
Bochspwn Reloaded
Detecting Kernel Memory Disclosure with x86 Emulation and Taint Tracking

Mateusz “j00ru” Jurczyk

Black Hat USA 2017, Las Vegas

Agenda

• User ↔ kernel communication pitfalls in modern operating systems

• Introduction to Bochspwn Reloaded

• Detecting kernel information disclosure with software x86 emulation

• System-specific approaches and results in Windows and Linux

• Future work and conclusions

Bio

• Project Zero @ Google

• CTF Player @ Dragon Sector

• Low-level security researcher with interest in all sorts of vulnerability

research and software exploitation.

• http://j00ru.vexillium.org/

• @j00ru

http://j00ru.vexillium.org/
http://twitter.com/j00ru

User ↔ kernel communication

OS design fundamentals

• User applications run independently of other programs / the kernel.

• Whenever they want to interact with the system, they call into the

kernel.

• Ring-3 memory is the i/o data exchange channel.

• Also registers to a small extent.

Life of a system call

User-mode Program
Shared Memory

(user-mode)
System Kernel

Write input data

Invoke system call

Read input data

Write output data

Return to user space

Read output data

Syscall logic

Life of a system call

User-mode Program
Shared Memory

(user-mode)
System Kernel

Write input data

Invoke system call

Read input data

Write output data

Return to user space

Read output data

Syscall logic

In a perfect world...

• Within the scope of a single system call, each memory unit is:

1. Read from at most once, securely.

... then ...

2. Written to at most once, securely, only with data intended for user-mode.

In reality (double fetches)

Read from at most once, securely.

• Subject of the original Bochspwn study in 2013 with Gynvael Coldwind.

• Possible violation: double (or multiple) fetches, may allow race conditions

to break code assumptions → buffer overflows, write-what-where

conditions, arbitrary reads, other badness.

• Dozens (40+) vulnerabilities reported and fixed in Windows.

• A few more just recently (CVE-2017-0058, CVE-2017-0175).

Kernel double fetches

In reality – various other problem indicators

• Unprotected accesses to user-mode pointers.

• User-mode accesses while PreviousMode=KernelMode.

• Multiple writes to a single memory area.

• Reading from a user-mode address after already having written to it.

• Accessing ring-3 memory:

• within deeply nested call stacks.

• with the first enabled exception handler very high up the call stack.

The subject of this talk

Written to at most once, securely,

only with data intended for user-mode

Writing data to ring-3

• System calls

• Almost every single one on any system.

• IOCTLs

• A special case of syscalls, but often have dedicated output mechanisms.

• User-mode callbacks

• Specific to the graphical win32k.sys subsystem on Windows.

• Exception handling

• Building exception records on the user-mode stack.

The easy problem – primitive types

NTSTATUS NtMultiplyByTwo(DWORD InputValue, LPDWORD OutputPointer) {

DWORD OutputValue;

if (InputValue != 0) {

OutputValue = InputValue * 2;

}

*OutputPointer = OutputValue;

return STATUS_SUCCESS;

}

Uninitialized if
InputValue == 0

The easy problem – primitive types

• Disclosure of uninitialized data via basic types can and will occur, but:

• is not a trivial bug for developers to make,

• compilers will often warn about instances of such issues,

• leaks only a limited amount of data at once (max 4 or 8 bytes on x86),

• may be detected during development or testing, since they can be functional

bugs.

• Not an inherent problem to kernel security.

The hard problem – structures and unions

typedef struct _SYSCALL_OUTPUT {

DWORD Sum;

DWORD Product;

DWORD Reserved;

} SYSCALL_OUTPUT, *PSYSCALL_OUTPUT;

NTSTATUS NtArithOperations(DWORD InputValue, PSYSCALL_OUTPUT OutputPointer) {

SYSCALL_OUTPUT OutputStruct;

OutputStruct.Sum = InputValue + 2;

OutputStruct.Product = InputValue * 2;

RtlCopyMemory(OutputPointer, &OutputStruct, sizeof(SYSCALL_OUTPUT));

return STATUS_SUCCESS;

}

Never initialized
because „reserved”

The hard problem – structures and unions

typedef union _SYSCALL_OUTPUT {

DWORD Sum;

QWORD LargeSum;

} SYSCALL_OUTPUT, *PSYSCALL_OUTPUT;

NTSTATUS NtSmallSum(DWORD InputValue, PSYSCALL_OUTPUT OutputPointer) {

SYSCALL_OUTPUT OutputUnion;

OutputUnion.Sum = InputValue + 2;

RtlCopyMemory(OutputPointer, &OutputUnion, sizeof(SYSCALL_OUTPUT));

return STATUS_SUCCESS;

}

3B 05 00 00

?? ?? ?? ??

Sum
LargeSum

High 32 bits
uninitialized because

never used

The hard problem – structures and unions

typedef struct _SYSCALL_OUTPUT {

DWORD Sum;

QWORD LargeSum;

} SYSCALL_OUTPUT, *PSYSCALL_OUTPUT;

NTSTATUS NtSmallSum(DWORD InputValue, PSYSCALL_OUTPUT OutputPointer) {

SYSCALL_OUTPUT OutputStruct;

OutputStruct.Sum = InputValue + 2;

OutputStruct.LargeSum = 0;

RtlCopyMemory(OutputPointer, &OutputStruct, sizeof(SYSCALL_OUTPUT));

return STATUS_SUCCESS;

}

3B 05 00 00

00 00 00 00 00 00 00 00

Sum Padding

LargeSum

?? ?? ?? ??

