
 https://omergil.blogspot.com @omer_gil

WHITE PAPER
WEB CACHE DECEPTION ATTACK

Omer Gil

July 2017

https://twitter.com/omer_gil

Table of Contents

ABSTRACT .. 1

INTRODUCTION ... 1

About caching ... 1

Servers' reactions .. 2

WEB CACHE DECEPTION METHODOLOGY.. 3

IMPLICATIONS ... 3

CONDITIONS .. 4

KNOWN WEB FRAMEWORKS ... 4

PHP .. 4

Django ... 5

ASP.NET ... 7

KNOWN CACHING MECHANISMS ... 9

Cloudflare .. 9

IIS ARR ... 10

NGINX .. 11

MITIGATIONS .. 13

SUMMARY ... 14

ACKNOWLEDGMENTS ... 14

REFERENCES .. 14

- 1 -

ABSTRACT
Web cache deception is a new web attack vector that affects various technologies, such as

web frameworks and caching mechanisms. Attackers can use this method to expose private

and sensitive information of application users, and in certain cases may be able to leverage

this attack to perform a complete account takeover.

The attack takes advantage of default behaviors and poor configurations of various

technologies that are involved in the application's architecture.

A user who accesses an innocent-looking URL to the domain of a vulnerable application

causes the accessed page, with the user’s private information, to be stored by a caching

mechanism that serves the web application.

INTRODUCTION

About caching
Websites often use web cache functionality in order to reduce web server latency and to

provide users with their requested content faster. Instead of letting the web server deal with

each request over and over, the caching mechanism stores those application files that are

frequently retrieved.

Files that are commonly cached are static, public files: style sheets (css), scripts (js), text files

(txt), images (png, bmp, gif), and so on. These files don't usually contain any sensitive

information. As can be found in various best practices articles about web cache

configuration, it's recommended to cache all static files that are meant to be public, and

disregard their HTTP caching headers.

There are several ways to implement caching. For example, caching is performed on

browsers: the file is cached, and for a certain period of time, the browser won't ask the web

server for the cached file again. This type of caching is NOT relevant for the web cache

deception attack.

Another way to implement caching, that is relevant for this attack, is over a server that

stands between the client and the web server and functions as a caching mechanism. This

type of mechanism can have various forms:

 CDN (Content Delivery Network). A distributed network of proxies whose purpose is

to serve content quickly. The client will be served from a group of proxies, preferably

the closest one to him.

 Load balancer. In addition to their job of balancing the traffic between more than

one server, load balancers can also cache content in order to reduce the servers'

latency.

 Reverse proxy. A proxy server that retrieves resources from the web server on

behalf of the client, and can cache some of the application's content.

- 2 -

Having reviewed the different forms of caching mechanisms, let's see a demonstration of

how web caching actually works. In the following example, the http://www.example.com

website is served by a reverse proxy. Like any website, this website uses images, CSS files,

and scripts to be used publicly. These are all static files used by all or many users in the

website, and they return exactly the same content for all users. They do not contain any user

information, and are therefore not considered sensitive in any way.

The first time a static file is accessed, the request goes through the proxy. The caching

mechanism is not familiar with this file, so it asks the web server for it, and the web server

returns the file. Now, the caching mechanism needs to identify the type of the received file.

Each caching mechanism works in a different way, but in many cases, the server fetches the

file's extension from the end of the URL, and then, according to that mechanism’s caching

rules, decides whether or not to cache the file.

If the file is cached, the next time any client asks for that file, the caching mechanism already

has it stored, so it sends it to the client without asking the web server for it.

Servers' reactions
The web cache deception attack counts on similar browsers' and web servers' reactions, in

the same way as the RPO attack, explained in two blogs: The Spanner1 and XSS Jigsaw2.

What happens when a user accesses a URL like

http://www.example.com/home.php/nonexistent.css, where home.php is an actual page,

and nonexistent.css doesn't exist?

In this case, the browser sends a GET request to that URL. The interesting thing to look at is

how the web server interprets this request. Depending on the server's technology and

configuration, the web server might return a 200 OK response with the content of the

home.php page, meaning the URL stays the same.

The HTTP response headers will match the home.php page: same caching headers and same

content type (text/html, in this case).

- 3 -

WEB CACHE DECEPTION METHODOLOGY
An unauthenticated attacker can easily exploit this vulnerability, as shown in the following

steps:

1. The attacker lures a logged-on user to access

https://www.bank.com/account.do/logo.png.

2. The victim's browser requests https://www.bank.com/account.do/logo.png.

3. The request arrives to the proxy, which is not familiar with this file, and therefore

asks the web server for it.

4. The web server returns the content of the victim's account page with a 200 OK

response, meaning the URL stays the same.

5. The caching mechanism receives the file and identifies that the URL ends with a

static extension (.png). Because the mechanism is configured to cache all static files

and disregard any caching headers, the imposter .png file is cached. A new directory

named account.do is created in the cache directory, and the file is cached with the

name logo.png.

