
Fractured Backbone:
Breaking Modern OS Defenses with Firmware Attacks

Yuriy Bulygin

Mikhail Gorobets

Andrew Furtak

Alex Bazhaniuk

Agenda

Intro to (U)EFI Firmware Threats

Windows 10 Virtualization Based Security

Attacking Windows 10 VBS

Bypassing Credential Guard

Mitigations

Conclusions

Intro to (U)EFI Firmware Threats

Vault 7 Mac EFI Implants

Vault 7 disclosure included Mac EFI implants

Dark Matter is an EFI-persistent implant used by Der Starke

1.x and 2.0 and DarkSeaSkies implant systems

 Contains multiple EFI components and able to infect EFI

firmware when it’s either unlocked or locked

 Includes modules re-infecting EFI update capsules

Sonic Screwdriver exploits Option ROM in Thunderbolt-to-

Ethernet adapter to boot [Der Starke] off of removable media

Dark Matter EFI Implant

Loader infects and cleans up, preps for kernel/user implants

AppInstaller launches S3Sleep with S3 exploit if flash is locked or

VerboseInstaller if flash is unlocked

VerboseInstaller writes PeiLoader and DxeInjector on unlocked flash

S3Sleep DXE module launches exploit on S3 sleep & writes PeiUnlock

PeiUnlock PEIM keeps flash unlocked by patching HOB to DXE

PeiLoader PEIM hooks firmware update PEIM

DxeInjector DXE module re-injects implants to EFI update capsule

DarkDream Exploit

S3Sleep contains DarkDream exploiting

EFI protections on resume from S3 sleep

Using S3 resume in the exploit suggests

exploitation of one of S3 boot script vulns

Technical Details of the S3 Resume Boot Script Vulnerabilities

Attacks On UEFI Security by Rafal Wojtczuk and Corey Kallenberg

Reversing Prince Harming’s kiss of death by Pedro Vilaca

Exploiting UEFI boot script vulnerability by Dmytro Oleksiuk

Exploit name is probably a coincidence,

has nothing to do with sleep ;)

http://www.intelsecurity.com/advanced-threat-research/content/WP_Intel_ATR_S3_ResBS_Vuln.pdf
https://reverse.put.as/2015/07/01/reversing-prince-harmings-kiss-of-death/
http://blog.cr4.sh/2015/02/exploiting-uefi-boot-script-table.html

Mac EFI exploit via S3 boot script (2015)

Technical Details of the S3 Resume Boot Script Vulnerabilities

http://www.intelsecurity.com/advanced-threat-research/content/WP_Intel_ATR_S3_ResBS_Vuln.pdf

Detecting Implants?

Cannot fully rely on built-in platform security mechanisms (e.g.

Secure Boot or TPM reporting) as these usually bypassed

No software that checks for implants in firmware

Using hardware tools is not scalable and hardware tools may

run unsigned firmware…

We don’t have hashes of firmware executables from platform

manufacturers

Checking the EFI firmware…

So we had to build a “whitelist” of known EFI executables

https://github.com/advanced-threat-research/efi-whitelist

9 platform manufacturers

~14,000 firmware update images

Over 2M hashes of EFI executables (PEI + DXE)

New CHIPSEC module tools.uefi.whitelist which you can use

to test EFI firmware against this global EFI whitelist or even

generate your own whitelist

https://github.com/advanced-threat-research/efi-whitelist
https://github.com/chipsec/chipsec

Detecting implants with the whitelist

Extra EFI executables

belong to HackingTeam’s

UEFI rootkit

Windows 10

Virtualization Based Security

Once the world was simple…

Hardware (Processor, SoC)

Windows OS

Windows Kernel

UEFI Firmware (BIOS)

Normal User-Mode Apps

Then came Windows 10…

And then it got complicated…

Hardware (SLAT/EPT and IOMMU/VT-d)

Secure VM Normal VM

NTOS Kernel

UEFI System Firmware

Secure Kernel

Isolated User-Mode (IUM)

Trustlets
Normal User-Mode Apps

Hyper-V Hypervisor with VBS

Secure VM runs Trustlets in IUM

Hardware (SLAT/EPT and IOMMU/VT-d)

Hyper-V Hypervisor with VBS (VTL0 & VTL1 EPT)

Secure VM: VTL1 Normal VM: VTL0

NTOS Kernel

UEFI System Firmware

Secure Kernel

L
S

A
IS

O
Normal User-Mode Apps

V
T

P
M

H
V

C
I

…

Trust Model

May seem like a traditional hypervisor based trust model

Secure VM is isolated from Normal VM by the hypervisor

Secure VM trusts hypervisor, underlying hardware & firmware

Game over if hypervisor or firmware is compromised

Nothing unusual…

Except…

Hardware (SLAT/EPT and IOMMU/VT-d)

Hyper-V Hypervisor

Secure VM: VTL1 Root Partition: VTL0

NTOS Kernel

UEFI System Firmware

Secure Kernel

Isolated User-Mode (IUM)

Trustlets
Normal User-Mode Apps

VTL0 has full access to firmware

Hardware (SLAT/EPT and IOMMU/VT-d)

Hyper-V Hypervisor

Secure VM: VTL1 Root Partition: VTL0

NTOS Kernel

UEFI System Firmware

Secure Kernel

Isolated User-Mode (IUM)

Trustlets
Normal User-Mode Apps

So what?