Uninitialized
structure alignment

The hard problem – structures and unions

• Structures and unions are almost always copied in memory entirely.

• With many fields, it’s easy to forget to set some of them.

• or they could be uninitialized by design.

• Unions introduce holes for data types of different sizes.

• Compilers introduce padding holes to align fields in memory properly.

• Compilers have little insight into structures (essentially data blobs):

• dynamically allocated from heap / pools.

• copied in memory with memcpy() etc.

?? ?? ?? ?? ?? ??

The hard problem – fixed-size arrays

NTSTATUS NtGetSystemPath(PCHAR OutputPath) {

CHAR SystemPath[MAX_PATH] = "C:\\Windows\\System32";

RtlCopyMemory(OutputPath, SystemPath, sizeof(SystemPath));

return STATUS_SUCCESS;

}

?? ??

?? ??

?? ??

43 3A 5C 57 69 6E 64 6F 77 73 5C 53 79 73 74 65 6D 33 32 00

Uninitialized unused
region of array

The hard problem – fixed-size arrays

• Many instances of long fixed-size buffers used in user ↔ kernel data exchange.

• Paths, names, identifiers etc.

• While container size is fixed, the content length is usually variable, and most storage ends up

unused.

• Frequently part of structures, which makes it even harder to only copy the

relevant part to user-mode.

• May disclose huge continuous portions of uninitialized memory at once.

The hard problem – arbitrary request sizes

NTSTATUS NtMagicValues(LPDWORD OutputPointer, DWORD OutputLength) {

if (OutputLength < 3 * sizeof(DWORD)) {

return STATUS_BUFFER_TOO_SMALL;

}

LPDWORD KernelBuffer = Allocate(OutputLength);

KernelBuffer[0] = 0xdeadbeef;

KernelBuffer[1] = 0xbadc0ffe;

KernelBuffer[2] = 0xcafed00d;

RtlCopyMemory(OutputPointer, KernelBuffer, OutputLength);

Free(KernelBuffer);

return STATUS_SUCCESS;

}

EF BE AD DE

FE 0F DC BA

0D D0 FE CA

?? ?? ?? ??

?? ?? ?? ??

?? ?? ?? ??

?? ?? ?? ??

?? ?? ?? ??

?? ?? ?? ??

Uninitialized data in
reduntant array

entries

The hard problem – arbitrary request sizes

• Common scheme in Windows – making allocations with user-controlled size and

passing them back fully regardless of the amount of relevant data inside.

• May enable disclosure from both stack/heap in the same affected code.

• Kernel often relies on stack memory for small buffers and falls back to pools for large ones.

• Often leads to large leaks of a controlled number of bytes.

• Facilitates aligning heap allocation sizes to trigger collisions with specific objects in memory.

• Gives significantly more power to the attacker in comparison to other bugs.

Extra factors: no automatic initialization

• Neither Windows nor Linux pre-initialize allocations (stack or heap) by

default.

• Exceptions from the rule mostly found in Linux: kzalloc(), __GFP_ZERO,

PAX_MEMORY_STACKLEAK etc.

• Buffered IOCTL I/O buffer is now always cleared in Windows since June 2017 (new!)

• Resulting regions have old, leftover garbage bytes set by their last user.

• From MSDN:

Extra factors: no visible consequences

• C/C++ don’t make it easy to copy data securely between different

security domains, but there’s also hardly any punishment.

• If the kernel discloses a few uninitialized bytes here and there, nothing will

crash and likely no one will ever know (until now ☺).

• If a kernel developer is not aware of the bug class and not actively

trying to prevent it, they’ll probably never find out by accident.

Extra factors: leaks hidden behind system API

User-mode Program User-Mode System API System Kernel

Call API function

Convert arguments and invoke syscall

Syscall logic

Write output with leaks and return

Return the specific requested values

Extract
meaningful data

Disclosed
memory lost

here

Severity and considerations

• „Just” local info leaks, no memory corruption or remote exploitation

involved by nature.

• Actual severity depends on what we manage to leak out of the kernel.

• On the upside, most disclosures are silent / transparent, so we can

trigger the bugs indefinitely without ever worrying about system

stability.

Severity and considerations

• Mostly useful as a single link in a LPE exploit chain.

• Especially with the amount of effort put into KASLR and protecting information about

the kernel address space.

• One real-life example is a Windows kernel exploit found in the

HackingTeam dump in July 2015 (CVE-2015-2433, MS15-080).

• Pool memory disclosure leaking base address of win32k.sys.

• Independently discovered by Matt Tait at P0, Issue #480.

https://bugs.chromium.org/p/project-zero/issues/detail?id=480

Stack disclosure benefits

• Consistent, immediately useful values, but with limited variety and

potential to leak anything else:

• Addresses of kernel stack, heap (pools), and executable images.

• /GS stack cookies.

• Syscall-specific data used by services previously invoked in the same thread.

• Potentially data of interrupt handlers, if they so happen to trigger in the

context of the exploit thread.

Heap disclosure benefits

• Less obvious memory, but with more potential to collide with

miscellaneous sensitive information:

• Addresses of heap, potentially executable images.

• Possibly data of any active kernel module (disk, network, video, peripheral

drivers).

• Depending on heap type, allocation size and system activity.

Prior work (Windows)

• P0 Issue #480 (win32k!NtGdiGetTextMetrics, CVE-2015-2433), Matt Tait, July 2015

• Leaking Windows Kernel Pointers, Wandering Glitch, RuxCon, October 2016

• Eight kernel uninitialized memory disclosure bugs fixed in 2015.

