
Intel SGX Remote Attestation is not sufficient

Yogesh Swami

yogesh.swami@gmail.com

July 27, 2017

Abstract

Intel SGX enclaves provide hardware enforced confidentiality and integrity guarantees for running
pure computations (i.e., OS-level side-effect-free code) in the cloud environment. In addition, SGX
remote attestation enables enclaves to prove that a claimed enclave is indeed running inside a genuine
SGX hardware and not some (adversary controlled) SGX simulator.

Since cryptographic protocols do not compose well [Cra96, Can00, HS11], especially when run
concurrently, SGX remote attestation is only a necessary pre-condition for securely instantiating an
enclave. In practice, one needs to analyze all the different interacting enclaves as a single protocol
and make sure that no sub-computation of the protocol can be simulated outside of the enclave. In
this paper we describe protocol design problems under (a) sequential-composition, (b) concurrent-
composition, and (c) enclave state malleability that must be taken into account while designing new
enclaves. We analyze Intel provided EPID [BL10] Provisioning and Quoting enclave [JSR+16] and report
our (largely positive) findings. We also provide details about how SGX uses EPID Group Signatures
and report (largely negative) results about claimed anonymity guarantees.

1 Introduction

Intel SGX enclaves [MAB+13, AGJS13] provide hardware enforced confidentiality and integrity guar-
antees for running pure computation (i.e., OS-level side-effect-free code) in the cloud environment. By
limiting the application’s Trusted Computing Base (TCB) to the CPU and CPU-Cache, SGX provides
unprecedented confidentiality and integrity guarantees against malicious OS kernels and supervisor
software. A popular design methodology—as evidenced by [BPH14, TAB+14, ATG+16]—for creating
secure cloud applications is as follows:

Step-1: First, define a remote-attestation mechanism to securely instantiate an enclave. Quite often, this
step is not explicitly stated probably because a generic black-box attestation scheme—whatever
that means—is expected to be sufficient.

Step-2: Then, largely independently of the remote-attestation mechanism, define the functionality that
needs to be implemented inside the enclave. This step often involves composing different cryp-
tographic as well as non-cryptographic protocols in ad-hoc ways to implement the desired algo-
rithm. For example, the enclave may need to read encrypted keys from disk, compute a signature
based on that key, create a new set of keys, log commitments of internal data, etc.

Step-3: Finally, define a “run-time workflow,” where one first validates the remote-attestation result,
and then runs the algorithm implemented by the enclave. This step often requires multiple
interactions with various other entities such as other enclaves, untrusted host software, trusted
remote client software, and other cryptographic devices such as TPMs.

It’s hard to argue against the simplicity and ease of implementation of such a modular software
design. However, it’s well known [Can00, Cra96] that unless a protocol is designed for “Universal Com-
position” (UC)—where, the real-world behavior and the ideal-world definition (function) of a protocol

1

yogesh.swami@gmail.com

are computationally indistinguishable for every adversary controlled environment—it’s unlikely that
arbitrary composition of such protocols will be secure. On the other hand, proving results in the UC-
framework is rather difficult. In this paper we propose a framework for analyzing SGX enclaves that’s
a compromise between a full UC-based analysis and completely ad-hoc composition. Before describing
the framework, we illustrate the problem associated with the protocol composition with two real-world
examples.

To set the stage, a cloud service provider wanted to migrate its new clients from Amazon Cloud-
HSM to an SGX enclave. The protocol for interacting with the enclave was based on HTTP Request/Re-
sponse framework, where different operations (such as KeyGen), were sent as a command, and the
enclave would execute and return a response (including explicit error codes) back to the remote caller.
Important use-case for the enclave were to support (a) local key generation, (b) storing the public/pri-
vate key on disk with an AEAD scheme that would allow fast key look-up, and (c) creating Certificate
Signing Requests (CSR) from the enclave using challenge-response protocol [MKFA05, §5.2.8.3], among
other things. Figure 1a describes one execution path of the protocol.

att attest(N)
N, att

genrsa

csrParams genrsa
gencsr(csrParams)

csr
(rfc4210)

AuthEnclave,
N

Validate(N,att)

Validate(csr)
gencert(csr) Install(cert)

P seal(priv)
 save(P)

N nonce

Client Enclave

(a) Command execution for KeyGen with Cert

tpm
cntr

key
attr

mac
key
name

pk sk
tpm
sig

aad enc

tpm_cntr
tpm_sig

getTickNext

Enclave TPM

validate(tpm_cntr)
gcm_enc(tmp_cntr,aad,sk)

Save to disk

(b) Message format and seal protocol

Figure 1: Example of a flawed key-management enclave. The command execution protocol ascertains
the authenticity of the enclave by validating the EPID signature on a randomly generated 256-bit nonce,
followed by executing an arbitrary mix of commands as required by the use-case. Long-term keys are
stored as GCM-encrypted AEAD blobs. The nonce (a 32-bit counter zero-padded on the left to 96-bits)
for each GCM record is stored in TPM. The the TPM returns a signature on the nonce—along with
some additional data—to disable roll-back of TPM “ticks.” The enclave validates the TPM’s signature
before using the nonce for sealing.

This seemingly secure protocol is, in fact, not secure at all. Notice that the remote attestation in
Figure 1a does not prevent a malicious cloud service provider from first faithfully responding to remote
attestation queries, but then emulate the rest of the protocol (including KeyGen and CSR) outside of
the enclave. While this is obvious in this simplified example, in a more complicated scenario, where
multiple enclaves need to interact with each other, it might not be obvious if certain sub-components
of the protocol can be simulated outside. Even though the entire enclave is sequentially composed from
provably-secure protocols, the combined protocol is completely insecure!

Second, consider the seal protocol. Here each record (see Figure 1b) is GCM-encrypted using a
nonce generated and signed by the TPM. However, consider a cloud service provider who instantiates
two copies of the same enclave and concurrently executes KeyGen using the same TPM signed counter.

2

In this case, each enclave will generate two different keys in response to KeyGen. However, since the
two concurrent instances will each correctly verify the signature (the two enclaves are identical), each
will end up using the same nonce with different underlying data! As is the case with all counter
modes, reusing a nonce can completely destroy the security of the system1. Note that this is not a
flaw in GCM or in the way the TPM is used2, rather, it’s a case where an otherwise secure protocol is
insecure under concurrent composition.

