
Blue Pill for Your Phone

Oleksandr Bazhaniuk @ABazhaniuk

Yuriy Bulygin @c7zero

Agenda

• Introduction

• Reverse engineering of ARM TrustZone and hypervisor

• Attack vectors against ARM TrustZone and hypervisor

• Exploiting Hypervisor on ARM based SoC

• Mitigations and Conclusions

Introduction

Motivation

• Security research in ARM TrustZone exists but we’d like to advance

research in security of virtualization on ARM

• Understand the threat model of ARM hypervisor and TrustZone

• We wanted to analyze similarities and differences in attack vectors

on x86 and ARM based systems

• Example: unchecked pointer vulnerabilities were found in both

ARM TrustZone and in x86 System Management Mode firmware:

Exploring Qualcomm's TrustZone implementation and New Class

of Vulnerabilities in SMI Handlers

http://bits-please.blogspot.com/2015/08/exploring-qualcomms-trustzone.html
http://bits-please.blogspot.com/2015/08/exploring-qualcomms-trustzone.html
http://bits-please.blogspot.com/2015/08/exploring-qualcomms-trustzone.html
http://bits-please.blogspot.com/2015/08/exploring-qualcomms-trustzone.html
https://cansecwest.com/slides/2015/A New Class of Vulnin SMI - Andrew Furtak.pdf
https://cansecwest.com/slides/2015/A New Class of Vulnin SMI - Andrew Furtak.pdf

Hypervisor Based Rootkit

Hypervisor

Victim VM

Kernel + Drivers

App App

Compromised VM

Kernel + Drivers

App App VM exploits

vulnerability in

a hypervisor

Exploit modifies

the hypervisor

with a rootkit

Hypervisor rootkit

can then spoof

all VM requests

Concept and Timeline

2006: SubVirt: Implementing Malware with Virtual Machines by Samuel T. King et al

(Microsoft Research)

2006: Hardware Virtualization Rootkits by Dino Dai Zovi and BluePill by Joanna

Rutkowska (BHUSA 2006)

2008: Bluepilling the Xen Hypervisor by Invisible Things Labs (BHUSA 2008)

… (research in exploiting hypervisors)

2015: Attacking Hypervisors via Hardware and Firmware (BHUSA 2015)

http://invisiblethingslab.com/resources/bh08/part3.pdf
http://invisiblethingslab.com/resources/bh08/part3.pdf
http://invisiblethingslab.com/resources/bh08/part3.pdf

ARM Security Architecture Overview

Hardware

Secure World

TZ Kernel

Trustlet Trustlet

Normal World

App App

Kernel + Drivers

TZ Monitor

Wi-Fi USB
TRNG

Crypto
Qfuse

Hypervisor

ARMv7 (32bit) Privilege Levels

P
riv

ile
g
e

Kernel + Drivers

App App

PL1

Secure Kernel

Trustlet Trustlet

PL1 Secure Monitor mode

Hypervisor

PL0

PL1

PL2

SVC

HVC

SMC SMC ERET ERET

Normal World

aarch32

aarch32

aarch32

aarch32

Secure World

PL1

ARMv8 Privileges Levels

P
riv

ile
g
e

9

Kernel + Drivers

App App

Secure Kernel

Trustlet Trustlet

Secure Monitor

Hypervisor

EL0

EL1

EL2

EL3

SVC

HVC

SMC SMC ERET ERET

ERET SMC

Normal World Secure World

aarch64

aarch64 or

aarch32

aarch64 or

aarch32

aarch64 or

aarch32

ARMv8 TrustZone and Hypervisor Interfaces

SMC Calling Convention

http://infocenter.arm.com/help/topic/com.arm.doc.den0028b/ARM_DEN0028B_SMC_Calling_Convention.pdf

ARMv8 Paging

Level 1

TTBR

Level 2

Level 3

Level 1

Level 2

Level 3

Level 4

VTTBR

Stage 1
D_table

D_table

D_page

Stage 2

VA

IPA

D_table

D_table

D_page

D_table

PA

TrustZone Arch Evolution

PL1 mode

ARMv7, 32 bit

Snapdragon 800 (8274)