A single vulnerability in that firmware can bypass

Virtualization Based Security protections altogether

And that vulnerability is exploitable from within normal

Windows 10 VM

Let’s examine hardware protections

Virtualization Based Security relies on…

DMA

IOMMU Engines

GPU VT-d

0xFED90000

Default VT-d

0xFED91000

VBS Protects I/OMMU MMIO

VT-d MMIO ranges are read-only in VTL0 EPT

Other Memory-Mapped I/O

All of the other MMIO ranges are R/W and 1:1 mapped in

VTL0 EPT

Windows 10 normal world can write to MMIO (except VT-d)

Addresses to VT-d MMIO ranges (BARs) are in MCH MMIO

range. What if firmware forgot to lock them down?

 Here be dragons

PCIe Configuration

PCIe config I/O ports (CF8/CFC) are intercepted

but aren’t blocked or filtered by Hyper-V

Memory-mapped Extended Config Access Mechanism

(MMCFG) is read-writeable by normal world

 All PCIe configuration access is open

Attacking Windows 10

Virtualization Based Security

So we need to find some firmware vuln

exploitable from within VTL0

We decided to use S3 exploit, just like Vault7

Dark Matter Mac EFI implant

EFI boot script is mapped as R/W in Win10

We know how to exploit it

Attack Outline

S3 boot script payload at this point could directly modify
Hyper-V and Secure World VM (Secure Kernel + IUM)

Instead, the exploit finds VTL0 VMCS and EPT, and adds
entries mapping all VTL1 pages to Windows 10

After exploit, Normal VM has full access to Secure VM
memory

Malware can then extract NTLM credentials or patch Secure
Kernel or any trustlet directly from within Windows 10

Recovering VBS memory map…

In order to understand how VBS partitions memory, we need to

reconstruct SLAT/EPT hierarchy

Top to bottom approach: find VTL0 & VTL1 VMCS and EPT pointers

Bottom to top approach: search pages with EPT entries then

reconstruct entire hierarchy (PTE PT PD … EPTP)

 Heuristic based on address bits & known reserved bits in EPT entries

 Then find VMCS for Secure & Normal VMs to validate EPT pointers

This allows us to recover all EPTs including the ones not currently in

use by the CPU/VMM

Hunting for Secure Kernel…

SecureKernel.exe

loaded at host physical

address X in Secure VM

Firmware exploit maps

X 256GB + X

guest physical address in
Windows 10

SecureKernel.exe is XWR in Secure VM

We can now modify Secure Kernel

Well OK

but systems started protecting EFI boot script

So we are good now…

Let’s check firmware update images…

We downloaded and parsed over 14000 UEFI firmware update
images by 9 platform vendors. Example results:

MSI: 1461 firmware updates corresponding to ~98 models

Gigabyte: 1117 updates corresponding to ~247 models

Have no protection of firmware in ROM and no signed updates

 All these systems are missing basic firmware protections

Other Vectors

(Ab)Using SMM…

VBS lets VTL0 access I/O port 0xB2 and I/O Trap ports

Normal world can send software and I/O Trap SMI interrupts

and exploit vulnerabilities in SMI handlers to attack VBS

On systems with relocatable SMM communication buffer

VTL0 can just ask SMM to read/write any address which

belongs to Hyper-V or Secure VM

SMM confused deputy exploit against VBS

Physical Memory
(HPA)

SMI Handlers

Hyper-V or VTL1
Memory

Fake SMM comm buffer

“UEFI” ACPIEDKII

EDKI

Via ACPI table

Directly in registers

SMM Comm Buffer Ptr

RBX (pointer)

Normal World (Root Partition)

RAX (code)

(Ab)Using SMI Handler with BAR issues…

Physical Memory
(HPA)

SMI Handler with
BAR issue

Hyper-V or VTL1
Memory

Base Address (BAR)

Device PCI CFG

SMI

Fake MMIO range

(registers)

