

DEPARTMENT OF COMPUTER SCIENCE

New Adventures in Spying 3G & 4G Users: Locate, Track, Monitor

Ravishankar Borgaonkar, Lucca Hirshi, Shinjo Park, Altaf Shaik, Andrew Martin and Jean-Pierre Seifert

BLACKHAT USA 2017 Las Vegas 26 July 2017

Research Team

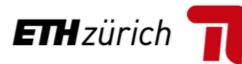
- Discovery of attacks:
 - Ravishankar Borgaonkar
 - Lucca Hirschi

DEPARTMENT OF

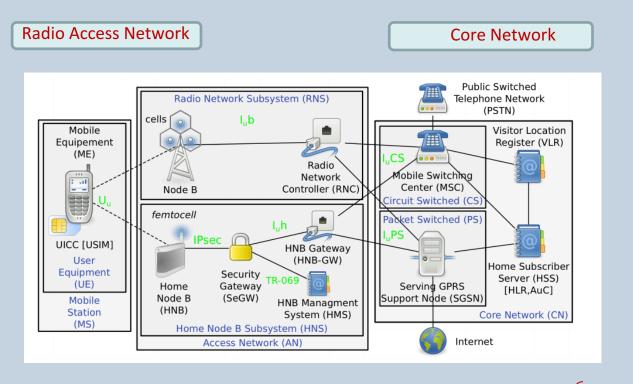
SCIENCE

UNIVERSITY OF

• Carried out POC with : Shinjo Park & Altaf Shaik

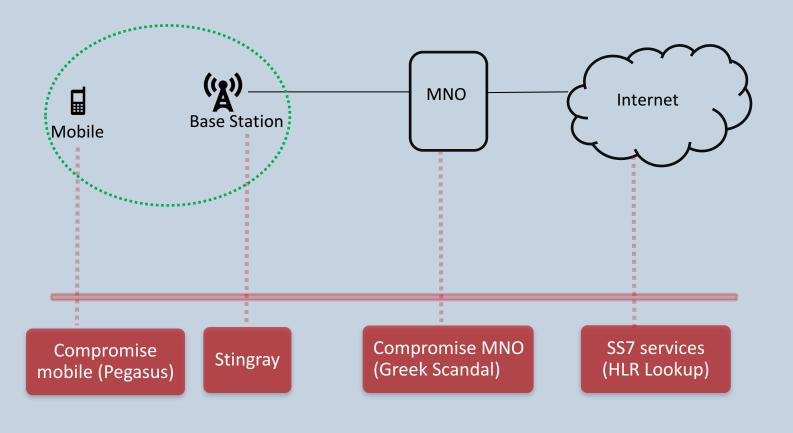


Outline

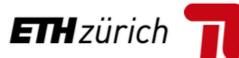

- Background
- New privacy attacks
- Attacks in practice exploitation methods and demo
- Impact against mobile users
- Countermeasures
- Conclusions