While these examples describe a totally broken scheme, in practice sequential and concurrent com-
position may not completely break the system as above. Rather it might just weaken the bounds of the
entire protocol making it easy for further crypt-analysis or partial simulation of the enclave’s protocol.
For example, consider a scheme that consists of to two protocols π1 and π2, where the adversary needs
2t1 and 2t2 oracle queries to break π1 and π2 respectively. However, its possible that when composed
sequentially as (π1 ◦ π2) or (π2 ◦ π1) the number of queries needed to break the composed protocol
is smaller than 2min{t1,t2}. In fact, since protocol composition rarely commutes, even different order of
composition might result in very different bounds3.

To summarize, an enclave is a protocol composed of several sub-protocols. In order for the enclave to
be secure, it’s essential that sequential and concurrent composition of sub-protocols remain secure. The
rest of this document is organized as follows. §2 describes the abstract computational model of SGX
that’s better suited for security analysis. §3 describes pitfalls of sequential, concurrent, and parallel
composition of cryptographic protocols and describes ways in which an enclave can be abused by a
malicious cloud service provider. §4 describes Intel’s remote attestation framework, and describes in
detail the SGX remote attestation mechanism.

2 SGX Computational Model

Intel documentation [Int16a] provides excellent low-level details about the SGX instructions. This
section provides an abstract computational model of SGX which is better suited for security analysis.

Abstractly, an SGX enclave can be thought of as a black-box that’s capable of running any arbitrary
algorithm. The black-box (enclave) can communicate with the outside world, called the environment, in
three different ways:

Enclave

ecall

ocall

oret

AEX

eresume

Figure 2: SGX Computational Model.

ecall: The environment can invoke a pre-defined function inside the enclave by passing input parameters
and returning internal state of the enclave as results. Such invocations from the environment to the

1In the present case, since the underlying data is uniformly distributed, at least for AES or ECDSA keys, such a concurrent
composition might not be harmful. However, if there is even a small bias in the random number generator, it might be possible
to build a distinguisher from the xor of cipher-text data.

2When using TPMs with SGX enclaves, it’s important that both the TPM and the enclave mutually authenticate each other.
Failure to do so can lead to replay attacks where the adversary swaps the motherboard and in doing so resets the TPM counter.
In the present case, however, even mutually authenticated TPM counter might not be secure under concurrent composition.

3Readers familiar with encrypt-then-mac vs. mac-then-encrypt debate should require no further explanation.

3

enclave are referred to as ecall. The parameter values passed from the environment to the enclave
are either copied or directly shared with the enclave. An ecall can terminate in one of the three
ways: (a) by returning normally as a function from the enclave, (b) by making an explicit ocall, or
(c) as the result of an interrupt or exception. An ecall cannot halt all by itself.

SGX also supports multi-threading, and it’s possible for the environment to run the same ecall in
different threads. However, once an ecall has acquired the thread, future attempts to reuse that
same thread will result in error. Furthermore, the number of threads that an enclave can support
is pre-determined by the enclave signer, and cannot be altered at runtime.

ocall: While an enclave is executing (because of some previous ecall), it can make ocalls to pre-designated
functions in the environment. Unlike an ecall, an ocall cannot directly share the internal enclave
state with the environment, and must—directly or indirectly—copy the parameters into the envi-
ronment before making an ocall.

An interesting characteristic of an ocall is that the environment is not required to return back to
the enclave at the end of the ocall (see Figure 2). Since the behavior of pre-designated functions in
the environment are controlled by the adversary, one should not expect the environment to follow
the protocol that enclave author had envisioned. In particular, it’s possible to create a chain of
ecalls and ocalls such that the adversary can perform operations on the (global) internal state of
the enclave. We call such adversarial manipulation of internal enclave state as enclave malleability.

Asynchronous Exit: In addition to an ocall, the processor can exit from an enclave due to an interrupt
or exception. Such enclave exiting events are called Asynchronous Exit Events, or AEX. Unlike
an ocall, an AEX can transfer control from the enclave to the environment at arbitrary (possibly
adversary controlled) points inside the enclave. Like ocalls, an AEX can either by resumed from
where the enclave left off, or the environment can invoke another ecall (either within the same
thread or a different thread).

Since an adversary can create multiple running copies of an enclave and selectively interrupt each
enclave to cause an AEX, it can be used as a means to “rewind” the internal state of the enclave.
Given that proof-of-knowledge [BG93] protocols fundamentally have a knowledge-extractor based
on rewinding, an enclave must ensure that it does not leak secrets when interrupted by an AEX.

2.1 Enclave Creation

An enclave is generated as a dynamically shared library using standard compiler tools. In addition,
the entity creating the enclave must also decide up-front on the following information:

Attributes: The attributes of an enclave act as an access control mechanism that is enforced by the
hardware. For example, certain high privilege keys, such as Launch Key and Provisioning Key,
cannot be made accessible to all the enclaves as it would compromise the security of entire SGX
ecosystem. In order to gain access to these keys, an enclave author must explicitly request for
these attributes at compile/sign time. During enclave launch-time, the Launch Enclave, based on
policy decisions, decides whether to grant or reject requests based on these attributes.

Stack size: The enclave author must estimate the size of the stack needed by the enclave and set its
value at enclave creation time. Once an enclave is instantiated, this value cannot be changed.

Heap size: Like the stack size, the heap-size of the enclave is also fixed at enclave creation time. In
SGXv2, this value can be changed post-instantiation.

Thread count: An enclave must also decide upon the number of threads that can run concurrently.
As pointed out in §2, concurrency can have a dramatically negative impact on the security of
the certain protocols, and one must not select this parameter just on the basis of performance
requirements, but also on the basis of security concerns.

4

Software version: SGX provides elaborate software-upgrade and life-cycle management facilities and
allows software vendors to make use of these features.

Based on these parameters, the enclave signing tool creates a virtual memory layout of the enclave
and computes a hash of the entire memory layout (including the stack, heap, thread control structure,
etc.) See [Int16a] for details about how the hash is computed. This hash, called mrenclave, is used as
the unique identifier for the enclave.

In addition to mrenclave, the software vendor must also sign the enclave using a RSA-3072 key. The
hash of the RSA Public-Key is called mrsigner. As described in [BG17], the purpose of the signature is
to provide an unforgeable identity—a surname based lineage—to a set of enclaves based on the vendor.

It should be noted that the mrenclave of an enclave doesn’t change even when the signing key is
changed. This is significant when validating attestation or deriving keys based on mrenclave.