TZ Kernel

aarch32

EL1 mode

ARMv8, 64 bit

Snapdragon 808/810 (MSM8992)

TZ Kernel

aarch32

EL3 mode

TZ Monitor

aarch64

EL1 mode

ARMv8, 64 bit

Snapdragon 821 (MSM8996)

TZ Kernel

aarch64

EL3 mode

TZ Monitor

aarch64

Google

Nexus 5

Google

Nexus 5X/6P
Google

Pixel

x86 vs ARM Architecture

x86 ARM

Root of Trust Recently introduced Boot Guard

(starting Haswell gen) to provide CPU

based root of trust (Safeguarding

rootkits: Intel BootGuard)

ARM has ROM for root of trust that

checks the boot sequence components.

May have OEM unlock mode

TEE Virtualization based trusted execution

environments. SGX provides enclave

execution to user-mode components.

SMM is also used as TEE (can be

virtualized with STM)

Flexible Secure World arch with

capabilities to run trusted apps. Allows

privilege level separation in the Secure

World context (EL0,EL1,EL3)

Virtualization VMX technology as context switching

between VMX root and VMX guest

modes. Supports privilege level

separation in VMX root

ARM has hyp mode as an exception

level

https://github.com/flothrone/bootguard/blob/master/Intel BootGuard final.pdf
https://github.com/flothrone/bootguard/blob/master/Intel BootGuard final.pdf
https://github.com/flothrone/bootguard/blob/master/Intel BootGuard final.pdf

Qualcomm Snapdragon 810 boot flow stages

RPM ROM

Power detection

Reset APP processor

Power On

APSS ROM

SBL

EL3 TZ Secure

Monitor

EL2 TZ Kernel

EL1TZ Apps

Set RVBAR,

RMR_EL3 to

64-bit mode

Load SBL to OCMEM

Enable TZ run-time

security protection
TZ Kernel and TZ Apps

finishing init of secure

env

Read-Only Read-Write EL2 Hyp

 FC010000

Init DDR

Verify and load

TZ/HYP images

First non-secure code.

HYP loads SBL for OS

RVBAR_EL3

ARM Based System Boot Flow

• Root of trust is in ROM at APSS/RPM

• Read-only ROM verifies RW firmware

• Uses OTP fuses to program OEM lock

 # adb reboot bootloader

 # sudo fastboot oem unlock

• TrustZone components (Secure World) initialize and set runtime protection before

transferring execution flow to any hypervisor or OS bootloader component

TrustZone Binary

• (Google phones specific) Download factory image from Google repository

• Use unpack_bootloader_image by laginimaineb to unpack bootloader-<DID>.img

• Extracted files:

• Disassemble tz

TZ

Kernel

TZ

Monitor

https://developers.google.com/android/images
https://github.com/laginimaineb/unpack_bootloader_image
https://github.com/laginimaineb

Test Environment

• Rooting unlocked Android Phones:

CyanogenMod

TWRP with SuperSU and custom kernel

• Useful resources: xda , Code Aurora

• Tools:

The Rekall Forensic and Incident Response Framework

Maplesyrup Register Display Tool

ARMageddon: Cache Attacks on Mobile Devices

Drammer - for testing Android phones for the Rowhammer bug

http://www.cyanogenmods.org/
https://github.com/TeamWin/Team-Win-Recovery-Project
http://www.supersu.com/
http://www.supersu.com/
https://www.xda-developers.com/
https://www.codeaurora.org/
https://www.codeaurora.org/
https://github.com/google/rekall
https://github.com/google/rekall
https://github.com/google/rekall
https://github.com/google/rekall
https://github.com/iadgov/Maplesyrup
https://github.com/iadgov/Maplesyrup
https://github.com/IAIK/armageddon
https://github.com/IAIK/armageddon
https://github.com/vusec/drammer
https://github.com/vusec/drammer
https://github.com/vusec/drammer
https://github.com/vusec/drammer
https://github.com/vusec/drammer
https://github.com/vusec/drammer
https://github.com/vusec/drammer

ARM TrustZone and Hypervisor

Reverse Engineering

https://imgflip.com/i/1t0m31

Open Source TrustZone Implementations

• ARM reference implementation -

ARM Trusted Firmware

• OP-TEE Trusted OS - Linux TEE

using ARM TrustZone technology.