6. The user receives his account page.

7. The attacker accesses https://www.bank.com/account.do/logo.png. The request

arrives to the proxy server, which directly returns the victim’s cached account page

to the attacker's browser.

IMPLICATIONS
A successful exploitation will cause the vulnerable page – containing the user's personal

content – to be cached and thus publicly accessible. This is a cached, static version of the

file; the attacker cannot impersonate the victim. The file cannot be overridden, and remains

valid until it expires.

The impact can increase significantly if the body of the response contains the user's session

identifier (for some reason), security answers, CSRF tokens, etc. This can be leveraged to

additional attacks, and lead to a complete account takeover.

- 4 -

CONDITIONS
Three conditions must be met in order for an attacker to perform web cache deception:

1. When accessing a page like http://www.example.com/home.php/nonexistent.css,

the web server returns the content of home.php for that URL.

2. Web cache functionality is set for the web application to cache files by their

extensions, disregarding any caching headers.

3. The victim must be authenticated while accessing the malicious URL.

KNOWN WEB FRAMEWORKS
One condition of the attack relates to the application's interpretation for requests of existing

URLs with the addition of name of a nonexistent file at the end, like

http://www.example.com/home.php/nonexistent.css.

The following examples show how the exploit can be performed in several known web

frameworks, including an overview of their default behavior, and an explanation of their

configuration and workflow.

PHP
By creating a 'pure' PHP application, without using a framework, the application disregards

any addition at the end of the URL, and returns a 200 OK response, with the content of the

actual page.

For example, when accessing http://www.example.com/login.php/nonexistent.gif, the

application returns the content of login.php, meaning it meets the first attack condition.

- 5 -

Django
Requests in Django go through a dispatcher which is implemented using the urls files. In

these files, regular expressions can be set to identify the requested resource in the URI and

return the relevant content.

This is a common configuration, which returns the content of the Inbox page for a request

such as http://www.sampleapp.com/inbox/.

This regular expression also matches the same URL with the addition of a nonexistent file

like http://www.sampleapp.com/inbox/test.css. The result of this regex is that the Django

application meets the attack condition.

Another example of a vulnerable regex that might be used is by omitting the trailing slash

after 'Inbox'.

- 6 -

With this regex implemented, in addition to finding a match in the standard

http://www.sampleapp.com/inbox URL, it also finds a match in

http://www.sampleapp.com/inbox.css.

When the dollar sign is appended to the regex, the application won't find a match in

triggering URLs.

- 7 -

ASP.NET
In the ASP.NET framework there is a built-in feature called FriendlyURLs, whose main

purpose is to make the URL ‘cleaner’ and friendlier. For accessing

https://www.example.com/home.aspx, the application removes the extension and redirects

users to https://www.example.com/home.

This feature can be configured in the Route.config file and it is turned on by default in any

ASP.NET application.

When the FriendlyURLs feature is turned on, and a user accesses the existing Manage.aspx

page by requesting http://localhost:39790/Account/Manage.aspx, the .aspx extension is

removed and the page content is displayed.

Accessing a triggering URL with this configuration

http://localhost:39790/Account/Manage.aspx/test.css results in the .aspx extension being

omitted; the user is redirected to http://localhost:39790/Account/Manage/test.css, which

causes a 404 error. This means that when FriendlyURLs is turned on, the application does

NOT meet the attack condition.

- 8 -

Although FriendlyURLs is turned on by default, there are many websites that don't use this

feature. It can be easily turned off in Route.config.

When the feature is turned off, accessing the same triggering URL results with a 200 OK

response, and the actual content of the Manage.aspx page is returned.

- 9 -

KNOWN CACHING MECHANISMS
The second condition of the attack is for the web cache functionality to be set for the web

application to cache files according to the extension at the end of the URL, disregarding any

caching headers. Following are examples of several known caching mechanisms, with

explanations of their caching process and how they identify the type of a received file.

Cloudflare
When a file arrives to Cloudflare servers from a web server, it goes through two phases. The

first phase is called the Eligibility Phase, in which Cloudflare checks whether the caching

feature is applied on the website and on the directory the file came from. If the answer is

yes (and it probably is, as this is probably why the website used Cloudflare's services from

the outset), the Cloudflare server checks whether the URL ends with one of the following

static extensions:

class, css, jar, js, jpg, jpeg, gif, ico, png, bmp, pict, csv, doc,

docx, xls, xlsx, ps, pdf, pls, ppt, pptx, tif, tiff, ttf, otf, webp,

woff, woff2, svg, svgz, eot, eps, ejs, swf, torrent, midi, mid

If it does, the file moves on to the second phase – the Disqualification Phase, in which the

Cloudflare server checks for the existence of HTTP caching headers.

Unfortunately, by accessing a triggering URL, the web server returns the caching headers of

the existing dynamic page, meaning that the file will probably return with a no-cache

directive.