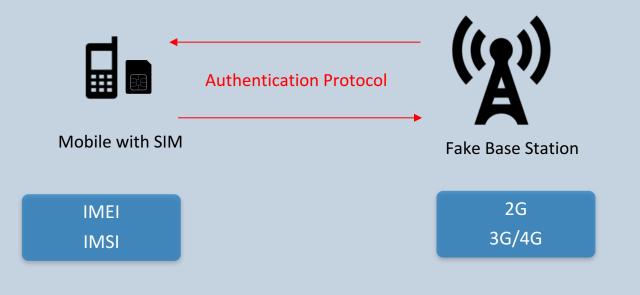
berlin

General cellular architecture



Emerging threats


Tracking mobile users – state of the art


berlin

Note: picture provides an abstract view only

Tracking using Stingray/fake base station

SIM – Subscriber Identity Module

IMEI – International Mobile Equipment Identity

IMSI – International Mobile Subscriber Identity

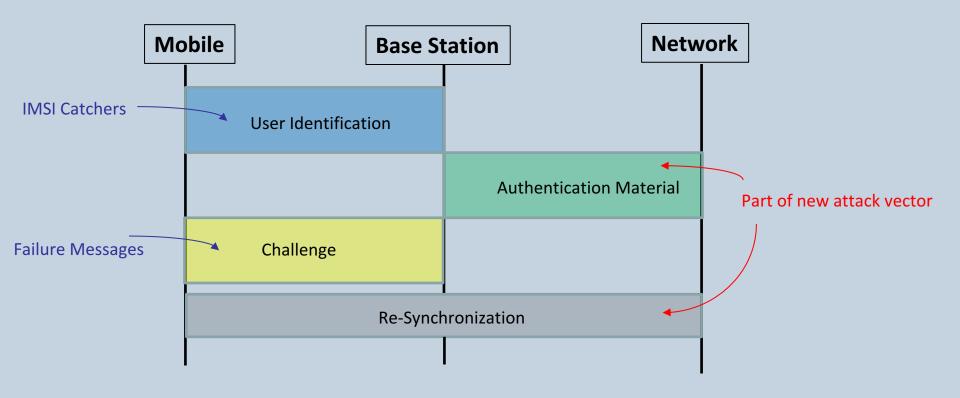
Authentication and Key Agreement (AKA) Protocol

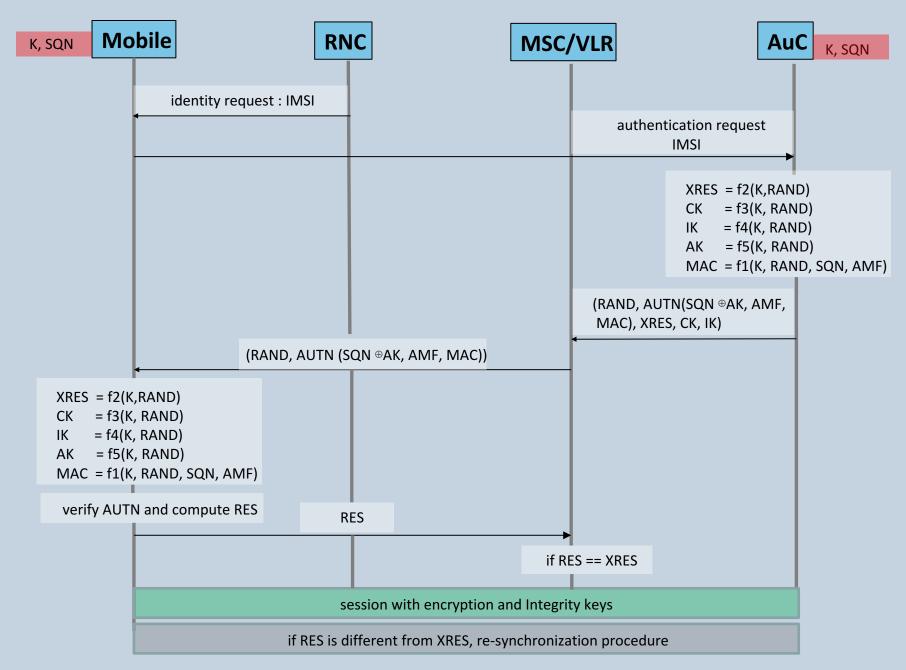
- Deployed in every 3G/4G terminals since 2002
- Mutual authentication between network and mobile to establish a secure link
- Improved in 4G key sizes, key separation etc.
- Often termed as one of the most successful widely deployed crypto protocol

Features

- Symmetric key shared between mobile (USIM) and network (HLR)
- Sequence number for avoiding replay attacks