2.2 Enclave instantiation and access control

A properly signed enclave can be instantiated on any Intel SGX Processor—subject to access control
restrictions enforced by Launch Enclave. Before an enclave can be instantiated on an SGX capable
processor, it must first get an authorization token, called Launch Token, from Intel provided Launch
Enclave. The Launch Enclave uses a combination of mrenclave, mrsigner, the attributes of the enclave and
a white-list signed by Intel to decide whether to grant Launch Token or not. Once an enclave obtains a
Launch Token, it can continue using it indefinitely—even when the policies of the Launch Enclave might
get updated later on and deny access to Launch Token for that enclave!

2.3 SGX Platform Keys

As described in [JSR+16], each SGX capable processor contains two statistically independent base keys:
Root Provisioning Key and Root Seal Key. The Root Provisioning Key is used as the root-of-trust between
the CPU and Intel Attestation Services (IAS) [Int17]. Intel retains a copy of this key at the time of
manufacturing and uses it to establish the trustworthiness of the processor during EPID join process.
Intel claims that Root Seal Key is not retained. However, it’s not clear whether this key is generated
inside the processor via oracle access (i.e., in such a way that CPU generates the key all by itself using
it’s own internal random numbers or with PUFs), or whether the key is first generated outside the
processor, then injected into the CPU, and finally the outside references are destroyed. Unless these
keys are generated via oracle access, one should consider Root Seal Key to be known to Intel.

By design, an application software does not have raw access to the base keys. However, an applica-
tion can access named keys that are derived from these two base keys (see Figure 3). The key derivation
function allows enclave authors to specify policies on how to derive enclave specific keys from base
keys. These policies include using the CPU resident (i.e., trusted) values of mrenclave, mrsigner and/or
attributes of the enclave.

An implication of this design is that enclaves cannot derive keys that might belong to a different
enclave’s mrenclave or mrsigner. Furthermore, when key derivation policy allows skipping specific
fields (such as mrenclave), a default value of all-zeros is automatically used. Therefore, even when such
un-specialized keys are available, it’s not possible to derive specialized keys from them.

Remark: While it’s possible to access some keys (e.g., Seal Key) that have neither been specialized
with mrenclave nor mrsigner, such keys should not be used: An attacker can create a standalone enclave
that also does not specialize the key in anyway and come to the same value. We consider this to be a
design flaw in SGX.

The following list describes all the named keys and their intended usage:

Provisioning Key: This key is derived from Root Provisioning Key and is used as a version dependent
root-of-trust between Intel Attestation Service and SGX capable processor. Since admitting a
non-SGX processor to the the EPID group of SGX processors will completely compromise re-
mote attestation for all CPUs, extreme care must be taken in granting access to Provisioning Key.

5

Root
Provisioning

Key

Root
Seal
Key

Provisioning
Key

Provisioning
Seal Key

Launch Key

Seal Key

Report Key

Known to Intel

Intel Attestation Service

R
o

o
t o

f
tru

st

EP
ID

 p
rivate

key e
scro

w

(a) The Provisioning Key acts as a root-of-trust be-
tween SGX capable CPU and Intel Attestation Ser-
vice. Provisioning Seal Key is used for EPID private
key escrow.

SGX KDF

basekey

mrenclave/0

mrsigner/0

attributes/0

keyname

rand

non-adversarially controlled
parameter

Derived Key

(b) SGX Key derivation function. Only parame-
ters outside the dotted line can be chosen mali-
ciously. Key derivation uses all-zeros for mrenclave,
mrsigner, and attributes if key policy doesn’t spec-
ify which ones to use. See [Int16a, §38.17] for addi-
tional details.

Figure 3: SGX Platform and Named Key.

Currently, the Launch Enclave only grants access to this key if the enclave was signed by In-
tel. (Intel’s mrsigner is hardcoded into the Launch Enclave and this policy enforcement cannot be
circumvented.)

Provisioning Seal Key: This key is derived jointly from Root Provisioning Key and Root Seal Key. During
the EPID join process, the EPID private-key for each platform is encrypted with this key and
uploaded to Intel Attestation Service. (See §4.2 for details about EPID join process.)

Note that the EPID private-key could not just be encrypted with Provisioning Key as that would
destroy the EPID’s blinded-join protocol. Conversely, the EPID private-key cannot be encrypted
just with Seal Key as that might allow non-privileged enclaves to have access to EPID private key.

In spite of this design choice, given the uncertainty about how the Root Seal Key is generated,
one should assume that Intel knows the EPID private key for each platform.

Launch Key: This key is derived from Root Seal Key and is used by Launch Enclave to create autho-
rization tokens (EINITTOKEN). Recall that each non-Intel enclave must obtain this authorization
token before the CPU can instantiate the enclave. Only a specific mrsigner—whose correspond-
ing private-keys are only known to Intel—can access the Launch Key. In SGXv2, the mrsigner for
Launch Enclave can be changed programmatically [Int16a, §39.1.4], but it’s not clear how Intel
intends to enforce access control restrictions on Provisioning Key.

Remark: It’s unclear why Launch Key needs to be derived from a long-term secret (Root Seal Key).
An ephimeral Launch Key generated at the processor boot-up would not only be more secure, but
also enable better policy enforcement by Launch Enclave.

Seal Key: This key is derived from Root Seal Key and used for encrypting data specifically for a given
CPU. As we remarked earlier, one must not use un-specialized Seal Key—either for encrytion or
authentication—as that would completely compromize the security of that enclave.

Report Key: This key is derived from Root Seal Key and used for Local Attestation (see §2.4 for detailed
information on Local Attestation and how Report Key is used).

6

Source
enclave

Target
enclave

Target mrenclave
Target attributesReport data

y,c local_att(target,
report_data) y,c, report_data

Source identity
Validate(...)

(a) Local attestation message flow.

SGX KDF

Root Seal Key

CR_REPORT_KEYID (c)

REPORT_KEY const

cmac

target mrenclave
target attributes

source mrenclave
source mrsigner
source attributes

report data

y , c

Target Report Key

(b) Local attestation computation. Parameters outside the
dotted line can be adversarially selected.

Figure 4: Local attestation computation and message flow

2.4 Local Attestation

The process of local attestation allows a source enclave (source-enclave) to prove to a target enclave
(target-enclave)—running locally on the same platform—that the source-enclave is indeed running on
a genuine Intel SGX platform (see Figure 4a). In addition, the source-enclave can optionally use 512-bits
of additional data (e.g., hash of public-key), called report-data, to claim knowledge of certain bit-string.

