FB with the valid links! However, Cisco sends the FB with the valid links!
Fight-Back LSA Thus, potentially having a smaller checksum

value as compared to that of the false LSA.

Fight-Back LSA
Seq=MaxSeq, Age=MaxAgevalue as compared to that of the false LSA. Seq=MaxSeq, Age=MaxAge

 Hence, the FB may be considered older Victim Hence, the FB may be considered older
than the false LSA and thus ignored!than the false LSA and thus ignored!

QUAGGAQUAGGAQUAGGA

 Quagga – the most popular open-source routing suite on the Internet Quagga – the most popular open-source routing suite on the Internet

 Similar vulnerability have been discovered in Quagga. Similar vulnerability have been discovered in Quagga.

 CVE-2017-3224 CVE-2017-3224

IN SUMMARYIN SUMMARYIN SUMMARY

 We present an method that finds deviations of network protocol  We present an method that finds deviations of network protocol
implementations.implementations.

All our method need is a model of the protocol and you are good to go! All our method need is a model of the protocol and you are good to go! All our method need is a model of the protocol and you are good to go!

 Once you have a model you can test any implementation of that protocol fully  Once you have a model you can test any implementation of that protocol fully
automatically automatically
 allowing you to discover many vulnerabilities is a short time. allowing you to discover many vulnerabilities is a short time.

 Symbolic execution is an important tool that the security community should use  Symbolic execution is an important tool that the security community should use
more often.more often.

 Code: https://github.com/gnakibli/ospf-model-test Code: https://github.com/gnakibli/ospf-model-test

 Shoot me an email if you have questions or comments: gabin@rafael.co.il Shoot me an email if you have questions or comments: gabin@rafael.co.il