• Win32k Dark Composition: Attacking the Shadow Part of Graphic Subsystem,

Peng Qiu and SheFang Zhong, CanSecWest, March 2017

• Hints about multiple infoleaks in win32k.sys user-mode callbacks, no specific details.

• Automatically Discovering Windows Kernel Information Leak Vulnerabilities,

fanxiaocao and pjf of IceSword Lab (Qihoo 360), June 2017

Prior work (Linux)

• In 2010, Dan Rosenberg went on a rampage and killed 20+ info leaks in various

subsystems.

• Some of the work mentioned in Stackjacking and Other Kernel Nonsense, presented by Dan

Rosenberg and Jon Oberheide in 2011.

• A number of patches submitted throughout the years by various researchers:

Salva Peiró, Clément Lecigne, Marcel Holtmann, Kees Cook, Jeff Mahoney, to

name a few.

• The problem seems to be known and well understood in Linux.

Bochspwn Reloaded design

• Bochs is a full IA-32 and AMD64 PC emulator.

• CPU plus all basic peripherals, i.e. a whole emulated computer.

• Written in C++.

• Supports all latest CPUs and their advanced features.

• SSE, SSE2, SSE3, SSSE3, SSE4, AVX, AVX2, AVX512, SVM / VT-x etc.

• Correctly hosts all common operating systems.

• Provides an extensive instrumentation API.

Performance (short story)

Performance (long story)

• On a modern PC, non-instrumented guests run at up to 80-100M IPS.

• Sufficient to boot up a system in reasonable time (<5 minutes).

• Environment fairly responsive, at between 1-5 frames per second.

• Instrumentation incurs a severe overhead.

• Performance can drop to 30-40M IPS.

• still acceptable for research purposes.

• Simple logic and optimal implementation is the key to success.

Bochs instrumentation support

• Instrumentation written in the form of callback functions plugged into Bochs through

BX_INSTR macros, statically built into bochs.exe.

• Rich variety of event callbacks:

• init, shutdown, before/after instruction, linear/physical memory access, exception, interrupt, ...

• Enables developing virtually any logic to examine or steer the whole operating system

execution.

• counting statistics, tracing instructions or memory accesses, adding metadata, altering instruction

behavior, adding new instructions, ...

Bochs instrumentation callbacks

• BX_INSTR_INIT_ENV

• BX_INSTR_EXIT_ENV

• BX_INSTR_INITIALIZE

• BX_INSTR_EXIT

• BX_INSTR_RESET

• BX_INSTR_HLT

• BX_INSTR_MWAIT

• BX_INSTR_DEBUG_PROMPT

• BX_INSTR_DEBUG_CMD

• BX_INSTR_CNEAR_BRANCH_TAKEN

• BX_INSTR_CNEAR_BRANCH_NOT_TAKEN

• BX_INSTR_UCNEAR_BRANCH

• BX_INSTR_FAR_BRANCH

• BX_INSTR_OPCODE

• BX_INSTR_EXCEPTION

• BX_INSTR_INTERRUPT

• BX_INSTR_HWINTERRUPT

• BX_INSTR_CLFLUSH

• BX_INSTR_CACHE_CNTRL

• BX_INSTR_TLB_CNTRL

• BX_INSTR_PREFETCH_HINT

• BX_INSTR_BEFORE_EXECUTION

• BX_INSTR_AFTER_EXECUTION

• BX_INSTR_REPEAT_ITERATION

• BX_INSTR_LIN_ACCESS

• BX_INSTR_PHY_ACCESS

• BX_INSTR_INP

• BX_INSTR_INP2

• BX_INSTR_OUTP

• BX_INSTR_WRMSR

• BX_INSTR_VMEXIT

Core logic

• Taint tracking for the entire kernel address space.

• Required functionality:

1. Set taint on new allocations (stack and heap).

2. Remove taint on free (heap-only).

3. Propagate taint in memory.

4. Detect copying of tainted memory to user-mode.

Ancillary functionality

• Keep track of loaded guest kernel modules.

• Read stack traces on error to deduplicate bugs.

• Symbolize callstacks to prettify reports.

• Break into kernel debugger (attached to guest) on error.

Shadow memory representation

Guest OS memory

Kernel land

Shadow memory

(metadata)

Bochs.exe memory

• bool tainted

• uint32 alloc_size

• uint32 alloc_base_addr

• uint32 alloc_tag/flags

• uint32 alloc_origin

Memory unit descriptor

User land

Shadow memory representation

• Linear in relation to the size of the guest kernel address space.

• Only 32-bit guests supported at the moment.

• Some information stored at 1-byte granularity, some at 8-byte granularity.

• Stores extra metadata useful for bug reports in addition to taint.

• Max shadow memory consumption:

• Windows (2 GB kernel space) – 6 GB

• Linux (1 GB kernel space) – 3 GB

• Easily managable with sufficient RAM on the host.

Double-tainting

• Every time a region is tainted, corresponding guest memory is also

padded with a special marker byte.

• 0xAA for heap and 0xBB for stack areas.

• May trigger use-of-uninit-memory bugs other than just info leaks.

• Provides evidence that a bug indicated by shadow memory is real.

• Eliminates all false-positives, guarantees ~100% true-positive ratio.

Setting taint on stack

• Cross-platform, universal.

• Detect instructions modifying the ESP register:

ADD ESP, ... SUB ESP, ... AND ESP, ...

• After execution, if ESP decreased, call:

set_taint(ESPold, ESPnew)

• Relies on the guest behaving properly, but both Windows and Linux do.

Setting taint on heap/pools (simplified)

• Very system specific.

• Requires knowledge of both the allocated address and request (size,

tag, flags, origin etc.) at the same time.

