Hacking Hardware with a $10 SD Card Reader

An Exploitee.rs Production

http://BH2017.Exploitee.rs
About Us

• Amir Etemadieh (@Zenofex) - Senior Research Scientist at Cylance, Founder of Exploitee.rs, Founder of Pastecry.pt

• CJ Heres (@cj_000) - Security Researcher at Draper, does hardware/software exploitation things…

• Khoa Hoang (@maximus64_) – Graduate of the University of Central Florida who is a master of the soldering iron.

Note: This presentation and thoughts are ours, and ours alone, and have no relationship to our employers

http://BH2017.Exploitee.rs
Other Exploitee.rs Members

• [mbm] (@mbmwashere) – Co-founder of OpenWRT
• gynophage (@gyno_lbs) – DEF CON CTF organizer
• Hans Nielsen (@n0nst1ck) – “Boring” corp-sec dude
• Jay Freeman (@saurik) – Creator of Cydia
• Tom Dwenger (@tdweng) – Master software developer
• 0x00String (@0x00string) – Hacker, troublemaker extraordinaire

http://BH2017.Exploitee.rs
About Exploitee.rs

• The artists formerly known as GTVHacker
• Released root methods for multiple generations of Google TV devices and other embedded systems
• Maintains network of sites documenting vulnerabilities (community and group driven)

http://BH2017.Exploitee.rs
What is Covered

• What is eMMC flash & how does it differ from NAND
• How to recognize eMMC flash
• How to identify the eMMC pinout
• Attaching to eMMC flash within an embedded device
• Selecting the correct USB SD Card reader
• Interfacing with eMMC Flash

http://BH2017.Exploitee.rs
Prior Work

• 2009 – Micah Elizabeth Scott (@scanlime)
 • Built sniffer for Nintendo DSi console to monitor flash reads/writes

• 2012/2013 – Exploitee.rs
 • Presented eMMC root methods at DEF CON 21
 • since then have developed a systemic approach and low-cost tools to simplify the process

• Among many others online

http://BH2017.Exploitee.rs
Introduction to eMMHC Flash

• Embedded Multi-Media Card (eMMC)
 • Embedded version of MMC (similar to an SD card)

• Inside of millions of devices
 • Phones, STBs, Tablets, Automobiles

• Developed by the Joint Electron Device Engineering Council – JEDEC
 • Currently at revision 5.1

http://BH2017.Exploitee.rs
eMMC vs. NAND

• eMMC is a flash storage type with an internal controller
 • Internal controller handles wear leveling, bad block management, and Error-Correcting Code (ECC)

• eMMC provides simpler interface for developers to incorporate within designs

• NAND requires 8 data lines and 5 control lines
 • eMMC can use 1 data line and 2 control lines

http://BH2017.Exploitee.rs
Prevalence

• 2014 NXP Presentation estimated 4.375 Billion 16GB eMMC chips in the world
• Samsung Galaxy S to S5 mobile phones all use eMMC Flash storage
 • Sold over 110 Million devices alone, for ONE device line
• Low cost, many storage sizes, small single package footprint, integrated controller
Identifying eMMC Flash

Multiple items can be used to identify an eMMC flash Chip and pinout.

• Location on board (relative to SoC)
• Standardized Package type (BGA)
• Chip markings and silk screening
• PCB traces and resistors
Location on Board

- Most devices feature a System on Chip (SoC)
 - Main CPU
 - I/O Interfaces
 - Memory Controller
- RAM Chips
- Flash Memory
 - eMMC flash
 - NAND flash
 - NOR, SPI, etc...
- Look for BGA Packages near SoC

http://BH2017.Exploitee.rs
Common Flash Packages

Ball Grid Array (BGA) Thin Small Outline Package (TSOP)

Standard Package for eMMC Typically used for Parallel, NAND, or NOR

http://BH2017.Exploitee.rs
eMMC Chip Identification

• Manufacturer: Toshiba
• Part Number: THGBM5G6A2JBAIR
• Internet Search for Part #
 • "THGBM5G6A2JBAIR is 8-GByte density of e-MMC Module product”
 • Also a full datasheet
• In some cases a datasheet may not be available

http://BH2017.Exploitee.rs
Visually Identifying Pads

- eMMC Flash Datasheet - Toshiba THGBM5G6A2JBAIR
- Left side of the chip
 - DATA pads
- Right side of the chip
 - CMD/CLK pads
- The white pads? N/C
 - Flash has a large footprint
 - Some reserved for future use
Finding In-Circuit eMMC Pinouts

- Overlay pads onto image of chip
- Note the left (DAT#) blue pads
 - These are DATA lines
- Note all of the resistors
 - Connected to DATA lines

http://BH2017.Exploitee.rs
Finding In-Circuit eMMC Pinouts

- Silk screened R21 to R28
 - R21 == DAT0
 - R22 == DAT1
- CMD/CLK - lower right of chip
 - Lines must connect to the SoC
- What are R8 and R9?
 - CMD and CLK
Removing BGA Flash