The process of local-attestation involves computing CMAC [ISLP06] on the source-enclave’s identity
(i.e., mrenclave, mrsigner, etc.) using the target-enclave’s Report Key. However, as pointed out in §2.3, the
source-enclave cannot directly access target-enclave’s Report Key. SGX solves this problem by providing
oracle access to target-enclave’s Report Key via EREPORT instruction [Int16a, §14.4.1].

To compute local attestation, the source-enclave obtains the mrenclave and attributes of the target-
enclave through some out-of-band mechanism (which might be adversarial). Based on target-enclave’s
mrenclave, the EREPORT instruction internally derives the target-enclave’s Report Key and computes
CMAC on source-enclave’s identity: mrenclave, mrsigner, and attributes. To prevent malicious enclaves
from forging their identity, the CPU’s internal trusted cache is used for computing source-enclave’s
identity. During target-enclave’s key derivation, the EREPORT instruction uses a boot-time random
number called CR REPORT KEYID, which is also returned in addition to CMAC.

Since the target enclave can directly access its Report Key, the verification involves manually fetching
the Report Key and verifying the CMAC on report body. The report body includes the identity (mrsigner,
mrenclave, attributes) of the source-enclave, and optionally 512-bits or report data.

Remark: It’s unclear why local attestation needs to be tied to a long-term secret (Report Key) of the
processor.

3 Enclave Malleability and Knowledge Extractors

Given the computational model of SGX, we describe certain pitfalls in enclave design that might inad-
vertently make the enclave malleable, or open door for building knowledge-extractors [BG93].

3.1 Enclave malleability

As described in §2, an application can exit an enclave either (a) as a function return from an ecall (b)
as an ocall or (c) as an AEX. Since it’s not required for an ocall or AEX to return back to the enclave
from the state it left off, it’s possible for a malicious environment to make unexpected ecalls to alter the
internal state of the enclave. Enclaves whose global internal state can be influenced by an attacker by
not following the expected protocol are called malleable enclaves in this document.

7

To better understand enclave malleability, consider the following example: The US government
wants to use an SGX enclave to implement 2-man rule for launching nuclear missiles. The 2-man rule
requires that at least two different members (generals) of the armed forces to authorize the launch a
nuclear missile.

Listing 1 describes one way to implement this. Essentially, the enclave keeps a list of generals,
their public-keys, and their individual authorization state in a global variable GENERALS. In addition,
the enclave keeps the number of distinct generals who have authorized the launch in a global variable
auth count. Since different generals might be authorizing the launch at different times, the enclave
allows each general to authorize a launch individually by signing the concatenation of general’s name
and some auxiliary data.

1 /* count of generals who have authorized launch. */
2 static int auth_count = 0;
3

4 /* hardcoded list of generals and their PKs */
5 struct general_info{
6 char general_name [256];
7 const sgx_ec256_public_t general_pub;
8 bool has_authorized; // initialized to false
9 }GENERALS [] = { ... };

10

11 /* ecall made by each general with a sig on name + aux data */
12 int auth_and_launch(const char* const general_name ,
13 const sgx_ec256_signature_t* sig){
14

15 struct general_info* valid_general =
16 validate_general(general_name , sig);
17

18 if(! valid_general){ return INVALID_GENERAL; }
19

20 if(! valid_general ->has_authorized){
21 auth_count ++; // AEX here will be devastating!
22 valid_general ->has_authorized = true;
23 }else{
24 return GENERAL_ALREADY_AUTHORIZED_ACTION; // replay
25 }
26

27 if(auth_count >= 2){
28 return nuke_the_kashbah(location);
29 }
30

31 return PENDING_AUTHORIZATION;
32 }

Listing 1: An enclave suseptible to state malleability

Can this enclave be exploited to launch a missile with just one authorization, say 〈g1, σ1〉? Surpris-
ingly, the answer is yes! Here is how:

1. The attacker first feeds 〈g1, σ1〉 to auth and launch function with the intent of causing an AEX
between lines 21 and 22. Since the attacker can artificially cause an interrupt and also instanti-
ate multiple copies of the enclave in parallel, given a polynomial number of trials (in program

8

length), the attacker can cause an AEX between line 21 and 22 w.h.p. Note that at the time
of a successful AEX between line 21 and 22, the auth count and has authorized variables will
be in an inconsistent state where the has authorized would still be false and another ecall to
auth and launch will successfully update the auth count variable.

2. After the enclave has been interrupted by AEX and the processor is ready to resume, the attacker
instead of resuming, makes an ecall to auth and launch again with the same old parameters
〈g1, σ1〉. Since the first ecall had incremented the counter, but left the authorization state incon-
sistent, the second ecall will once again increment auth count, ultimately leading to a nuclear
attack!

3. While not applicable in this case, in some cases it might be necessary for an attacker to resume the
first ecall after the second one has completed. Since the enclave preserves the stack before making
an AEX, resuming the first ecall tantamounts to executing ERESUME assembly instruction.

It should be emphasized that the problem of state-malleability is broader in scope than the race
condition described above. For example, one can use malleability to induce an error which turns the
enclave into an oracle. It should also be emphasized that enclaves should return error codes with
security consideration in mind.

3.2 Enclave rewinding and knowledge-extractors

Zero-Knowledge Proof-of-Knowledge (ZKPK) protocols, by definition have in-built knowledge-extractor
[BG93, Mau09]. The knowledge-extractor is designed by giving a simulator the capability to “rewind”
the prover’s state to arbitrary point in it’s execution. Since SGX enclaves can be interrupted by an
AEX, it’s important that a malicious environment is not able to rewind the enclave in such a way that it
inadvertently reveals the secret-key.

Consider the three-move—commit, challenge, blinded-reveal—Σ-protocols [Dam] that are the most
efficient and widely-used ZKPKs protocol in practice. Normally, one designs Σ-protocols with interac-
tion between a prover and a verifier in mind, and then uses Fiat-Shamir [FS87] heuristic4 to convert it
into a useful non-interactive use-case such as a signature scheme. Most of these protocols just require
the prover to respond to two challenge message for a given commitment message to reveal the secret.

If an enclave is not implemented appropriately, one can induce an artificial AEX right after the com-
mitment phase, and call the enclave with different messages in possibly different threads to generate
two responses to the same commitment message. Note that AEX in conjunction with multi-threading
opens doors for a limited form of enclave rewinding and presents a larger attack surface than AEX
alone. Unless, an enclave requires multi-threading, it’s wise to set the number of possible threads to
the bare minimum.

