black hat USA 2017

JULY 22-27, 2017 MANDALAY BAY / LAS VEGAS

EVIL BUBBLES or **How to Deliver Attack Payload via the Physics** of the Process (and How to Defend against such Attacks)

Marina Krotofil

🕈 #BHUSA / @BLACKHATEVENTS

If it's in a Hollywood movie... it's cool ;-)

The Hunt for Red October (1990)

Cavitation is cool!

The Hunt for Red October (1990)

In this talk we will learn

How to deliver attack payload over the physics of the process

□ How to use bubbles to cause physical destruction

How to detect ongoing cavitation before equipment breaks

UWhether the attacker is that almighty (as many think)

Motivation for this talk

Industrial Control Systems

Industrial Control Systems

IT security vs. OT security

ICS security

IT security

(cyber-security ->
taking over the
infrastructure)

OT security (causing impact on the operations -> process and equipment)

Focus of the talk

IEC 62443-1-1 standard

My Black Hat talk back in 2015

Attack goal: persistent economic damage

Failed scenario: Alarm and physics propagation

Point (1): Physical process is a communication media

Process Physics vs. Attacker

I felt very angry

The attacker always wants to win!

(wishfully)

Novel attack vector: Delivery of attack payload via process physics

Evil Bubbles

Attack payload propagation

Evil Bubbles

Pumps

Function of the pump

A piece of equipment which <u>elevates</u> or <u>moves liquids</u> at the expense of power input

Our current lifestyle would not be possible without pumps

- From air conditioning to pumping oil, from cutting steel to chemical production-> you name it
- Invented by Archimedes in the 3rd century BD (screw pump)
- Global market is ~ 45 billions per year
- Comes in all shapes and sizes, often customized engineering
 - Production of a medium sized pump takes 25-50 weeks and up to 1 year for customized highly engineered pumps

https://en.wikipedia.org/wiki/Archimedes%27 screw

Archimedes screw

Types of pumps

COLOSSAL

VS.

Expensive. Heavy. Sensitive to incorrect operation -> instrumented for health/safety monitoring

"Cheap". Light. More resilient to failures -> typically not instrumented for monitoring

Centrifugal pump

- A centrifugal pump increases the speed of a liquid in a pipe system by using a rotating impeller
- Impeller spins the liquid giving it centrifugal acceleration
- A mechanical energy of the motor is translated into hydraulic energy of the liquid

Is it a target worth the effort?

Cavitation

States of physical substances

 If the <u>pressure</u> of the substance <u>drops</u> or its <u>temperature increases</u>, it begins to vaporize, just like boiling water

-> formation of bubbles :-)

Carbon dioxide pressure-temperature phase diagram

The bubbles we all like

Pump cavitation

http://jmpcoblog.com/hvac-blog/how-to-read-a-pump-curve-part-2

Cavitation <u>is formation and bursting</u> <u>of vapor bubbles</u> due to change in liquid pressure

- Cavitation occurs when the pressure in the suction line <u>is too low</u> relative to the <u>vapor pressure</u> of the pumped liquid
- The pressure increases as the liquid flows further into impeller causing bubbles to condense (implode) very rapidly
- The vapor bubbles collapse at a very high [velocity & local pressure], creating massive shock waves

Damaging effect of cavitation

https://commons.wikimedia.org/wiki/File:Kavitation_at_pump_impeller.jpg

Reduced efficiency

- All pumps require a smooth, regular symmetrical inlet flow profile for efficient operation
- The collapse of gas bubbles leads to the development of fast turbulent streams -> reducing efficiency up to inability to pump

Premature failure of the pump

- Bubble collapse causes excessive vibrations which can damage rings, seals and bearings
- Shock waves creates small pits on the edges of impeller blades, eventually wearing them completely

Show time!

Inside the pump

DEMO

Evil Bubbles

Detecting cavitation

Detection with asset monitoring applications

Pump is instrumented with sensors to monitor its state

FAILURE PREDICTIONS

A Bearing Failure		A Impeller Failure		A Mechanical Seal Failure		Cavitation
62 Days	(j)	6 Days	(j)	213 Days	Í	

ROOT CAUSE

The suction valve is closed or obstructed. Pump is operating in sub optimal state and could cause mechanical failure

Pump monitoring

Fluid pressure

- Suction pressure (inflow), psi
- Discharge pressure (outflow), psi
- o Delta pressure, psi
- Total developed head, ft

Temperature

• Seal temperature, F

Vibration

- Vibration bearing X (horizontal)
- Vibration bearing Y (vertical)
- Vibration pump inlet X

Pump monitoring

Total Head

Pump monitoring

Fluid pressure

- Suction pressure (inflow), psi
- o Discharge pressure (outflow), psi
- o Delta pressure, psi
- Total developed head, ft

Temperature

• Seal temperature, F

Vibration

- Vibration bearing X (horizontal)
- Vibration bearing Y (vertical)
- Vibration pump inlet X
Point (2): Detection of the cyber-physical attacks requires process engineering methods

Defending competent adversary

The attacker will spoof certain process values to avoid detection

Since pump damage doesn't happen instantaneously, the attacker will have to spoof certain process values to avoid detection by impeding root cause analysis of process upset

Flow **Positioner of** 8888 Honeywell the valve

The attacker will spoof certain process values to avoid detection

FAQ: But how does one spoof process data?