• Then:

set_taint(address, address + size)

Removing taint on heap free

• Break on free() function prologue.

• Look up allocation size from shadow memory.

• Clear all taint and metadata for the whole region.

• Alternatively: re-taint to detect UAF and leaks of freed memory.

Taint propagation

• The hard part – detecting data transfers.

• Bochspwn only propagates taint for <REP> MOVS{B,D} instructions.

• Typically used by memcpy() and its inlined versions across drivers.

• Both source (ESI) and destination (EDI) addresses conveniently known at the same time.

• We mostly care about copies of large memory blobs, anyway.

• Best effort approach

• Moving taint across registers would require instrumenting dozens or hundreds of instructions

instead of one, incurring a very significant CPU overhead for arguably little benefit.

Taint propagation

• If a memory access is not a result of <REP> MOVS{B,D}:

• On write, clear the taint on the memory area (mark initialized).

• On read, check taint. If shadow memory indicates uninitialized read, verify it

with guest memory.

• In case of mismatch (byte is not equal to the marker for whatever reason), clear taint.

• If it’s a real uninitialized read, we may report it as a bug if running in „strict mode”.

Bug detection

• Activated on <REP> MOVS{B,D} when ESI is in kernel-mode and EDI

is in user-mode.

• Copying an output data blob to user land.

• If there is any tainted byte in the source memory region, report a bug.

Let’s run it against some real systems

Bochspwn vs. Windows

(Un)tainting pool allocations

• A number of pool allocation routines in the kernel:

• ExAllocatePool, ExAllocatePoolEx, ExAllocatePoolWithTag,

ExAllocatePoolWithQuotaTag, ExAllocatePoolWithTagPriority

• All eventually call into one: ExAllocatePoolWithTag.

• STDCALL calling convention: arguments on stack, return value in EAX.

• Both request (origin, size, tag) and output (allocated address) available at the same time.

• Similar for untaining freed regions.

• Extremely convenient for instrumentation.

ExAllocatePoolWithTag

Callers

ExAllocatePool
ExAllocatePoolEx

ExAllocatePoolWithQuotaTag

ExAllocatePoolWithPriority

EAX allocated address

[ESP] allocation origin

[ESP+4] requested size

[ESP+8] allocation tag

Callers

ExFreePoolExExFreePool

ExFreePoolWithTag

[ESP+4] freed region

Optimized, specialized allocators

• win32k!AllocFreeTmpBuffer first tries to return a cached memory region

(win32k!gpTmpGlobalFree) for allocations of ≤ 4096 bytes.

• Called from ~55 locations, many syscall handlers.

• Can be easily patched out to always use the system allocator.

Propagating taint and detecting bugs

• The standalone memcpy() function in drivers is implemented mostly as

rep movs.

• Still some optimizations left which transfer data through registers.

• All instances of memcpy() have the same signature – they can be patched to only use

rep movs on disk or at run time in kernel debugger.

• Inlined memory copy is typically also compiled to rep movs.

• As a result, tracking most transfers of large data blobs works with Bochspwn’s

universal approach.

Windows 7 memory taint layout

0x80000000

0xffffffff

40 minutes of run time, 20s. interval, boot + initial ReactOS testsstack pages pool pages

Windows 10 memory taint layout

0x80000000

0xffffffff

120 minutes of run time, 60s. interval, boot + initial ReactOS testsstack pages pool pages

Keeping track of processes/threads

• Simple traversal of a kernel

linked-list in guest virtual

memory.

• Unchanged since original

Bochspwn from 2013.

Keeping track of loaded kernel modules

• Simple traversal of a kernel

linked-list in guest virtual

memory.

• Unchanged since original

Bochspwn from 2013.

Bochspwn report

------------------------------ found uninit-access of address 94447d04

[pid/tid: 000006f0/00000740] { explorer.exe}

READ of 94447d04 (4 bytes, kernel--->user), pc = 902df30f

[rep movsd dword ptr es:[edi], dword ptr ds:[esi]]

[Pool allocation not recognized]

Allocation origin: 0x90334988 ((000c4988) win32k.sys!__SEH_prolog4+00000018)

Destination address: 1b9d380

Shadow bytes: 00 ff ff ff Guest bytes: 00 bb bb bb

Stack trace:

#0 0x902df30f ((0006f30f) win32k.sys!NtGdiGetRealizationInfo+0000005e)

#1 0x8288cdb6 ((0003ddb6) ntoskrnl.exe!KiSystemServicePostCall+00000000)

Kernel debugger support

• Textual Bochspwn reports are quite verbose, but not always sufficient to

reproduce bugs.

• Especially for IOCTL / other complex cases, where function arguments need to be

deeply inspected, kernel objects examined etc.

• Solution – attach WinDbg to the emulated guest kernel!

• Easily configured, Bochs has support for redirecting COM ports to Windows pipes.

• Of course slow, as everything working on top of Bochs, but workable. ☺

Breaking on bugs

• Attached debugger is not of much use if we can’t debug the system at

the very moment of the infoleak.

• Hence: after the bug is logged to file, Bochspwn injects an INT3

exception in the emulator.

• WinDbg stops directly after the offending rep movs instruction.

• Overall feels quite magical. ☺

Testing performed

• Instrumentation run on both Windows 7 and 10.

• Executed actions:

• System boot up.

• Starting a few default apps – Internet Explorer, Wordpad, Registry Editor, Control Panel,

games etc.

• Generating some network traffic.

• Running ~800 ReactOS unit tests (largely improved since 2013).

• Kernel code coverage still a major roadblock for effective usage of full-system

instrumentation.