4 SGX remote attestation

SGX is an example of a hardware/software co-design of a cryptographic platform. A common concern
in the design of such systems is to ensure that an adversary is not able to switch the hardware with
a software simulator (such as QEMU [Bel05, JDK+16]) of the hardware. Since an Universal Turing
Machine can simulate any piece of computing hardware, unless there’s an inbuilt asymmetry between
what the software “knows” and what the hardware knows, it’s impossible to prevent software simu-
lator attacks in such systems. On the other hand, each independent piece of software must somehow
have raw or oracle access to the hardware’s secret so that it can prove to remote parties that it’s running
on a real hardware. The essence of any remote-attestation scheme in such systems is to address these
two conflicting requirements. Note: Limiting access to raw hardware keys via an oracle is not sufficient

4In the Fiat-Shamir heuristic, the prover also pretends to be an honest verifier and generates the challenge string via a random
oracle, based on publicly known fields of the protocol (such as the commitment value, user’s input message, etc.).

9

to thwart simulator based attacks. An attacker can run the hardware simulator on a real hardware,
gain access to the hardware-secret via the oracle, and then impersonate as the real hardware.

In case of Intel SGX, the question of knowledge-asymmetry between hardware and software is
answered by the Root Provisioning Key (see §2.3). The dilemma of both denying as well as granting
access to this hardware secret is solved by a two-step process:

1. Intel has created a (set of) privileged enclaves—called Provisioning Enclave (PvE) and Provisioning
Certification Enclave (PcE)—that have raw access to Provisioning Key and Provisioning Seal Key. The
PvE and PcE use Provisioning Key and Provisioning Seal Key to bootstrap a new set of software-
only credentials for a group-signature scheme called Enhanced Privacy ID (EPID) [BL10]. Since
only Intel signed enclaves have access to Provisioning Key and Provisioning Seal Key no malicous
simulator can access these keys.

2. Once a platform has been provisioned with EPID keys, another Intel signed enclave called Quoting
Enclave (QE) is given raw access to EPID keys and made responsible for generating remote-
attestation results on behalf of other—potentially malicious—enclaves.

The rest of this section is organized as follows: §4.1 provides an overview of EPID and how it’s has
been implemented by Intel. Since the official [BL10] paper leaves several details out (e.g., the Zero-
Knowledge proof of inequality for signature based revocation), the goal of this section to fill in those
gaps based on open source implementation of epid-sdk [Int16b]. §4.2 provides detailed information
on how the Provisioning Enclave joins the SGX EPID group.

4.1 EPID Overview

In a standard signature scheme, such as ECDSA or RSA-PSS, each signer has a unique private/public
key-pair. Given two message/signature pairs 〈m1, σ1〉 and 〈m2, σ2〉, an attacker in possession of N
public-keys can easily determine if m1 and m2 were signed by the same private key or not. If such
signatures are generated by physical devices, it can be used to track the signing device and thereby
destroy the anonymity and privacy of the person using that device.

Group signatures were introduced by Chaum and Van Heyst [CH91] as a means to address this.
Their idea was to create a signature-scheme where a single “group public-key,” can verify messages
signed by different private keys. In order to achieve this, a designated entity called Group Manager ad-
mits members to the group and grants membership credentials in such a way that a single public-key can
verify messages signed by different private keys. In addition to existential-unforgeability required for
signatures, a group signature also requires traceability and non-frameability to keep members account-
able. Alternatively, as is the case with EPID, a group membership revocation mechanism is required to
deal with fraudulent members.

The literature on group signature schemes is huge, both for formal models of its security as well
as for different constructions using different computational assumptions [BMW03, BSZ05, BCC+16,
BBS04,FI05,ACJT00,CL04]. Among these, from a practical deployment perspective, Direct Anonymous
Attestation [BCC04,CDL16] (DAA) is closest to EPID and also most widely deployed. We do not review
these schemes any further in this paper.

At a high-level, EPID signatures have two distinct components: The first component, called the
BasicSignature, is based on BBS+ (ordinary5) signature scheme [ASM06]. The second component is
a pair of (algebric) group elements, per-signature, to facilitate signature based revocation (described
in detail below). Because of space and time constraints, we intentionally leave out additional details
about the BasicSignature as it’s adequately described and proven secure in [BL10, ASM06, BBS04].

From a practical perspective, there are four entities in EPID:

5To clarify, BBS+ is an ordinary CCA2 secure signature scheme like RSA-PSS, but unlike PSS, it’s secure in standard model
under q-SDH assumption. BBS+ itself is derived from Boneh-Boyen-Shacham [BBS04] group-signature.

10

Issuer (I): It’s the entity that grants group membership credentials to its members. In case of SGX, the
Intel Attestation Service acts as the Issuer. Its goal is to dynamically add new SGX Processors as
they come on-line.

Revocation Manager (R): It’s the entity that decides who are the (known) offending members of the
group. Unlike standard signature schemes, where revocation only includes the public-key of
fraudulent signers, group signatures require a different approach. EPID has two forms of revo-
cation:

Priv-RL : Private-key based revocation list. Priv-RL is a list of compromised private-keys known
to Revocation Manager. EPID does not support full-anonymity in the sense of [BMW03]6,
and putting a private key in Priv-RL, retroactively destroys the anonymity of the signer.

Sig-RL : Signature based revocation list. An EPID signature consists of a basic BBS+ [ASM06,
BBS04] based signature along with two group elements 〈B, B f 〉 from a group where Discrete-
Log is hard. B is called the basename and f is the EPID private-key. The Sig-RL consists of a
list of 〈Bi, B fi

i 〉 pairs from previously signed messages that the Revocation Manager believes
to have been signed fraudulently. To sign a message, an honest signer must pick a random7

B and prove in Zero-Knowledge that none of the 〈Bi, B fi
i 〉 pairs in the Sig-RL could have

been generated using the signer’s f (essentially prove in Zero-Knowledge that none of the
discrete logs in the list equal to f).

Remark: For any f , a single signature-revocation-pair 〈Bi, B f
i 〉 is sufficient to identify fraud-

ulent signers, however, this does not mean that the length of Sig-RL is limited by the number
of signers. A fraudulent signer can still keep signing messages, until the Revocation Man-
ager caches up. At which point, the Revocation Manager will not be able to decide if a
signature from fraudulent signer is already present in Sig-RL, and will therefore need to put
all the suspected signatures in Sig-RL. Because of this, Sig-RL can become very large.
Since the EPID paper leaves out details about zero-knowledge proof of inequality, we point
out that SGX implementation [Int16b] uses the scheme described in [CS03, §6].