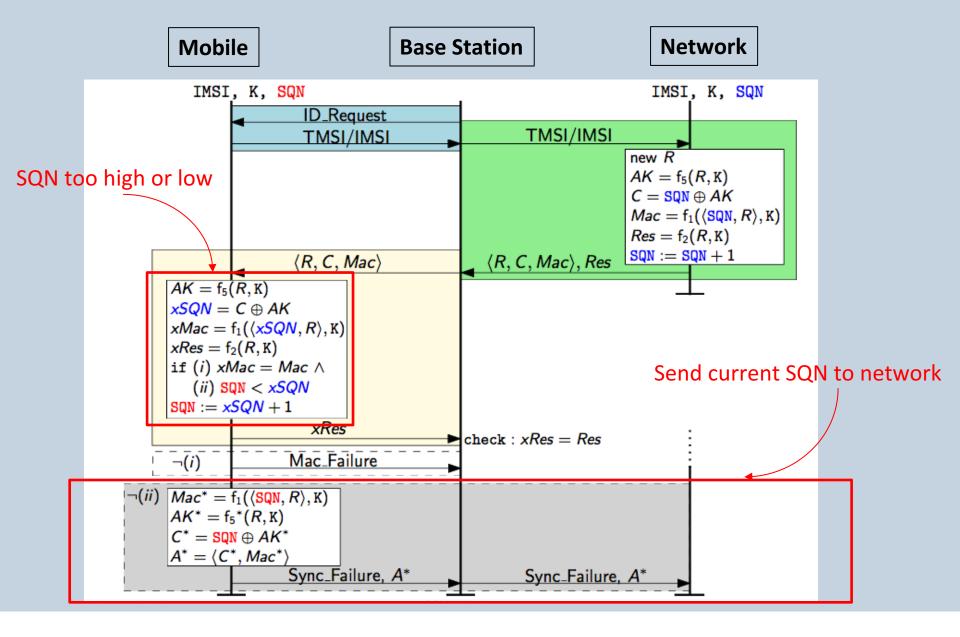
AKA : State of the art


- Known security issues
 - IMSI leakage
 - Linkability attacks
- Availability of low-cost hardware and software tools
- New attacks??



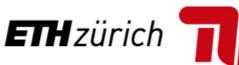
AKA : Big picture


AKA protocol



Role of Sequence Number (SQN) in AKA

- SQN for providing freshness to mobile (prevent replay attacks)
- Helps in saving one round trip message to AuC
- AuC stores SQN and increment it for each authentication
- Masked with anonymity key AK to protect privacy of mobiles
- USIM stores highest received SQN from the network
- In case of failure, resynchronisation of SQN with AuC
 - USIM must send current SQN to AuC
 - Masked with anonymity key AK*

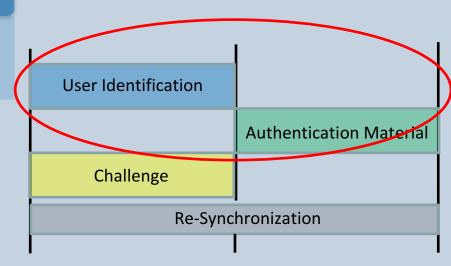

Sequence Number SQN policies

According to guidelines from 3GPP TS 133.102, different policies for SQN and its update:

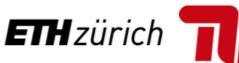
- SQN counter may be updated by 1
- SQN may be time-based

Most of our attacks work for any policies that are not time-based. Other Location attacks work independent of policy.

New vulnerabilities and attacks


First Attack Vector

Request of challenges are not authenticated


- Design choice of symmetric key mechanism
- Seems no check at AuC (HLR) for such queries

- Build a fake USIM by reprogramming IMSI
- Collect RAND, AUTN pairs
- Re-use them to locate a particular mobile users

Exploiting first attack vector

How to find IMSI of a target

- HLR Lookup services
- phone number \rightarrow IMSI

Build a fake USIM card

- Reprogram IMSI
- No other keys required
- Collect RAND, AUTN pairs

v - excel file	HLR Status	Eliminazione contatti da CSV	
Risultati			
Attesa per Phone: 3 Mask: 1	HLR è awenu ri risultati 061111534733 2166		
Country_1 Country_(Operator: Is_operat		r	

Location attacks against 3G/4G devices

Location attacks

- Locate a targeted phone (range of 2 km)
- Track further using GPS or triangulation method

Low-cost IMSI catcher for 4G/LTE networks tracks phones' precise locations

\$1,400 device can track users for days with little indication anything is amiss.