PCIe Config is open to VTL0

Exploit can “relocate” MMIO range to

VTL0 by writing to BAR PCIe registers

Trick SMI handlers read/write

“registers” in fake MMIO

 VTL1 read/write primitive

ACPI Waking Vector

Discovered by Rafal Wojtczuk (paper)

Memory with ACPI tables is writeable by VTL0

Hyper-V writes OS waking vector to FACS ACPI table before

S3 sleep

Firmware cached pointer to ACPI tables in ACPI NVS which

could be modified by VTL0

VTL0 could force firmware to resume from fake OS Waking

Vector prior to Hyper-V

https://www.bromium.com/sites/default/files/us-16-wojtczuk-analysis-of-the-attack-surface-of-windows-10-virtualization-based-security-wp-v2.pdf

UEFI Variables

VTL0 has access to UEFI variables

Some firmware stores addresses in UEFI variables it may use
on S3 resume or at runtime in SMM

VTL0 can modify these variables to point to VTL1 pages and
trick firmware/SMM corrupt VTL1

Rafal also described a potential attack extracting encryption
key from VsmLocalKey2 UEFI variable, decrypting
hibernation file and patching Hyper-V (when no TPM available)

What can we do next?

Bypass Device Guard and Kernel Code Integrity (HVCI) and modify
Windows 10 kernel

Install hypervisor rootkit/backdoor in Hyper-V

Allow compromised or rogue devices do DMA

Backdoor software vTPM (on Windows servers)

Let’s get back to the real world

Bypass Credential Guard & get protected NTLM credentials

Bypassing Credential Guard

And Recovering Credentials

First, we found NT hash in memory
NT hash at HPA 0x1BFF90

0x1BFF90 is mapped to VTL1 EPT (Secure VM) only

No access from VTL0

Then we found all candidate NT hashes

Search VMCS & EPT of VTL1 (Secure VM) & VTL0 (Win 10)

Subtract VTL0 from VTL1 view to get Secure VM pages

 ~50MB memory mapped to VTL1 but not in VTL0

Search high-entropy 16 bytes surrounded by fixed bytes

 ~60 candidate NT hashes

 Can also match NT with NTLMv2 candidate hashes

 “net use” to access domain resource & force hashes to memory

Brute-force login to shared resource with all candidates

 For example, using smbclient.py by CORE Security

https://github.com/CoreSecurity/impacket/blob/master/examples/smbclient.py

Trying candidate NT hashes…

Bingo!

But can we do a better exploit?

Online credential brute-forcing domain on-line resource may

hit login attempts limit or may trigger an alarm

Can we extract credentials off-line on a machine?

Or even get the key and decrypt all credentials?

In the meantime patch the LsaIso trustlet to have a persistent

implant in Secure VM…

Checking with Mimikatz…

Debugging LsaIso Trustlet…

Trustlets can be debugged the same way as user mode applications

A policy embedded in trustlet image defines if debugging is enabled

Function SkpsIsProcessDebuggingEnabled in Secure Kernel

verifies if the debugging is enabled for a given trustlet process

We can find and patch it to always return “Debugging Enabled”

We could then attach a debugger running in VTL0 to trustlet
(LsaIso) in VTL1 and “debug” it

For example, break on LsaIso!IumUnprotectCredentials

Patching secure kernel to enable debug

SecureKernel.exe

.text:00000001400358B0 ; bool __fastcall SkpsIsProcessDebuggingEnabled(unsigned int *a1)

.text:00000001400358B0 SkpsIsProcessDebuggingEnabled proc near ; CODE XREF: sub_14003D76C+368p
...
.text:000000014003597A 48 8B CE mov rcx, rsi
.text:000000014003597D E8 32 42 FD FF call SkiAttachProcess
.text:0000000140035982 8A C3 B0 01 mov al, bl 01h
.text:0000000140035984 48 8B 4C 24 58 mov rcx, [rsp+68h+var_10]
.text:0000000140035989 48 33 CC xor rcx, rsp
.text:000000014003598C E8 5F A4 01 00 call sub_14004FDF0
.text:0000000140035991 4C 8D 5C 24 60 lea r11, [rsp+68h+var_8]
.text:0000000140035996 49 8B 5B 18 mov rbx, [r11+18h]
.text:000000014003599A 49 8B 73 20 mov rsi, [r11+20h]
.text:000000014003599E 49 8B E3 mov rsp, r11
.text:00000001400359A1 5F pop rdi
.text:00000001400359A2 C3 retn
.text:00000001400359A2 SkpsIsProcessDebuggingEnabled endp

Lsaiso!IumpUnprotectCredential

Demo:

Debugging LsaIso Trustlet from VTL0

OK, we can now debug IUM Trustlets…

How can we recover the credentials?

We need to understand how credentials are encrypted.