In EPID, a signer needs to have access to the most up-to-date Sig-RL to generate a valid signature.
This is fundamentally different from verifier local revocation (VLR) [BS04] where the signer never
needs up-to-date revocation list to generate a valid signature (the verifier, of course, always needs
up-to-date revocation list). Also, unlike verifier local revocation, EPID signatures are of vari-
able length and even same message signed with the same private-key can have different lengths
depending upon the length of Sig-RL. It’s surprising that such a signature scheme can still be
anonymous!

Platforms (P): Platforms in EPID are entities that are part of the signing group. In case of SGX, each
SGX capable CPU SoC is a platform.

In SGX, the Provisioning Enclave is responsible for executing the blined-join protocol and securely
storing the member’s group credentials to permanent storage. Once Provisioning Enclave has
obtained its membership-credentials from Intel Attestation Service, it stores them on disk en-
crypted with Seal Key (derived with mrsigner of PvE). Only Intel Signed enclaves can access the
EPID signing key.

Verifiers (V): Any entity in possession of the group public-key is a verifier. In case of Intel Attestation
Service, however, each signature is encrypted by the Quoting Enclave using an authenticated

6In the anonymity game of [BMW03], the adversary gets the private key of all the members, and yet it cannot distinguish one
signer from another based on signatures alone.

7A signer might choose to use the same B if they want signatures to be linked. In SGX, the first 128-bits of B are always set
to the Service Provide ID (SPID) [Int17] and contrary to what Intel claims, a platform never has un-linkable signatures!

11

Intel Provisioning
Server

, epid_group_blob

 pce mrenclave(PcE)

Host/PvE

[n,e]pek_pub
ecdsa

 Validate signature on [n,e]

 O algo_id(OAEP)

 V local_attest(pce,O|n|e)

O, n, e, V

PcE

 Validate:

1. Attestation (V, O|n|e)

2. Attester has provision_key

 pkey provision_key

 ppid cmac(pkey, 0128b)

 eppid oaep(<n,e>, ppid)eppid

Start
provision pce

nonce, pce
 Validate [gid,h1,h2,w]

 gpub (gid,h1,h2,w)

 epid_priv rand(Fp)

 jr EpidJoinReq(epid_priv, gpub, nonce)

 pkey provision_key

 psk provision_seal_key

 enc_prv gcm_enc(psk, epid_priv)

 enc_jr gcm_enc(pkey, jr)

 rdata sha256(enc_jr|enc_prv|nonce)

 V local_attest(pce,rdata)

[gid, h1, h2, w]isk , SigRLecdsa

PcE

V, rdata
 Validate:

1. Attestation (V, rdata)

2. Attester has provision_key

 pkey provision_key

 pecc derive_key(pkey)

 psig ecdsa(pecc, rdata)

psig

enc_prv, enc_jr, rdata, psig

enc_cred, enc_prv,

 Validate [gid,h1,h2,w]

 gpub (gid,h1,h2,w)

 pkey provision_key

 psk platform_seal_key

 epid_prv gcm_dec(psk, enc_prv)

 epid_cred gcm_dec(pkey, enc_cred)

 Validate <epid_prv, epid_cred> against gpub

 sk prf(seal_key, mrsigner)

 cred_seal gcm_enc(sk, epid_prv|epid_cred)
Save cred_seal to disk

Figure 5: EPID Provisioning Protocol. The Platform side of provisioning is split between PvE and PcE
enclaves. The EPID join request is encrypted using a key derived from Provisioning Key. Furthermore,
an ECDSA signature is computed on the encrypted join request, using a key derived from Provisioning
Key. This signature acts as a proof-of-knowledge of Root Provisioning Key for IAS to verify. The
provisioning process also encrypts the EPID private key using Provisioning Seal Key and sends it as
escrow data to IAS.

12

public-key in the enclave. Since only Intel Attestation Service can decrypt these signatures, only
Intel Attestation Service can verify signatures.

Remark: Not having the ability to verify signatures locally means that one must trust Intel At-
testation Service even to validate the signature. If Intel, for whatever reason, chooses to lie about
the validity of a signature, it could be used to launch man-in-the-middle attacks on enclaves. Fur-
thermore, each encrypted EPID signature in SGX also contains the service provider’s ID (SPID),
which can be used to track the number of times a service provider is interacting with SGX pro-
cessor.

4.2 SGX EPID provisioning

In order to create new set of EPID credentials, the SGX capable processor must participate in the EPID
Join process. When presented with a join request, the Intel Attestation Service must somehow ensure
that the join request indeed came from an SGX processor; allowing non-SGX platforms to join SGX
EPID group would render the entire remote attestation scheme useless. To make matters worse, under
concurrent composition, the Zero-Knowledge Proof of Knowledge Protocol used in the EPID Join
request is not secure, and the Intel Attestation Service must somehow prevent arbitrary interleaving of
Join messages.

Intel has addressed these issues by creating two Intel signed enclaves called PvE and PcE8. Both
these enclaves have access to the Provisioning Key, and the mrsigner for these enclaves is hard-coded in
the Launch Enclave—preventing non-Intel enclaves from gaining access to the Provisioning Key.

Figure 5 describes the details about EPID provisioning.

5 Conclusion

This paper describes the pitfalls in designing SGX enclaves. In particular, it highlights issues with
sequential and concurrent composition of protocols. In addition, we also describe issues with enclave
state-malleability which must be taken into account when implementing new enclaves.

Based on these three criteria, we have analyzed Intel provided PvE, PcE, and QE enclaves and found
them to be secure. On the other hand, we find following issues with current implementation of Intel
provided enclaves:

• The EPID join process uses raw Provisioning Key and long-term platform identifiers (PPID) that
are derived from this key. This essentially destroys the anonymity of the platform during the
EPID join process. We note that in case of SGX, it’s possible to build a Witness-Indistinguishable
or Witness-Hiding join protocol that not can only guarantees anonymity, but also might alleviate
concerns about concurrent join.

• In its current implementation, the Quoting Enclave encrypts all EPID signatures that can only be
decrypted and verified by the Intel Attestation Service. Not only does this destroy the anonymity
of signers, but also allows Intel to facilitate man-in-the-middle attacks on enclaves, should Intel
choose (or be compelled) to do so.

6 Acknowledgements

We would like to thank Mike Hamburg for his comments and feedback on this paper.