Algorithm 1 Runs Analysis 1: procedure EXPLORE > 1: analyse phase			A and C feed						
2: $signal \leftarrow signal to analyse$			nalvse	✓ 1. analyse phase		9.8			
2.	bightar (bighta	1 00 0	intrig 50				4		
3:	while not an ϵ	end of	f signal do			9.6-	and A	. <u>I</u> . <u>I</u> .	
4:	$\mathbf{while} \ \mathrm{mov}$	ing u	p do						
5:	$runs + \cdot$	+		\triangleright count positives moves		9.4	A MANTAK PAL.		i in i
6:			(changes)	\triangleright positive steps change		ר וב ™ וווי תו		- MALIN LIN A	
7:	if direc	Alg	orithm 2 Triangles			E C	A JET THAT I WAR	. I'WW NAM WA	
8: 9:	posi $posi$		procedure EXPLORE		⊳ 1: analyse phase	u u u u u u sy 9.2	W WAY W		
10:	while mov	2:	$signal \leftarrow signal \text{ to analyse}$						4 T
11:	runs +	3:	$window \leftarrow $ learning window			9- "	T T		
12:	value =	4:	$noiselvl \leftarrow noise parameter$						
13:	if direc		-			8.8-		'	A
14:	neg	5:	step = window * 10						
15:	nege	6:	topslope = -999.99			0	20	40 Hours	60
16:	if no chang	7:	bottomslope = 999.99				_	TIOUIO	
17:	nils++	8:	while not an end of signal do				-		•
18:	return <i>runs</i> ,	9:	if first elements then				iginal	Sno	oofed
		10:	current = value				gillai	Shr	Julea
		11:	index = 1						
		12:	while $index < window$ do	⊳ learnin	ng phase of $i - th$ bucket				
		13:	upperslope = (current -	(last+noiselvl))/index					
			4: $lowerslope = (current - (last - noiselvl))/index$			Find X differences			
		15:	if upperslope > topslope				ΓΠΙΟ Λ	unieren	1622
		16:	topslope = upperslope						
		17.	$if \ lowerslope < bottomsl$	ope then					

72

(1) http://blackhat.com/docs/us-14/materials/us-14-Larsen-Miniturization.pdf

(2) https://conference.hitb.org/hitbsecconf2015ams/materials/D2T1%20-%20Marina%20Krotofil%20and%20Jason%20Larsen%20-%20Hacking%20Chemical%20Processes.pdf

PHYSICS HIPS DON'T LIE

Shakira

Physical correlations

Physical correlations

THIS DOES NOT MAKE SENSE

Point (3): Detection of spurious sensor signals can be achieved with data plausibility checks

Verification of flow

Curve of the demo pump would suggest: Head 34.3 ft ~ flow 21-22 gpm

Flow reading **53.42 gpm** is <u>implausible</u>

Verification of valve positions

Curve of the demo pump would suggest: Head 34.3 ft ~ flow 21-22 gpm We know that the flow is reduced

Either of valve position sensors is forged

Verification of valve positions

Root cause: Cavitation

Defense in depth philosophy

Defense in depth concept suggest multiple layers of security

 If an attack causes one security mechanism to fail, other mechanisms may still provide the necessary security to protect the system

Defense in depth in cyber-physical systems

If the attacker manages to bypass all traditional IT security defenses,

 Process engineering (OT) security controls should be in place to detect and prevent unwanted/malicious process manipulations

FAQ: So, Asset Monitoring solutions are capable of detecting cyber-physical attacks?