Meets GlobalPlatform System

Architecture spec

• Google’s Trusty is a set of

components supporting a TEE on

mobile devices

https://github.com/ARM-software/arm-trusted-firmware
https://github.com/ARM-software/arm-trusted-firmware
https://github.com/ARM-software/arm-trusted-firmware
https://github.com/OP-TEE/optee_os
https://github.com/OP-TEE/optee_os
https://github.com/OP-TEE/optee_os
https://github.com/OP-TEE/optee_os
https://github.com/OP-TEE/optee_os
https://github.com/OP-TEE/optee_os
https://source.android.com/security/trusty/

TrustZone Monitor Vector Table

ARMv8 Architecture Reference Manual

Store 6D9B800 to VBAR_EL3

https://static.docs.arm.com/ddi0487/b/DDI0487B_a_armv8_arm.pdf

TrustZone Monitor SMC Exception Handler

EL3 Vector Table

Offset 0x400 from EL3 Vector Table

EL3 SMC exception handler

EL1 aarch64 TrustZone Kernel
VBAR_EL1

Address of EL1 Vector Table

EL1 aarch32 TrustZone Kernel

ARMv8 Architecture Reference Manual

https://static.docs.arm.com/ddi0487/b/DDI0487B_a_armv8_arm.pdf

Open Source TrustZone Driver

SCM (Secure Communication Manager) Driver

[1],[2]

Store extra arguments through

memory

Check what type of SMC system

supports

https://android.googlesource.com/kernel/msm/+/android-7.1.0_r0.2/drivers/soc/qcom/scm.c
http://bits-please.blogspot.com/2015/08/exploring-qualcomms-trustzone.html

SMC Handler Arguments in ARMv8 Systems

X0 (handler ID)

X1 (num_args)

X2 (arg0)

X3 (arg1)

X4 (arg2)

X5 (arg3)

SMC Handlers with < 5 args

X0 (handler ID)

X1 (num_args)

X2 (arg0)

X3 (arg1)

X4 (arg2)

X5 (args_buf)

Physical
Address Space

Android Memory

Arguments buffer:

Arg3

Arg4

Arg5

…

SMC Handlers with >= 5 args

Reversing SMC Default Handler…

Check SMC64 or SMC32 event

Check if Entry with ID in X0 exists in SMC

handler table

Check X1 in SMC Handler Table

If Hander has >= 5

arguments then check

arg5,… for

overlapping with TZ

address

Reversing SMC Default Handler…

Check arg0-arg4 arguments for overlapping with TZ

Call SMC dispatch function with

SMC handler pointer and SMC

caller function

Reversing Overlap Checks…

Check “buffer” pointer for overlapping with TZ

Copy “buffer” and check for

overlapping with TZ every DWORD

in the buffer

(Race Condition protection)

How the check for overlap with TZ works

X3 (arg1) X2 (arg0) X4 (arg2) X5 (arg3)

Check address in Xi and

size in Xi+1

for overlapping with TZ

check_args_TZ_addr_overlap() logic

Format:

• Index

• Enable Flag

• Address Begin

• Address End

Reversing SMC Handlers Table…

Format:

• Magic number

• SMC ID

• Arg2 (num_args)

• Arg3

• SMC function pointer

Example of SMC Handler

Write to Arg0 (X3)

ID: 2001302

num_args: 3

SVC_ID: 13

CMD-ID: 2

arg2: 0x23

type: SCM_SIP_FNID

SMC Handler Communicates with Secure Device

Read MMIO register to get

random data from RNG

Reversing Error Codes…

Error code:

FFFFFFEE

Error code:

FFFFFFE9

Different error codes

indicate different

execution flows

Hypervisor on Snapdragon 808/810
VBAR_EL2

TTBR0_EL2

Stage 1

Translation table

ARM TrustZone and

Hypervisor Attack Vectors

Attack Vectors

Kernel + Drivers

App App

Secure Kernel

Trustlet Trustlet

Secure Monitor

Hypervisor

EL0

EL1

EL2

EL3

Normal World Secure World

Additional reading: awesome work on exploiting TrustZone by Gal Beniamini of P0 [1], [2], [3], [4]

http://bits-please.blogspot.com/2016/06/trustzone-kernel-privilege-escalation.html
http://bits-please.blogspot.com/2016/05/qsee-privilege-escalation-vulnerability.html
https://googleprojectzero.blogspot.com/2017/02/lifting-hyper-visor-bypassing-samsungs.html
https://googleprojectzero.blogspot.com/2017/07/trust-issues-exploiting-trustzone-tees.html

Exploring Device MMIO Ranges…

Things we look for in MMIO:

• Registers accessible from different privilege levels

• Registers accessible at Boot vs Run time

• Addresses/pointers in registers

Methods to test MMIO registers:

• Every register in a specific device

• Every page in entire MMIO range

• Non-zero registers

/proc/iomem

MMIO:
Nexus 5x/6p: 0xf9000000 - 0xffffffff

Google Pixel: 0x0000000 - 0x7fffffff

Overlapping SoC Ranges with TrustZone Memory

• MMIO and core registers may contain

addresses to SoC or core ranges/structures

• Example: Debug Buffer, TTBR…

• Overlap range/structure with TrustZone

memory and look for unexpected behavior

• Hardware should properly handle overlap

condition

Physical Address Space

TrustZone memory

MMIO or core register with
an address

OS Memory

Device Range/Structure

DMA Attacks

Kernel + Drivers

 App App

Secure Kernel

Trustlet Trustlet

Secure Monitor

Hypervisor

EL1

EL2

EL3

Normal World Secure World

Protected by

IOMMU

EL1

Over The Air: Exploiting Broadcom’s Wi-Fi Stack (Part 2)

Broadpwn2

EL0

https://googleprojectzero.blogspot.com/2017/04/over-air-exploiting-broadcoms-wi-fi_11.html
https://googleprojectzero.blogspot.com/2017/04/over-air-exploiting-broadcoms-wi-fi_11.html
https://googleprojectzero.blogspot.com/2017/04/over-air-exploiting-broadcoms-wi-fi_11.html
http://boosterok.com/blog/broadpwn2/

Pointer Arguments to SMC Handlers

Physical Address Space

SMC Handlers in

TrustZone memory

Android Memory

Some SMC Handlers write result to a buffer at address passed in X2,…

X0 (handler ID)

X1

X2

X3

X4

X5 SMC handler specific structure

0x6D00000

SMC

Unchecked Pointer Vulnerabilities

Physical Address Space

SMC Handlers in

TrustZone memory

Android Memory

If SMC handler doesn’t validate pointer, it can overwrite TrustZone memory

Fake structure inside TZ memory

SMC

X2 (pointer)

X0 (handler ID)

X1

X3

X4

X5

Examples: Full TrustZone exploit for MSM8974, SMC vulns by Dan Rosenberg

http://bits-please.blogspot.com/2015/08/full-trustzone-exploit-for-msm8974.html
http://bits-please.blogspot.com/2015/08/full-trustzone-exploit-for-msm8974.html
http://bits-please.blogspot.com/2015/08/full-trustzone-exploit-for-msm8974.html
http://bits-please.blogspot.com/2015/08/full-trustzone-exploit-for-msm8974.html
http://bits-please.blogspot.com/2015/08/full-trustzone-exploit-for-msm8974.html

SMC Pointer Vulnerabilities Fuzzer

Supply an address to

TrustZone in SMC argument

The same error code

indicating overlap detected

Race Condition Issues (TOCTOU)