8While we not sure why the provisioning process was split into two separate enclave with the same set of privileges, we
believe this is done to separate the enclave that directly interacts with network data (PvE) from the one that only signs (certifies)
messages.

13

References

[ACJT00] Giuseppe Ateniese, Jan Camenisch, Marc Joye, and Gene Tsudik. A practical and provably
secure coalition-resistant group signature scheme. In Proceedings of the 20th Annual Interna-
tional Cryptology Conference on Advances in Cryptology, CRYPTO ’00, pages 255–270, London,
UK, UK, 2000. Springer-Verlag. http://www.ics.uci.edu/˜gts/paps/acjt00.pdf.

[AGJS13] Ittai Anati, Shay Gueron, Simon Johnson, and Vincent Scarlata. Innovative technol-
ogy for cpu based attestation and sealing. Workshop on Hardware and Architectural Sup-
port for Security and Privacy, June 2013. https://software.intel.com/en-us/articles/
innovative-technology-for-cpu-based-attestation-and-sealing.

[ASM06] Man Ho Au, Willy Susilo, and Yi Mu. Constant-Size Dynamic k-TAA, pages 111–125. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2006. http://eprint.iacr.org/2008/136.

[ATG+16] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, Andre Martin, Chris-
tian Priebe, Joshua Lind, Divya Muthukumaran, Dan O’Keeffe, Mark L. Stillwell, David
Goltzsche, Dave Eyers, Rüdiger Kapitza, Peter Pietzuch, and Christof Fetzer. Scone: Se-
cure linux containers with intel sgx. In 12th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 16), pages 689–703, GA, 2016. USENIX Association. https:
//www.usenix.org/conference/osdi16/technical-sessions/presentation/arnautov.

[BBS04] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short Group Signatures, pages 41–55.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2004. https://www.iacr.org/archive/
crypto2004/31520040/groupsigs.pdf.

[BCC04] Ernie Brickell, Jan Camenisch, and Liqun Chen. Direct anonymous attestation. In Proceed-
ings of the 11th ACM Conference on Computer and Communications Security, CCS ’04, pages
132–145, New York, NY, USA, 2004. ACM. https://eprint.iacr.org/2004/205.pdf.

[BCC+16] Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Essam Ghadafi, and Jens Groth. Founda-
tions of Fully Dynamic Group Signatures, pages 117–136. Springer International Publishing,
Cham, 2016. http://eprint.iacr.org/2016/368.

[Bel05] Fabrice Bellard. Qemu, a fast and portable dynamic translator. In Proceedings of the Annual
Conference on USENIX Annual Technical Conference, ATEC ’05, pages 41–41, Berkeley, CA,
USA, 2005. USENIX Association.

[BG93] Mihir Bellare and Oded Goldreich. On defining proofs of knowledge. In Proceedings of
the 12th Annual International Cryptology Conference on Advances in Cryptology, CRYPTO ’92,
pages 390–420, London, UK, UK, 1993. Springer-Verlag. http://dl.acm.org/citation.cfm?
id=646757.759584.

[BG17] Dan Boneh and Shay Gueron. Surnaming schemes, fast verification, and applications to sgx
technology. CT-RSA: RSA Conference Cryptographers’ Track, pages 149–164, February 2017.

[BL10] Ernie Brickell and Jiangtao Li. Enhanced privacy id from bilinear pairing for hardware
authentication and attestation. IEEE International Conference on Social Computing / IEEE
International Conference on Privacy, Security, Risk and Trust, pages 768–775, August 2010.
https://eprint.iacr.org/2009/095.pdf.

[BMW03] Mihir Bellare, Daniele Micciancio, and Bogdan Warinschi. Foundations of group signatures:
formal definition, simplified requirements and a construction based on trapdoor permuta-
tions. In Eli Biham, editor, Advances in cryptology - EUROCRYPT 2003, proceedings of the
internarional conference on the theory and application of cryptographic techniques, volume 2656
of Lecture Notes in Computer Science, pages 614–629, Warsaw, Poland, May 2003. Springer-
Verlag. http://cseweb.ucsd.edu/˜daniele/papers/BMW.pdf.

14

http://www.ics.uci.edu/~gts/paps/acjt00.pdf
https://software.intel.com/en-us/articles/innovative-technology-for-cpu-based-attestation-and-sealing
https://software.intel.com/en-us/articles/innovative-technology-for-cpu-based-attestation-and-sealing
http://eprint.iacr.org/2008/136
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/arnautov
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/arnautov
https://www.iacr.org/archive/crypto2004/31520040/groupsigs.pdf
https://www.iacr.org/archive/crypto2004/31520040/groupsigs.pdf
https://eprint.iacr.org/2004/205.pdf
http://eprint.iacr.org/2016/368
http://dl.acm.org/citation.cfm?id=646757.759584
http://dl.acm.org/citation.cfm?id=646757.759584
https://eprint.iacr.org/2009/095.pdf
http://cseweb.ucsd.edu/~daniele/papers/BMW.pdf

[BPH14] Andrew Baumann, Marcus Peinado, and Galen Hunt. Shielding applications from an un-
trusted cloud with haven. 11th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI14), pages 113–124, August 2014.

[BS04] Dan Boneh and Hovav Shacham. Group signatures with verifier-local revocation. In
Proceedings of the 11th ACM Conference on Computer and Communications Security, CCS ’04,
pages 168–177, New York, NY, USA, 2004. ACM. https://cseweb.ucsd.edu/˜hovav/dist/
preteripsistic.pdf.

[BSZ05] Mihir Bellare, Haixia Shi, and Chong Zhang. Foundations of Group Signatures: The Case
of Dynamic Groups, pages 136–153. Springer Berlin Heidelberg, Berlin, Heidelberg, 2005.
https://cseweb.ucsd.edu/˜mihir/papers/bsz.pdf.

[Can00] Ran Canetti. Universally composable security: A new paradigm for cryptographic proto-
cols. Cryptology ePrint Archive, Report 2000/067, 2000. http://eprint.iacr.org/2000/
067.

[CDL16] Jan Camenisch, Manu Drijvers, and Anja Lehmann. Universally Composable Direct Anony-
mous Attestation, pages 234–264. Springer Berlin Heidelberg, Berlin, Heidelberg, 2016.
http://eprint.iacr.org/2015/1246.

[CH91] David Chaum and Eugène Van Heyst. Group signatures. In Proceedings of the 10th Annual In-
ternational Conference on Theory and Application of Cryptographic Techniques, EUROCRYPT’91,
pages 257–265, Berlin, Heidelberg, 1991. Springer-Verlag.