Fortunately, Cloudflare has a feature called 'Edge cache expire TTL', which provides the

option to override any existing headers. By setting this feature to 'on', files that return from

the web server with a no-cache directive will be cached. As a result of Cloudflare's

recommendation to use this header for a variety of reasons, it is commonly used.

- 10 -

IIS ARR
ARR (Application Request Routing) provides load balancing capabilities to IIS.

One of the features that ARR offers is caching. Cache rules can be set for web servers

supported by the load balancer, in order to save files to the cache directory. When creating a

new cache rule, we define the file type to be cached using a wildcard and the desired

extension. When a file arrives to ARR, it looks for this pattern in the file's URL. Effectively,

ARR identifies the file type according to the extension at the end of the URL.

In addition, IIS ARR contains an option to disregard the file's caching headers, causing the

rule to be applied in any case.

In the following example, IIS ARR is linked with two web servers and is configured to cache

all stylesheets and JavaScript files.

- 11 -

A request to a triggering URL (http://www.sampleapp.com/welcome.php/test.css) results in

the creation of a new directory named welcome.php in the cache directory, and inside it, a

new file named test.css, which contains the content of the user's welcome.php page.

NGINX
An NGINX server that functions as a load balancer provides caching capabilities to store

pages that return from the web servers.

The caching rules can be configured in NGINX configuration files. The following example

shows a configuration that instructs NGINX to cache specific types of static files, and to

disregard their caching headers.

When a page arrives to NGINX from the web server, NGINX searches for the extension at the

end of the URL, and identifies the file type according to it.

At first, nothing is cached in the cache directory.

- 12 -

An authenticated user accesses a triggering URL

(http://www.sampleapp.com/app/welcome.php/test.css), and the user's page is cached in

the cache directory.

- 13 -

Then, an attacker accesses the triggering URL while unauthenticated, and the NGINX server

returns the cached file, containing the user's private content.

MITIGATIONS
1. Configure the cache mechanism to cache files only if their HTTP caching headers

allow.

2. Store all static files in a designated directory and cache only that directory.

3. If the cache component provides the option, configure it to cache files by their

content type.

4. Configure the web server so that for pages such as

http://www.example.com/home.php/nonexistent.css, the web server does not

return the content of home.php with the triggering URL; instead, the server should

return a 404 or 302 response.

- 14 -

SUMMARY
Web cache deception is an attack that is not only easy to perform, but can also have serious

consequences, from exposing users’ personal information, to attackers gaining control over

users’ accounts. A number of well-known websites were found to be vulnerable to this

attack; most of these websites were served by the most common CDNs. It’s safe to assume

that there are still many sites that could fall victim to the attack.

Although this White Paper relates only to a limited sample of technologies that can meet the

web cache deception attack conditions, there are various additional web frameworks and

caching mechanisms that could provide attackers with similar opportunities to perform the

attack.

The web frameworks and caching mechanisms that create the conditions for this

vulnerability are not in and of themselves vulnerable; the main issue is one of improper

configurations.

To prevent web cache deception attacks, technical personnel should first and foremost be

aware of the conditions that can enable this attack. Furthermore, vendors would be advised

to make efforts to prevent their products from meeting these conditions. This can be

achieved by disabling features, changing default settings and behaviors, and providing

warnings to increase the awareness of technical personnel.

ACKNOWLEDGMENTS
Sagi Cohen, Bill Ben Haim, Sophie Lewin, Or Kliger, Gil Biton, Yakir Mordehay, Hagar Livne

REFERENCES
1. RPO – The Spanner blog

http://www.thespanner.co.uk/2014/03/21/rpo/

2. RPO gadgets – XSS Jigsaw blog

http://blog.innerht.ml/rpo-gadgets/

3. Django URL dispatcher

https://docs.djangoproject.com/en/1.11/topics/http/urls/

4. NGINX caching

https://serversforhackers.com/c/nginx-caching

5. Web cache deception attack – original blog

http://omergil.blogspot.co.il/2017/02/web-cache-deception-attack.html

6. Web cache deception attack in PayPal home page

https://www.youtube.com/watch?v=pLte7SomUB8

7. Understanding our cache and the web cache deception attack – Cloudflare blog

https://blog.cloudflare.com/understanding-our-cache-and-the-web-cache-

deception-attack/

8. On web cache deception attacks – Akamai blog

https://blogs.akamai.com/2017/03/on-web-cache-deception-attacks.html

http://www.thespanner.co.uk/2014/03/21/rpo/
http://blog.innerht.ml/rpo-gadgets/
https://docs.djangoproject.com/en/1.11/topics/http/urls/
https://serversforhackers.com/c/nginx-caching
http://omergil.blogspot.co.il/2017/02/web-cache-deception-attack.html
https://www.youtube.com/watch?v=pLte7SomUB8
https://blog.cloudflare.com/understanding-our-cache-and-the-web-cache-deception-attack/
https://blog.cloudflare.com/understanding-our-cache-and-the-web-cache-deception-attack/
https://blogs.akamai.com/2017/03/on-web-cache-deception-attacks.html