Physical Address Space

SMC handlers in

TrustZone kernel

Android Memory

SMC handlers may have TOCTOU issues when reading structures from X2

X0 (handler ID)

X1

X2

X3

X4

X5

SMC handler specific structure

CPU0

CPU1

Modify contents

SMC

Unchecked Addresses to MMIO Ranges

Physical Address Space

SMC Handlers in

TrustZone memory

OS Memory

MMIO of (Secure) Device

An address to MMIO of a secure device can be passed to SMC handler. If the

handler doesn’t validate the address it can be tricked to write to the secure device

X2 (pointer)

X0 (handler ID)

X1

X3

X4

X5

SMC

Unchecked MMIO Pointer Fuzzer for TZ

Iterate over

MMIO ranges

SMC argument points to

MMIO range

The same error code

indicating overlap detected

Now let’s find the hypervisor…

Read hypervisor memory

What if we point SMC to the hypervisor memory?

Check if hypervisor memory

has changed

Trigger SMC
0x200030D with hyp

address 0x6C03E00

Attacking on ARM hypervisor

Modifying Hypervisor on Snapdragon 808…

• We find hypervisor binary in memory. Must be a copy?

• Let’s try to modify it. The phone reboots! WTF?

• Assumption: stage 2 translation is disabled?

Now we can patch the hypervisor…

Kernel + Drivers

 App App

Hypervisor

Normal World

TrustZone Monitor/Kernel
Secure World

SMC

Kernel (EL1) exploits hypervisor

LPE to get EL2 privileges

The rootkit can protect

hypervisor from kernel access

Patched hypervisor traps access

from kernel (EL1) & app (EL0)

including SMC interface

Patch hypervisor allows

malicious app (EL0) access

entire memory

Patching EL2 Vector Table

sub_6C06E68 sub_6C017FC

One of the EL2 Vector Table

entries

We inject a payload in

the function invoked by

the vector table entry
(0x6C019F8)

PoC Exploit App and Hypervisor Patch

• Exploit app stores some magic number and command in a memory

• Hypervisor rootkit read magic number and executes command

• For example, command “Expose EL1 kernel memory at address X”

Exploit Details

Exploit Details

User mode application can

read EL2 kernel memory
from 0x80000 physical

address using our hyp patch

Demo

https://imgflip.com/i/1t0kqj

This has been fixed in Google Pixel

• The trust model has changed on Snapdragon 821 SoC

• EL1 (kernel) is not longer in the TCB of EL2 (hypervisor)

• Hypervisor is no longer accessible from Android kernel (EL1)

Cannot use SMC handler either

• Passing hypervisor address in the SMC argument

• Return error result

• SMC does not allow overwriting hypervisor memory on behalf of EL1

Conclusion

• Hypervisor can be attacked on ARM based systems with

Snapdragon 808/810 and virtualization rootkit can be installed

• Threat model should not include OS kernel into the TCB of the

hypervisor

• Similarities between vectors of attacks on x86 and ARM exist

and security architectures can learn from each other

Thank You!

BACKUP

Hypervisor Payload Customization

Read HCR_EL2 register:

import pwnlib

shellcode = """ STR X0, [sp, #-16]! ;

 STR X1, [sp, #-16]! ;

 MRS X0, HCR_EL2 ;

 MRS X1, TTBR0_EL2 ;

 ADD X1, X1, #0x200 ;

 STR x0, [x1] ; // store value to commutation buffer (TTBR0_EL2 + 0x200)

 LDR X1, [sp], #16 ;

 LDR X0, [sp], #16 ;

 RET """

shellcode_bin = pwnlib.asm.asm(shellcode, arch = 'arm64')

Other examples:

Reading EL2 Registers…

Using hyp exploit to

read EL2 config

registers

HCR_EL2[0] – VM bit is 0:

Stage 2 address translation disabled

TTBR0_EL2 - base address of the

translation table for Stage 1