[CL04] Jan Camenisch and Anna Lysyanskaya. Signature Schemes and Anonymous Credentials from
Bilinear Maps, pages 56–72. Springer Berlin Heidelberg, Berlin, Heidelberg, 2004. http:
//cs.brown.edu/˜anna/papers/cl04.pdf.

[Cra96] Ronald Cramer. Modular design of secure, yet practical cryptographic protocols. PhD thesis,
University of Amsterdam, 1996.

[CS03] Jan Camenisch and Victor Shoup. Practical Verifiable Encryption and Decryption of Discrete
Logarithms, pages 126–144. Springer Berlin Heidelberg, Berlin, Heidelberg, 2003.

[Dam] Ivan Damgård. On Σ protocols. https://eprint.iacr.org/2010/284.pdf.

[FI05] Jun Furukawa and Hideki Imai. An Efficient Group Signature Scheme from Bilinear Maps,
pages 455–467. Springer Berlin Heidelberg, Berlin, Heidelberg, 2005. http://dx.doi.org/
10.1007/11506157_38.

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and
signature problems. In Proceedings on Advances in cryptology—CRYPTO ’86, pages 186–194.
Springer-Verlag, 1987.

[HS11] Dennis Hofheinz and Victor Shoup. Gnuc: A new universal composability framework.
Cryptology ePrint Archive, Report 2011/303, 2011. http://eprint.iacr.org/2011/303.

[Int16a] Intel Corporation. Intel® 64 and IA-32 Architectures Software Developer’s Manual. December
2016. https://software.intel.com/en-us/articles/intel-sdm.

[Int16b] Intel Open Source (https://01.org). EPID SDK R3. 2016. https://01.org/epid-sdk/
downloads.

[Int17] Intel Corporation. Attestation Service for Intel® Software Guard Extensions: API Documentation.
2017. https://software.intel.com/sites/default/files/managed/7e/3b/ias-api-spec.
pdf.

15

https://cseweb.ucsd.edu/~hovav/dist/preteripsistic.pdf
https://cseweb.ucsd.edu/~hovav/dist/preteripsistic.pdf
https://cseweb.ucsd.edu/~mihir/papers/bsz.pdf
http://eprint.iacr.org/2000/067
http://eprint.iacr.org/2000/067
http://eprint.iacr.org/2015/1246
http://cs.brown.edu/~anna/papers/cl04.pdf
http://cs.brown.edu/~anna/papers/cl04.pdf
https://eprint.iacr.org/2010/284.pdf
http://dx.doi.org/10.1007/11506157_38
http://dx.doi.org/10.1007/11506157_38
http://eprint.iacr.org/2011/303
https://software.intel.com/en-us/articles/intel-sdm
https://01.org
https://01.org/epid-sdk/downloads
https://01.org/epid-sdk/downloads
https://software.intel.com/sites/default/files/managed/7e/3b/ias-api-spec.pdf
https://software.intel.com/sites/default/files/managed/7e/3b/ias-api-spec.pdf

[ISLP06] Tetsu Iwata, Junhyuk Song, Jicheol Lee, and Radha Poovendran. The AES-CMAC Algo-
rithm. RFC 4493, June 2006. https://rfc-editor.org/rfc/rfc4493.txt.

[JDK+16] Prerit Jain, Soham Desai, Seongmin Kim, Ming-Wei Shih, JaeHyuk Lee, Changho Choi,
Youjung Shin, Taesoo Kim, Brent Byunghoon Kang, and Dongsu Han. OpenSGX: An Open
Platform for SGX Research. In Proceedings of the Network and Distributed System Security
Symposium, San Diego, CA, February 2016.

[JSR+16] Simon Johnson, Vinnie Scarlata, Carlos Rozas, Ernie Brickell, and Frank Mc-
keen. Intel® software guard extensions: Epid provisioning and attestation
services. March 2016. https://software.intel.com/en-us/blogs/2016/03/09/
intel-sgx-epid-provisioning-and-attestation-services.

[MAB+13] Frank Mckeen, Ilya Alexandrovich, Alex Berenzon, Carlos Rozas, Hisham Shafi,
Vedvyas Shanbhogue, and Uday Savagaonkar. Innovative instructions and soft-
ware model for isolated execution. Workshop on Hardware and Architectural Sup-
port for Security and Privacy, June 2013. https://software.intel.com/en-us/articles/
innovative-instructions-and-software-model-for-isolated-execution.

[Mau09] Ueli Maurer. Unifying zero-knowledge proofs of knowledge, 2009. ftp://ftp.inf.ethz.
ch/pub/crypto/publications/Maurer09.pdf.

[MKFA05] Tero Mononen, Tomi Kause, Stephen Farrell, and Dr. Carlisle Adams. Internet X.509 Public
Key Infrastructure Certificate Management Protocol (CMP). RFC 4210, September 2005.
https://rfc-editor.org/rfc/rfc4210.txt.

[TAB+14] Chia-Che Tsai, Kumar Saurabh Arora, Nehal Bandi, Bhushan Jain, William Jannen, Jitin
John, Harry A. Kalodner, Vrushali Kulkarni, Daniela Oliveira, and Donald E. Porter. Coop-
eration and security isolation of library oses for multi-process applications. In Proceedings
of the 9th European Conference on Computer Systems (EuroSys ’14), pages 113–124, April 2014.

16

https://rfc-editor.org/rfc/rfc4493.txt
https://software.intel.com/en-us/blogs/2016/03/09/intel-sgx-epid-provisioning-and-attestation-services
https://software.intel.com/en-us/blogs/2016/03/09/intel-sgx-epid-provisioning-and-attestation-services
https://software.intel.com/en-us/articles/innovative-instructions-and-software-model-for-isolated-execution
https://software.intel.com/en-us/articles/innovative-instructions-and-software-model-for-isolated-execution
ftp://ftp.inf.ethz.ch/pub/crypto/publications/Maurer09.pdf
ftp://ftp.inf.ethz.ch/pub/crypto/publications/Maurer09.pdf
https://rfc-editor.org/rfc/rfc4210.txt

	Introduction
	SGX Computational Model
	Enclave Creation
	Enclave instantiation and access control
	SGX Platform Keys
	Local Attestation

	Enclave Malleability and Knowledge Extractors
	Enclave malleability
	Enclave rewinding and knowledge-extractors

	SGX remote attestation
	EPID Overview
	SGX EPID provisioning

	Conclusion
	Acknowledgements

