
INFECTING THE ENTERPRISE:
ABUSING OFFICE365+POWERSHELL FOR
COVERT C2

CRAIG DODS
CHIEF ARCHITECT – SECURITY

@CCMA40

AGENDA

• Discuss what makes O365 ideal C2 infrastructure

• Enter Powershell

• 4-Stage PoC Walkthrough

• Mitigation Strategies

• Evading Detection + Final Demo

Graphic	Credit:	SkyHigh	Networks

OFFICE365: WHY IT’S INTERESTING FOR C2
Vast majority of enterprises permit SSL/TLS to Office365

Larger enterprises peer directly with Microsoft via ExpressRoute making data
exfiltration fast [10 Gbps+]

Due to the volume of traffic and level of trust, most elect not to decrypt Office365

Attacks can be launched without revealing the attacker’s network

DLP Solutions do not view a local share as being “outside” the enterprise

Using New-PSDrive, one can mount an O365 drive which is invisible within File
Explorer, WMI, COM, and .NET, significantly decreasing the likelihood of detection.

MICROSOFT SAW THIS COMING, OF COURSE

Even if you’re able to figure out how, simply mounting an Office 365 drive on
your target won’t get you anywhere.

If you want read/write access to that drive, your malware will need human-
like interaction abilities to fetch a SAML token from O365.

ENTER POWERSHELL

(un)Fortunately for us, Microsoft added an extremely robust module to
Powershell that allows it to interact with and control Internet Explorer.

Using this module, we can overcome the painful challenge of loading
https://portal.office.com, avoiding pre-existing SSO, entering in our
credentials and clicking on a few buttons, all without launching a user-visible
IE session.

If anyone is aware of a non-nefarious use for `$ie.visible = $False` please
let me know.

PHASE 1
GET THAT SAML TOKEN

#5 kills existing IE sessions

#7à10 cleans up cookies, forms,
and passwords in IE to avoid SSO

#12 launches IE

#13 makes it invisible

#14 launches the URL

#17à19 inputs credentials and
click the checkbox

#23à24 clicks on entries to erase
filler text

#25 clicks on the Sign-in Button

DEMO – WITH IE VISIBLE

PHASE 2
ADD TO TRUSTED SITES + MOUNT AND HIDE NEW DRIVE

DEMO – HIDDEN DRIVE MOUNTING

PHASE 3
EXFILTRATE DATA AND BYPASS PS RESTRICTIONS

DEMO – EXFILTRATE DATA + BYPASS EXECUTION POLICY

BASIC WEAPONIZATION

While not overly interesting, the delivery mechanism for this PoC is via a
macro-enabled Microsoft Word Document.

The payload is obfuscated and injected into memory using TrustedSec’s
“Unicorn”.

AV/NG-AV/EDR detection is minimal to non-existent.

Unicorn attempts to evade Sandboxes by delaying detonation until after
the document has been closed by the user.

DEMO – ALL TOGETHER NOW

MITIGATION TECHNIQUES

[CONTROVERSIAL, BUT NECESSARY]
Decrypt as much SSL/TLS as possible

Create custom signatures which only permit your Office365 domain

Enable Endpoint log forwarding + SIEM analysis on instances of
New-PSDrive

Use FW’s with byte-counters + SIEM which can identify external uploads

Protect against certain delivery mechanisms by using Sandboxes

DELIVERY – WHAT ABOUT SANDBOXES?

This technique has a very high success rate against both signature-based
detection tools and static-analysis engines, but…

Most Sandboxes identify this type of behaviour as malicious, primarily due
to browser and registry modifications.

So, what can we do?

A BRIEF HISTORY IN SANDBOX EVASION

Sleep functions, system properties, and VM/Hypervisor detection

Vendor/Sandbox specific detection [artifacts, DLL’s, drivers, IP
addressing, fingerprinting]

Human Behaviour Monitoring [Mouse, Scrolling, Browsing]

Vulnerability Checking [Do not execute if present]

Execution delay via innocuous routines [defragging, computing π]

INJECT | | REPLACE AND EXIT

Premise is simple: Design malware that places malicious payloads in
locations which are likely to be executed by the target user, but lack the
ability to detonate themselves by default.

As an example, malware could identify recently accessed files, such as the
last 10 modified *.doc’s, and subsequently sabotage them.

AVAILABLE OPTIONS

Replace files with malware sharing the same name
[Easy Mode]

Inject AutoRun macros directly into existing files
[Hard Mode–Permissions required]

OR

Replace files with shortcuts pointing to a malicious file located in a
whitelisted location, such as Office’s “Trusted Locations”

SHORTCUTS AND TRUSTED LOCATIONS, OH MY!

The first stage needs to act as a downloader which is most easily
accomplished via System.Net.WebClient, although this is likely to be
flagged as a generic ”Trojan Downloader” by most AV products.

Mapping an O365 Drive is an easy way to bypass signature-based
detection while downloading a malicious second stage.

The most effective placement for the second stage is within Word’s
predefined “Trusted Locations” as this avoids traditional warnings.

$env:USERPROFILE + \AppData\Roaming\Microsoft\Word\Startup\

FINAL DEMO

WHAT’S NEXT?

Creating a tool for the masses, in order of priority:

1. Empire Project – O365 Listener Module
https://github.com/EmpireProject/Empire

2. Metasploit module

3. O365 API’s within Empire/Metasploit toolkit

CLOSING REMARKS

Decrypt, Decrypt, Decrypt!

Monitor New-PSDrive usage and drop all non-corporate O365 access via
custom AppID or IPS signatures.

Improve Sandboxes and behavioural analysis tools. Relying on the results
of the first file in a chain is inherently flawed ; Secondary file analysis needs
to be conducted.

[Inspiration] Special thanks to CrowdStrike & Kaspersky Labs for their
work on CozyBear/CozyDuke [NET USE & OneDrive.Live.com]

CODE REFERENCE

3-part combined Powershell for the first Proof-of-Concept
https://github.com/craigdods/C2-SaaS/blob/master/Single-Stage.ps1

Proof-of-Concept Powershell LNK evasion
https://github.com/craigdods/C2-SaaS/blob/master/LNK-
Sabotage.ps1

THANK YOU

CRAIG DODS

@CCMA40