Results!

Summary of the results so far

• A total of 30 vulnerabilities fixed by Microsoft in the last months

(mostly June).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Stack

Pools

Information disclosure by memory type

Summary – pool disclosures
Issue # CVE Component Fixed in Root cause Number of leaked bytes

1144 CVE-2017-8484 win32k!NtGdiGetOutlineTextMetricsInternalW June 2017 Structure alignment 5

1145 CVE-2017-0258 nt!SepInitSystemDacls May 2017 Structure size miscalculation 8

1147 CVE-2017-8487 \Device\KsecDD, IOCTL 0x390400 June 2017 Unicode string alignment 6

1150 CVE-2017-8488 Mountmgr, IOCTL_MOUNTMGR_QUERY_POINTS June 2017 Structure alignment 14

1152 CVE-2017-8489 WMIDataDevice, IOCTL 0x224000 (WmiQueryAllData) June 2017
Structure alignment,

Uninitialized fields
72

1153 CVE-2017-8490 win32k!NtGdiEnumFonts June 2017
Fixed-size string buffers,

Structure alignment,
Uninitialized fields

6672

1154 CVE-2017-8491 Volmgr, IOCTL_VOLUME_GET_VOLUME_DISK_EXTENTS June 2017 Structure alignment 8

1156 CVE-2017-8492 Partmgr, IOCTL_DISK_GET_DRIVE_GEOMETRY_EX June 2017 Structure alignment 4

1159 CVE-2017-8469 Partmgr, IOCTL_DISK_GET_DRIVE_LAYOUT_EX June 2017
Structure alignment,

Different-size union overlap
484

1161 CVE-2017-0259 nt!NtTraceControl (EtwpSetProviderTraits) May 2017 ? 60

1166 CVE-2017-8462 nt!NtQueryVolumeInformationFile (FileFsVolumeInformation) June 2017 Structure alignment 1

1169 CVE-2017-0299 nt!NtNotifyChangeDirectoryFile June 2017 Unicode string alignment 2

1238 CVE-2017-8564 Nsiproxy/netio, IOCTL 0x120007 (NsiGetParameter) July 2017 Structure alignment 13

Summary – stack disclosures

Issue # CVE Component Fixed in Root cause Number of leaked bytes

1177 CVE-2017-8482 nt!KiDispatchException June 2017 Uninitialized fields 32

1178 CVE-2017-8470 win32k!NtGdiExtGetObjectW June 2017 Fixed-size string buffer 50

1179 CVE-2017-8471 win32k!NtGdiGetOutlineTextMetricsInternalW June 2017 Uninitialized field 4

1180 CVE-2017-8472 win32k!NtGdiGetTextMetricsW June 2017
Structure alignment,

Uninitialized field
7

1181 CVE-2017-8473 win32k!NtGdiGetRealizationInfo June 2017 Uninitialized fields 8

1182 CVE-2017-0245 win32k!xxxClientLpkDrawTextEx May 2017 ? 4

1183 CVE-2017-8474
DeviceApi (PiDqIrpQueryGetResult, PiDqIrpQueryCreate,

PiDqQueryCompletePendedIrp)
June 2017 Uninitialized fields 8

1186 CVE-2017-8475 win32k!ClientPrinterThunk June 2017 ? 20

1189 CVE-2017-8485
nt!NtQueryInformationJobObject (BasicLimitInformation,

ExtendedLimitInformation)
June 2017 Structure alignment 8

1190 CVE-2017-8476 nt!NtQueryInformationProcess (ProcessVmCounters) June 2017 Structure alignment 4

1191 CVE-2017-8477 win32k!NtGdiMakeFontDir June 2017 Uninitialized fields 104

1192 CVE-2017-0167 win32kfull!SfnINLPUAHDRAWMENUITEM April 2017 ? 20

1193 CVE-2017-8478 nt!NtQueryInformationJobObject (information class 12) June 2017 ? 4

1194 CVE-2017-8479 nt!NtQueryInformationJobObject (information class 28) June 2017 ? 16

1196 CVE-2017-8480 nt!NtQueryInformationTransaction (information class 1) June 2017 ? 6

1207 CVE-2017-8481 nt!NtQueryInformationResourceManager (information class 0) June 2017 ? 2

1214 CVE-2017-0300 nt!NtQueryInformationWorkerFactory (WorkerFactoryBasicInformation) June 2017 ? 5

Pool infoleak reproduction

• Use a regular VM with guest Windows.

• Find out which driver makes the allocation leaked to user-mode

(e.g. win32k.sys).

• Enable Special Pools for that module, reboot.

• Start PoC twice, observe a repeated marker byte where data is leaked

(changes between runs).

D:\>VolumeDiskExtents.exe

00000000: 01 00 00 00 39 39 39 399999

00000008: 00 00 00 00 39 39 39 399999

00000010: 00 00 50 06 00 00 00 00 ..P.....

00000018: 00 00 a0 f9 09 00 00 00

D:\>VolumeDiskExtents.exe

00000000: 01 00 00 00 2f 2f 2f 2f////

00000008: 00 00 00 00 2f 2f 2f 2f////

00000010: 00 00 50 06 00 00 00 00 ..P.....

00000018: 00 00 a0 f9 09 00 00 00

Stack infoleak reproduction

• More difficult, there is no official / documented way of padding stack allocations

with marker bytes.

• In a typical scenario, it may not be obvious that/which specific bytes are leaked.

• Non-volatile, non-interesting values (e.g. zeros) often occupy a large portion of the stack.

• Observations could differ in Microsoft’s test environment.