NO. They provide us with the <u>data</u>, which can be used to detect cyberphysical attacks

http://192.168.35.119 × +	No Environment V								
GET V http://192.168.35.119:8001/NIThingworx/w	/s_pressure	Params Send V Save V							
content-length	35								
New key	Value	Description							
Body Cookies Headers (2) Tests		Status: 200 OK Time: 40 ms Size: 118.89 KB							
Pretty Raw Preview HTML V		Ē Q							
<pre>1 {"Values":[{"Pinlet":-0.012207403779029846, "Poutlet":16.904202699661251, "Flow Rate":25.999805361789704, "DeltaP":16.916410446166992), {"Pinlet":-0 .010681478306651115, "Poutlet":16.901913881301876, "Flow Rate":25.97769720016861, "DeltaP":16.912595748901367), {"Pinlet":-0.01144441042840481 ,"Poutlet":16.906491518020626, "Flow Rate":25.978516020969391, "DeltaP":16.91793625073242), {"Pinlet":-0.0086666464257042885, "Poutlet":16.90878033638 ,"Flow Rate":25.901964175155641, "DeltaP":16.915647506713867), ("Pinlet":-0.0086666646257042885, "Poutlet":16.908780336538, "Flow Rate":25.9057807807151733, "DeltaP":16.915647506713867), ("Pinlet":-0.00572857856755, "Flow Rate":25.9787100728128675, "Flow Rate":25.9787007151733, "DeltaP":16.920980416870117), ("Pinlet":-0.0076296273618936539, "Poutlet":16.91946148723751, "Flow Rate":25.958081863143921, "DeltaP":16.927991598510742) ,("Pinlet":-0.011444441042840481, "Poutlet":16.9118320941925, "Flow Rate":25.91628436702512, "DeltaP":16.922376091245117), ("Pinlet":-0.005340739153246573, "Flow Rate":25.959681863143921, "DeltaP":16.92257991598510742) ,("Pinlet":-0.011444441042840481, "Poutlet":16.9118320941925, "Flow Rate":25.98663188207625, "DeltaP":16.923276081245117), ("Pinlet":-0.005340739153325577 ,"Poutlet":16.911444441042840481, "Poutlet":16.9118320941925, "Flow Rate":25.98663188207625, "DeltaP":16.93207601245117), ("Pinlet":-0.005340739153325577 ,"Poutlet":16.9104483720764, "DeltaP":16.922519519604492, ("Pinlet":-0.00524073618936539, "Poutlet":16.919461488723751, "Flow Rate":25.88166611457826, "DeltaP": 16.92528659057617), ("Pinlet":-0.0053407391533255577, "Poutlet":16.92089786763, "Flow Rate":25.881681282847, "DeltaP": 16.92528659057617), ("Pinlet":-0.0053407391533255577, "Poutlet": 16.92268659057617), ("Pinlet":-0.0053407391533255577, "Poutlet": 16.92268659057617), ("Pinlet":-0.0053407391533255577, "Poutlet": 16.92268659057617), ("Pinlet":-0.0053407391533255577, "Poutlet": 16.92268659057617), ("Pinlet":-16.90288549270626, "Flow Rate": 25.882412926766, "Pinlet": 25.88</pre>									

Is Evil Bubbles attack easy to pull off?

In "as is" setting

On one hand, the attacker does not have (easy) feedback loop

- To know whether the pump is cavitating & with what intensity
- To estimate <u>Time-to-Damage</u> to plan concealment
- 2
- On the other hand, the attacker might have needed information
- E.g. stolen pump damage report
- Pump spec sheet

It depends....:-)

Near-future unlikely mass-scale attack

- Of high engineering precision
- Requiring high coordination
- Requiring considerable time & effort
- Attacks which take unknown/extended time to cause needed impact
 - Deactivation of catalyst vs. disconnecting circuit breakers
- In general all attacks which require feedback loop
- Attacks with unclear collateral damage

Water Hammer attack

Boutique attacks

Black Hat USA (2014)

J. Larsen. Miniaturization.

Summary

Cyber-physical security

In cyber-physical systems, physical process is a communication media for equipment and sub-systems

- It can be leveraged for delivering attack payload (even to those assets which are not connected to the communication infrastructure)
- Equipment/Asset monitoring solutions are part of defense in depth strategy in cyber-physical systems
 - Malicious process upsets and spurious process values can be detected by the same approaches as natural upsets and faulty sensors

Cyber-physical research

Is VERY resource-demanding

- The cost of this (very) simple demo rig is \$50k (yap)
- It weights 610 lbs (276 kg)
- Multitudinous support personnel
- Troubleshooting takes long hours and weeks
 (\$\$ of man hours)

Demo rig

ABSOLUTELY needed for anticipation of future threats

- Better understanding work and hurdles of the attacker
- To develop workable defenses (by the time they will be needed)

Acknowledgements

Flowserve and their supportive team

- For the demo rig, for playing along and for continuous support
- AMAZING Honeywell co-workers
 - Atlanta Software Center
 - Industrial Cyber Security Lab
 - Vancouver EDAQ team
- ICS security community
 - Friends who were there to help with tricky issues

Let's talk

Marina Krotofil

marina.krotofil@honeywell.com

@marmusha