This Next-Gen Stingray Uses Facebook and WhatsApp Messages to Track Users

UNIVERSITY OF OXFORD

јоѕерн сох

Our Attacks

Activity monitoring attacks

- Learn n least significant bits of SQN (and IND)
- Learn whether mobile attached to certain network in a certain time window

Service usage (calls/SMS) → number of authentications → increase SQN Mobile's activity – new type of threat

Location attacks

• Track/trace a mobile in the radius of fake base station

Proof of concept

berlin

Attacks & Demo

Experimental setup

- Hardware
 - USRP B210
 - Any smartcard reader
 - Programmable USIM
- Software
 - pySIM
 - OpenLTE
- Hardware setup costs about 1400\$

Putting attacks into practice

- Practical confirmation of all attacks in real networks
- (Available) hardware setup cost : 1400 \$ (100 \$ for POC only)
- Monitoring attack : 10 bits of SQN quickly (12 injections + 64 eavesdrops)
- Monitoring attack can be improved with more efficient signalling setup

Observations in deployed 3G/4G networks...1

Issue with a window of acceptable sequence number values to recover from loss or reordering

- No clear requirements in TS 33.102 (only guidelines)
- Different policies about accepting unused AUTN, RAND pair
- Risk to mutual authentication property of AKA

Observations in deployed 3G/4G networks..2

No rate limit at which AKA tokens can be requested from HLR

- Tested in few European mobile operators
- Assist in revealing SQN, bypass mutual authentication, and locate a mobile phone
- Protection needed?

Impacts against users & operators

End Users:

- New threat on privacy (activity monitoring attack)
- New location attack, harder to detect, harder to fix
- Affect all 3G and 4G devices
- Likely to affect in 5G??

Cellular Operators:

- New attack interface to inject packets to HLR (heart of the network)
- Poor SQN policies may introduce denial of service attacks
- Problems in detecting modern IMSI catchers

Countermeasures

Mobile Operators :

- Evaluate SQN acceptance policy
- Rate limit authentication request at AuC/HLR?

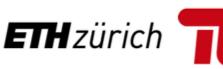

End Users:

• Unfortunately, nothing much beside use WiFi services without USIM

Vendors:

- Hopefully fake base stations will no longer work in 5G
- Support for legacy network (2G/3G/4G) challenging
- More efforts in mobile OS to tackle fake base station problem

Conclusions..1


Lessons :

- Trade-offs are still valid almost 25 years
- Mobile devices are still dumb terminals in the architecture
- There are almost infinite ways to build smart 4G IMSI catchers

Our Findings:

- New attack vector leading to various privacy breaches
- Activity monitoring attack leaking new type of information to attacker
- Affect different variants of AKA : {EAP, EPS} AKA, HTTP digest AKA
- Countermeasures require non-trivial dedicated modifications (for 5G)
- Improved policies on SQN may assist in minimizing impact

Conclusions..2

From 3GPP TR 33.899 V1.1.0 (2017-03) :

E.2.1.1.2 Interim Agreement

The 5G UE and 5G serving network shall support EAP-AKA' for primary authentication, for both 3GPP access and untrusted non-3GPP access in 5G phase 1.

The 5G UE and the 5G serving network shall support EPS AKA* for primary authentication for 3GPP access in 5G phase 1.

Study on the security aspects of the next generation system (5G)

Thank You.

Questions?

This work was partly supported by 5G-Ensure (grant agreement No. 671562 www.5Gensure.eu).