• Reliable proof of concept programs are highly desired.

• To fully ensure that a bug is real also outside of Bochspwn environment.

• To make the vendor’s life easier with analysis.

Stack spraying to the rescue

• A number of primitives exist in the Windows kernel to fill the kernel stack

with controlled data.

• Thanks to optimizations – local buffers used for „small” requests in many syscalls.

• Easy to identify: look for Nt* functions with large stack frames in IDA.

• My favorite: nt!NtMapUserPhysicalPages

• Sprays up to 4096 bytes on x86 and 8192 bytes on x86-64.

• Documented in „nt!NtMapUserPhysicalPages and Kernel Stack-Spraying Techniques”

blog post in 2011.

Kernel stack

41 41 41 41 41 41
41 41 41 41 41 41
41 41 41 41 41 41
41 41 41 41 41 41
41 41 41 41 41 41
41 41 41 41 41 41
41 41 41 41 41 41
41 41 41 41 41 41
41 41 41 41 41 41
41 41 41 41 41 41
41 41 41 41 41 41
41 41 41 41 41 41

Kernel stack

41 41 41 41 41 41
41 41 41 41 41 41
41 41 41 41 41 41
41 41 41 41 41 41
41 41 41 41 41 41
41 41 41 41 41 41
41 41 41 41 41 41
41 41 41 41 41 41
41 41 41 41 41 41
41 41 41 41 41 41
41 41 41 41 41 41
41 41 41 41 41 41

00 50 A8 00

9B 01 00 00

00 00 19 00 48 45
00 00 98 44 00 00
30 0A 00 00 00 05

00 00

00 00

User-mode memory

41 41 41 41 41 41
41 41 41 41 41 41
41 41 41 41 41 41
41 41 41 41 41 41
41 41 41 41 41 41
41 41 41 41 41 41
41 41 41 41 41 41
41 41 41 41 41 41

00 50 A8 00

9B 01 00 00

00 00 19 00 48 45
00 00 98 44 00 00
30 0A 00 00 00 05

00 00

00 00

1. Spray the kernel stack with
an easily recognizable pattern.

2. Trigger the bug directly after, and observe the marker bytes at
uninitialized offsets.

D:\>NtGdiGetRealizationInfo.exe

00000000: 10 00 00 00 03 01 00 00

00000008: 2e 00 00 00 69 00 00 46i..F

00000010: 41 41 41 41 41 41 41 41 AAAAAAAA

Quick digression: bugs without Bochspwn

• If memory marking can be used for bug demonstration, it can be used for

discovery too.

• Basic idea:

• Enable Special Pools for all common kernel modules.

• Invoke tested system call twice, pre-spraying the kernel stack with a different byte

each time.

• Compare output in search of repeated patterns of differing bytes at common offsets.

Perfect candidate: NtQueryInformation*

NTSTATUS

NTAPI

NtQueryInformationProcess (

IN HANDLE ProcessHandle,

IN PROCESSINFOCLASS ProcessInformationClass,

OUT PVOID ProcessInformation,

IN ULONG ProcessInformationLength,

OUT PULONG ReturnLength OPTIONAL

);

Manually created

Brute-forced 0..255

Brute-forced 1..255

Fruitful idea

Windows infoleak summary

• The problem seems to have remained almost completely

unrecognized until just now (with a few exceptions).

• The invisibility and non-obviousness of this bug class and no notion of

privilege separation in C/C++ doesn’t really help.

• It’s a fundamental issue, trivial to overlook but very difficult to get right in the

code.

Windows infoleak summary

• Windows has a very loose approach to kernel→user data transfers.

• Tip of the iceberg, there may be many more instances of the bug

lurking in the codebase.

• Hundreds of memcpy() calls to user-mode exist, every one of them is a

potential disclosure.

• Especially those where size is user-controlled, but the amount of relevant

data is fixed or otherwise limited.

Mitigation ideas (generic)

• Fully bug-proof: memset all stack and pool allocations when they are

made/requested.

• Would pretty much make the problem go away without any actual bug-fixing.

• Easily implemented, but the overhead is probably too large?

• Most kernel allocations don’t end up copied to user-mode, anyway.

That was fast!

Mitigation ideas (generic)

• More realistic:

• Clear the kernel stack post-syscall (a.k.a. PAX_MEMORY_STACKLEAK).

• Prevents cross-syscall leaks, which are probably the majority.

• Add a new allocator function clearing returned memory regions.

• Detect which allocations end up copied to user-mode and clear only those

(automatically or by adding memset() calls in code manually).

Mitigation ideas (bug-specific)

• With Windows source code, Microsoft could take the whole

Bochspwn idea to the next level:

• Adding instrumentation at compile time → access to much more semantic

information, e.g. better taint propagation (full vs. just memcpy).

• More code coverage → more bugs found.

• Static analysis easier to use to guide dynamic approaches and vice versa.

Closing remarks

• The Bochspwn approach can be also used to detect regular use of

uninitialized memory, but the results are much harder to triage:

• LOTS of false positives.

• Lack of source code makes it very difficult to determine if an access is a bug

and what its impact is.

• Leaking specific sensitive data from pool disclosures seems like an

interesting subject and still needs research. ☺

Bochspwn vs. Linux

Tainting heap allocations

• MUCH more complex than on Windows:

• A number of allocators, public and internal, with many variants: kmalloc, vmalloc,

kmem_cache_alloc.

• Allocator functions have different declarations.

• Passing arguments via registers (regparm=3) means request information is not available on RET

instruction.

• kmem_cache’s have allocation sizes specified during cache creation.

• kmem_cache’s may have constructors (tainting at a different time then returning region to caller).