LsaIso Encrypted Credential Blob

Blob with encrypted data (LSA Isolated Data)

Decrypted data

0000 A0 00 00 00 00 00 00 00 08 00 00 00 64 00 00 00
0010 01 00 00 00 01 01 00 00 00 00 00 00 8C 58 27 EF
0020 BA 19 79 E7 E3 E7 4F 1F 84 50 68 9C 39 D7 DC AD KDF Context
0030 96 DD 17 86 FF 47 5C CE 9C 76 AF 59 DC BC E8 B9 Authentication Tag
0040 3F 06 06 2D E8 D7 09 73 98 B1 70 F0 01 00 00 00
0050 00 00 00 00 00 00 00 00 00 00 00 00 01 80 00 00 Authenticated Data
0060 34 00 00 00 4E 74 6C 6D 48 61 73 68 9D EC 2D CB HtlmHash string
0070 4F 90 C8 BF BB AB 35 A1 44 60 58 0C 51 60 0A 03
0080 57 6E E2 23 1E 16 37 4E 13 05 C9 60 CD 3C 9C 07 Encrypted Data
0090 E0 CE 06 74 36 9E 84 81 94 AD FC C2 23 52 76 5A

0000 0B 72 B5 60 68 6B D2 45 E7 EC 68 19 19 C5 02 22 NTLM(password)
0010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0020 C3 DD 01 1D 47 D2 37 04 5B 5F 30 EA 03 BE 47 58 SHA1(password)
0030 C4 28 84 E2

Encryption Key

Encryption key is derived from Boot Key generated every

time system starts

Encryption Key Derivation

KDF

Contexts

master key

LsaIso

NTLM

key

LsaIso

Password1

key

LsaIso

Password2

key

Key Derivation Function:

SP800-108

HMAC-SHA256 as PRF

Counter mode

Encryption Key Derivation

Credentials Encryption

• Authenticated encryption with AES GCM

• Nonce and IV are both 12 zero bytes

Credentials Decryption

LsaIso

key

Encrypted Data

Decrypted Data + Authentication Tag Authentication Tag in LSA Blob?

If key is correct, computed tag must match Authentication
Tag in the LSA Isolated Data blob

Algorithm: AES256-GCM

Low Tech Encryption Key Recovery

Just like when searching for NT hashes…

Subtract VTL0 from VTL1 page hierarchy to get pages

mapped only to Secure VM

Search for high-entropy sequences

 Yields ~50,000 candidates keys

Brute-force all candidates until Authentication Tags match

Demo

Mitigations

Windows SMM Mitigations ACPI Table

Mitigations

UEFI is reporting mitigations to Windows 10 via the new ACPI Table:
Windows SMM Mitigations Table (WSMT)

FIXED_COMM_BUFFERS: EDK2 based firmware started using fixed

memory locations to communicated with SMM

COMM_BUFFERS_NESTED_PTR_PROTECTION: firmware checks that

pointers within CommBuffer also point to fixed memory locations

SYSTEM_RESOURCE_PROTECTION: After ExitBootService(),

firmware doesn’t allow changing IOMMU, PCI config space, FACS

Firmware started protecting S3 Boot Script using SMM memory. No

“S3 boot script protection” bit?

http://download.microsoft.com/download/1/8/A/18A21244-EB67-4538-BAA2-1A54E0E490B6/WSMT.docx

Conclusions

Plenty of vulnerable systems out there (including newest) yet

firmware is a blind spot for most businesses

Exploiting firmware on both PCs and Macs is rather easy.

Weaponized exploits and implants are out there

VBS allows Windows 10 VM access almost all firmware. One

vulnerability in firmware may lead to complete compromise of

all VBS based protections and the Secure World VM

References

1. Attacking Hypervisors with Hardware and Firmware, BHUSA 2015

2. Analysis of the Attack Surface of Windows 10 Virtualization-Based
Security by Rafal Wojtczuk, BHUSA 2016

3. Defeating Pass-the-Hash by Baris Saydag & Seth Moore, BHUSA
2015

4. Dropping the Hammer on Malware Threats with Windows 10 Device
Guard by Scott Anderson & Jeffrey Sutherland

5. Battle of SKM and IUM by Alex Ionescu, BHUSA 2015

http://www.intelsecurity.com/advanced-threat-research/content/AttackingHypervisorsViaFirmware_bhusa15_dc23.pdf
https://www.bromium.com/sites/default/files/us-16-wojtczuk-analysis-of-the-attack-surface-of-windows-10-virtualization-based-security-wp-v2.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Moore-Defeating Pass-the-Hash-Separation-Of-Powers.pdf
http://video.ch9.ms/sessions/ignite/2015/decks/BRK2336_Sutherland.pptx

Thank You!

Special thanks to John Loucaides from Intel