- May need to remove eMMC to trace the pinout
- Requires rework station
 - Or a cheap hot air gun
- Also Requires
 - Tweezers
 - Soldering Flux
 - Patience
Pull and Trace

- Remove flash
 - Warm the board, add flux, bump the flash gently, when ready lift off cleanly
- Trace each pad out to alternate points visually or with multi-meter
- Can then re-solder the eMMC chip
 - May need to reball
- Risk destroying hardware
 - Leverage the information for in-circuit programming

http://BH2017.Exploitee.rs
Signal Identification With a Scope

• Guess and check works well, but may cause damage
• Test passively with oscilloscope
• Easier than removing the chip
 • Note: DAT0, CLK, CMD
• DAT0 may take a bit of searching
Clock Signal

• Clock is an oscillating signal
 • Provides for a consistent, repetitive, steady signal
• Clock signal usually looks like a sine wave
• Clock signal is used to synchronize the Data and Command signals

CLK Signal

http://BH2017.Exploitee.rs
Command Signal

• Commands come across the CMD line in bursts
 • Generally Corresponding with data reads and writes
• Bi-Directional communication

http://BH2017.Exploitee.rs
CMD Signal

http://BH2017.Exploitee.rs
Accessing the eMMC Flash

• Now that the possible pads have been identified, the process of verifying the pinout may require some repetition

• At minimum, need to confirm possible lines for:
 • DAT0
 • CMD
 • CLK

Each device is different however testing will confirm identity

http://BH2017.Exploitee.rs
Leveraging SD to Access eMMC

The SD card protocol is a superset of the MMC protocol

Features multiple transmission modes:
• 1-Bit Mode: Fewer wires, easier to connect to
• 4-Bit Mode (SD Max): 4 data lines, faster throughput than 1-Bit
• 8-Bit Mode: Only eMMC has all 8 data lines, fastest throughput

• DAT0, CMD, CLK, Power, Ground – all that’s needed
Leveraging SD to Access eMMC

- Conveniently maps to card readers that supports 1-Bit Mode

- Test support for 1-Bit mode:
 - Cover DAT1 to DAT3 pins of an SD card
 - Keep the rest exposed
 - Plug to SD card reader, see if it works

- Preferred Adapter
 - Transcend RDF5 USB 3.0 Reader
 - Supports 1-Bit mode

http://BH2017.Exploitee.rs
Connecting to eMMC Flash

• In-Circuit
 • With system power
 • Powered externally

• Dead Bug
 • Pulling the chip, soldering to it

• Each method has its own issues
 • Dead bugging can be a challenge
Dead Bug

- Looks like a dead bug
 - On its back, wires in the air

- Removing a BGA flash chip
 - Effective, but it is difficult
 - Use as a worst-case scenario

- To reattach, requires reballing

http://BH2017.Exploitee.rs
In-Circuit

• CPU may attempt to communicate with the EMMC

• To Prevent, need one of the following.
 • Hold CPU in Reset
 • Disconnect CMD / CLK line
 • Remove CPU clock oscillator

http://BH2017.Exploitee.rs
In-Circuit – Logic Level

• eMMC may be at a 1.8v logic level (VCCQ connected to the 1.8v rail, sets I/O voltage), SD readers operate at 3.3v

• Can't change eMMC logic level to 3.3v in-circuit
 • Not without the risk of blowing other chips on same power rail

• Use a low voltage adapter, convert 3.3v signals into 1.8v!
Troubleshooting

• Important considerations
 • A good ground connection is needed
 • Length of wires can impact connection
 • Logic level must be known to properly communicate
 • Ensure good connections to all points and a clean power source
Low Voltage eMMC Adapter

- Converts 3.3v SD card reader signals to 1.8v
 - Utilizes TI TXS02612 Voltage Level Translator
- Open source schematics and boards are available at exploitee.rs

http://BH2017.Exploitee.rs
Micro SD & SD eMMC Breakouts

• For use with eMMC flash that utilizes 3.3v in-circuit logic
 • Can also be used to dead bug
• Utilizes SD Card and Micro SD form factor to break out pin headers for SD Card readers
• No components needed - completely passive break out board

http://BH2017.Exploitee.rs
eMMC Boot Partitions

- eMMC chips also have boot partitions
- You can't access the boot partitions with an SD card reader
 - The controller on SD reader doesn't support eMMC boot mode.
- Utilizing a SDIO controller, the eMMC boot partitions are visible
 - /dev/mmcblk0boot0
 - /dev/mmcblk0boot1
eMMC Boot Partitions

- Some laptops have SDIO interfaces for SD card reading
 - Supports the special commands needed to interface with the boot partitions
- PC's don't have these
 - PCIe Cards exist to do this: Ricoh R5U230
 - Costs $150
- BeagleBone Black
 - SDIO interface for interfacing with eMMC
 - Costs $50

http://BH2017.Exploitee.rs
Questions?

http://BH2017.Exploitee.rs
Thank You!

Thank you Blackhat 2017 and to the following people:

@hustlelabs
@0x00string
Mike Stillo
Our families

@exploiteers
freenode: #exploiteers
web: http://exploitee.rs
http://BH2017.Exploitee.rs