• Allocators may return pointers ≤ 0x10 (not just NULL).

void *kmalloc(size_t, gfp_t);

void *__kmalloc(size_t, gfp_t);

void *kmalloc_order(size_t, gfp_t, unsigned int);

void *kmalloc_order_trace(size_t, gfp_t, unsigned int);

void *kmalloc_large(size_t, gfp_t);

void *kzalloc(size_t, gfp_t);

struct kmem_cache *kmem_cache_create(const char *, size_t, size_t,

unsigned long, void (*)(void *));

void *kmem_cache_alloc(struct kmem_cache *, gfp_t);

void *kmem_cache_alloc_trace(struct kmem_cache *, gfp_t, size_t);

Variety of allocators (kmalloc/kmem_cache)

Variety of allocators (vmalloc)

void *vmalloc(unsigned long);

void *vzalloc(unsigned long);

void *vmalloc_user(unsigned long);

void *vmalloc_node(unsigned long, int);

void *vzalloc_node(unsigned long, int);

void *vmalloc_exec(unsigned long);

void *vmalloc_32(unsigned long);

void *vmalloc_32_user(unsigned long);

void *__vmalloc(unsigned long, gfp_t, pgprot_t);

void *__vmalloc_node_range(unsigned long, unsigned long, unsigned long, unsigned long, gfp_t,

pgprot_t, unsigned long, int, const void *);

Variety of allocators

• Of course many of them call into each other, but in the end, we still had to hook into:

• __kmalloc

• kmalloc_order

• __kmalloc_track_caller

• __vmalloc_node

• kmem_cache_create

• kmem_cache_alloc

• kmem_cache_alloc_trace

• ... and the corresponding free() routines, too.

regparm=3

• First three arguments to functions are passed through EAX, EDX, ECX.

• Tried compiling the kernel without the option, but failed to boot.

• Information about the allocation request and result is not available at

the same time.

• Necessary to intercept execution twice: in the prologue and epilogue

of the allocator.

Allocator logic

requests[ESP]["size"] = EAX
requests[ESP]["flags"] = ECX

set_taint(EAX, EAX + requests[ESP]["size"])

kmem_cache_{create,alloc}

• Dedicated mechanism for quick allocation of fixed-sized memory regions (e.g. structs).

• kmem_cache_create creates a cache object (receives size, flags, constructor).

• kmem_cache_alloc allocates memory from cache.

• kmem_cache_free frees a memory region from cache.

• kmem_cache_destroy destroys the cache object.

• We need to:

• Maintain an up-to-date list of currently active caches.

• Break on cache constructors to set taint on memory.

• Break on allocators to set other metadata (e.g. caller’s EIP).

Propagating taint

• CONFIG_X86_GENERIC=y and CONFIG_X86_USE_3DNOW=n sufficient to

compile memcpy() into a combination of rep movs{d,b}.

Ubuntu 16.04 memory taint layout

0xc0000000

0xffffffff

60 minutes of run time, 20s. interval, boot + trinity fuzzer + linux test projectstack pages heap pages

Other useful CONFIG options

• CONFIG_DEBUG_INFO=y to enable debugging symbols.

• CONFIG_VMSPLIT_3G=y to use the 3G/1G user/kernel split.

• CONFIG_RANDOMIZE_BASE=n to disable kernel ASLR.

• CONFIG_X86_SMAP=n to disable SMAP.

• CONFIG_HARDENED_USERCOPY=n to disable sanity checks unnecessary

during instrumentation.

Detecting bugs – copy_to_user

• Set CONFIG_X86_INTEL_USERCOPY=n to have copy_to_user() compiled to

rep movs{d,b} instead of a sequence of mov.

Detecting bugs – put_user

• Linux has a macro to write values of primitive types to userland memory.

• No internal memcpy(), so such leaks wouldn’t normally get detected.

• Each architecture has its own version of the macro, x86 too.

• Very difficult to modify the source to convert it to Bochspwn-compatible

rep movs.

• Various constructs passed as argument: constants, variables, structure fields,

function return values etc.

The solution – temporary strict mode

#define __put_user(x, ptr) \

({ \

__typeof__(*(ptr)) __x; \

...

__asm("prefetcht1 (%eax)"); \

__x = (x); \

__asm("prefetcht2 (%eax)"); \

...

1. Enable strict mode
(for current ESP)

3. Disable strict mode

2. Evaluate expression
written to userland

Strict mode

• PREFETCH{1,2} instructions are effectively NOPs in Bochs.

• Can be used as markers in the code, or „hypercalls”.

• In between PREFETCH1 and PREFETCH2, all reads of uninitialized memory

are reported as kernel→user leaks, if ESP is unchanged.

• The code block only contains evaluation of the expression being written to ring-3.

• Verifying ESP prevents polluting logs with reports from function calls, thread

preemptions etc.

• 365 such constructs added to the vmlinux used by Bochspwn.

Strict mode as seen in IDA

Sanitized

Sanitized

Sanitized

Keeping track of modules, symbolization etc.

Again, simple logic

unchanged since the

2013 Bochspwn.

Bochspwn report

------------------------------ found uninit-access of address f5733f38

========== READ of f5733f38 (4 bytes, kernel--->kernel), pc = f8aaf5c5

[mov edi, dword ptr ds:[ebx+84]]

[Heap allocation not recognized]

Allocation origin: 0xc16b40bc: SYSC_connect at net/socket.c:1524

Shadow bytes: ff ff ff ff Guest bytes: bb bb bb bb

Stack trace:

#0 0xf8aaf5c5: llcp_sock_connect at net/nfc/llcp_sock.c:668

#1 0xc16b4141: SYSC_connect at net/socket.c:1536

#2 0xc16b4b26: SyS_connect at net/socket.c:1517

#3 0xc100375d: do_syscall_32_irqs_on at arch/x86/entry/common.c:330

(inlined by) do_fast_syscall_32 at arch/x86/entry/common.c:392

Kernel debugging

Testing performed

• Instrumentation run on Ubuntu 16.10 32-bit (kernel 4.8).

• Executed actions:

• System boot up.

• Logging in via SSH.

• Starting a few command-line programs and reading from /dev and /proc pseudo-files.

• Running Linux Test Project (LTP) unit tests.

• Running the Trinity + iknowthis system call fuzzers.

• Coverage-guided fuzzing with Syzkaller sounds like a perfect fit, but it doesn’t actively

support the x86 platform (currently only x86-64 and arm64).

Results!

Direct kernel→user disclosures

• Just one (1) minor bug!

• Disclosure of 7 uninitialized kernel stack bytes in the handling of

specific IOCTLs in ctl_ioctl (drivers/md/dm-ioctl.c).

• /dev/control/mapper device, only accessible to root.

• Issue discovered around April 20th, I was just about to report it a few

days later, but...

Global strict mode

• Looks like Linux doesn’t have any direct, trivially reachable infoleaks

to user-mode...

• Bochspwn can be used to also detect use of uninitialized memory, not

just leaks.

• With source code, it’s easy to analyze and understand each report.

• Let’s try our luck there?

Use of uninitialized memory bugs

Location Fixed Patch sent Found externally Memory type

llcp_sock_connect in net/nfc/llcp_sock.c Yes Yes Yes (after Bochspwn) Stack

bind() and connect() handlers in multiple sockets
(bluetooth, caif, iucv, nfc, unix)

Yes Yes No Stack

deprecated_sysctl_warning in kernel/sysctl_binary.c Yes Yes Yes (after Bochspwn) Stack

SYSC_epoll_ctl in fs/eventpoll.c Yes n/a Yes Stack

devkmsg_read in kernel/printk/printk.c Yes, on 4.10+ kernels n/a Kind of (code area refactored) Heap

dnrmg_receive_user_skb in
net/decnet/netfilter/dn_rtmsg.c

Yes Yes No Heap

nfnetlink_rcv in net/netfilter/nfnetlink.c Yes Yes No Heap

ext4_update_bh_state in fs/ext4/inode.c Yes n/a Yes Stack

nl_fib_lookup in net/ipv4/fib_frontend.c Yes n/a Yes Heap

fuse_release_common in fs/fuse/file.c Yes Yes No Heap

apply_alternatives in arch/x86/kernel/alternative.c Yes Yes No Stack

__bpf_prog_run in kernel/bpf/core.c n/a n/a Yes Stack

crng_reseed in drivers/char/random.c n/a n/a No Stack

unmapped_area_topdown in mm/mmap.c n/a n/a No Stack

Bonus: A local kernel DoS (NULL Pointer Dereference) while experimenting with another bug.

Results summary

• Even though the list is long, the bugs are mostly insignificant.

• For example allow to answer „is an uninitialized byte on kernel stack equal to 0?”

• One regular memory disclosure vulnerability in AF_NFC.

• False positives are bound to happen, and sometimes they are true positives

that are just „working as intended”.

• Good validation that the approach does work, but there just aren’t more

obvious issues to be found.

KernelMemorySanitizer

• Linux kernel development is very rapid, bugs get fixed every day.

• Most collisions happened with KMSAN.

• Currently under development by Alexander Potapenko.

• Run-time instrumentation added by compiler to detect use of uninitialized memory.

• Twin project of KernelAddressSanitizer, MemorySanitizer (for user-mode) and all

other Sanitizers.

• The correct long-time approach to the problem in Linux.

Conclusions

• The Linux community has been on top of the problem for the last few

years.

• Seemingly hardly any easy infoleaks left at all at this point.

• Some uses of uninit memory, but even these are not trivial to find.

• Even when bugs show up, they are rather short-lived.

• Most remaining bugs should be swept off by KMSAN in the near future.

Future work

Future work for Bochspwn

• Run further iterations on Windows.

• Triage and get a better understanding of some of the uninitialized reads detected by

Bochspwn strict-mode.

• Look into improving code coverage.

• Neverending story. Syzkaller does pretty well on Linux, no sensible equivalent for Windows.

• Improve taint propagation logic beyond just rep movs.

• Implement support for 64-bit guest systems.

• Opens many doors – new bugs, more coverage, etc.

Future work for Bochspwn

• Taint-less approaches:

• Poison stack and heap/pools with magic bytes, log all kernel→user writes with these

bytes, review all reports for bugs.

• Approach used (to an extent) by fanxiaocao and pjf.

• Generalize for two or more such sessions with different marker bytes. For every

write location which always has the marker at specific offset(s), that’s a bug!

• Addresses the problem of non-ideal taint propagation (for other tradeoffs).

Other (crazy) ideas

• Recompilation or binary rewriting to make the kernels transfer data

exclusively with movs{b,d} instructions? ☺

• Apply the concept to other data sinks than just user-mode memory.

• Outgoing network traffic.

• File system metadata.

• Output files saved by desktop applications.

• Other security domains? Inter-process communication, virtualization.

Thanks!

@j00ru

http://j00ru.vexillium.org/

j00ru.vx@gmail.com

http://twitter.com/j00ru
http://j00ru.vexillium.org/
mailto:j00ru.vx@gmail.com

