
Defeating Samsung KNOX with zero privilege

Di Shen a.k.a. Retme (@returnsme)
Keen Lab of Tencent

whoami
• Di Shen a.k.a. Retme (@returnsme)
• Member of Keen Lab
• Android Kernel vulnerability hunting and exploitation since 2014
• Aim: to make out universal rooting exploit for Android
• Trophy:

• CVE-2016-6787 & CVE-2017-0403 (kernel/events/core.c)
• Credit to discoveries and exploits

• CVE-2015-1805 (fs/pipe.c)
• First working exploit

• CVE-2015-4421,4422
• Kernel LPE and TrustZone code execution for Huawei Mate 7

• Exploiting Wireless Extension for all common Wi-Fi chipsets (BHEU 16’)
• And more To Be Announced in the future

Agenda

• Overview of KNOX 2.6
• KASLR (Samsung’s implementation)
• Real-time kernel protection (RKP)
• Data Flow Integrity (DFI)

• Bypassing techniques
• KASLR bypassing
• DFI bypassing
• SELinux bypassing
• Gain root

Target device

• Samsung Galaxy S7 edge
• SM-G9350 (Hong Kong ver.)
• Qualcomm-based
• KNOX 2.6

• Exploit chain was finished in
June 2016
• Demonstrated in July 1st

2016 at Shanghai

Common LPE flow on Android

Arbitrary kernel memory
overwriting

Overwrite
ptmx_fops

Overwrite
address_limit

Overwrite uid,
security id,and

selinux_enforcing

LPE flow on Glaxy S7 edge

Bypass KASLR
Arbitrary

kernel memory
overwriting

Overwrite
ptmx_fops

Overwrite
address_limit Bypass DFI Bypass SELinux

for Samsung
Gain root
privilege

KASLR for Linux 3.18 - Initialization

• CONFIG_RELOCATABLE_KERNEL by Samsung
• The Random size is passed to kernel by loader
• X1,X2 are set upon kernel start up

• X1: phycal offset X2: vitual text offset
• Store to __boot_kernel_offset
• __boot_kernel_offset[0] : physical address of kernel
• __boot_kernel_offset[1] : the actual load address
• __boot_kernel_offset[2] : TEXT_OFFSET 0x8000

KASLR for Linux 3.18 - relocating
• __relocate_kernel() handles kernel relocating
• Similar to a aarch64 linker in user space

KASLR for Linux 3.18 - .rela section

• __relocate_kernel handles kernel relocating
• Similar to a aarch64 linker in user space
• Relocation section ‘.rela’ at offset 0x1446600 contains 233903 entries:

 Offset Info Type Sym. Value Sym. Name + Addend
ffffffc000081698 000000000403 R_AARCH64_RELATIV -3ffff7e968
ffffffc0000816a0 000000000403 R_AARCH64_RELATIV -3ffe5d1e20
ffffffc000081798 000000000403 R_AARCH64_RELATIV -3ffff7e868

 ...
ffffffc00008e000 000000000403 R_AARCH64_RELATIV -3ffff546b8 # Begin of sys_call_table

 ...
ffffffc000f6f800 000600000101 R_AARCH64_ABS64 ffffffc000080000 _text + 0 # Begin of kallsyms_addresses

 ...
ffffffc0013b1468 000000000403 R_AARCH64_RELATIV -3ffec1afdd

Bypassing KASLR

• Readable TIMA logs

Kernel information leaking
• Kernel pointer leaked in /proc/tima_secure_rkp_log
• At 0x13B80 -> init_user_ns
• Real:0xFFFFFFC001B0EFB8 Static:0xFFFFFFC01A3AFB8
• KASLR offset = 0xD4000

Achieve arbitrary kernel mem overwriting
• By exploiting CVE-2016-6787
• Use-after-free due to race condition in perf subsystem

• Moving group in sys_perf_event_open() is not locked by
mutex correctly

• Spray struct perf_event_context{}
• Control code flow by refill ctx->pmu->pmu_disable(X0)

• Another long story J

Real-time Kernel Protection
• Implemented in TrustZone or hypervisor

• Depends on device model, for S7 edge (SM-G9350), it’s
TrustZone

• CONFIG_TIMA_RKP , CONFIG_RKP_KDP
• Targeted features via samsungknox.com:

• “completely prevents running unauthorized privileged code”
• “prevents kernel data from being directly accessed by user

processes”
• “monitors some critical kernel data structures to verify that

they are not exploited by attacks”

rkp_call()
• RKP call entry

• Called by many critical kernel functions
• SLAB allocation and de-allocation
• Page Table operations
• Copy/Override/Commit creds

Kernel code protection
• Not exclusive features for KNOX 2.6

• “config KERNEL_TEXT_RDONLY”
• Data section not executable
• Privileged eXecute Never (PXN)

• Kill ret2user and other ancient tricks

• New in KNOX 2.8?
• Control flow protection

Kernel page and page table protection
• rkp_call() handles :
• allocations, de-allocations of page table
• manipulations of page entries

• Neither kernel or user space can change
attributes of protected pages
unauthorizedly
• Related functions

• pdg_alloc/free()
• set_pte/pmd/pud()

Kernel data protection
• Based on read only pages
• Read-only global variables

• RO after initialization
• RKP_RO_AREA located in page __rkp_ro_start[]

• struct cred init_cred
• struct task_secrity_struct init_sec
• struct security_oprations security_ops

Kernel object protection

• Allocated in Read-only pages
• Writable for hypervisor or TrustZone

• Protected Object type (name of its kmem_cache):
• cred_jar_ro : credential of processes
• tsec_jar: security context
• vfsmnt_cache: struct vfsmount

• Allocation, deallocation and overwriting routines will
• call rpk_call() to operate read-only objects

• Prevent kernel/user mode manipulating credentials,
security context and mount namespace

History: bypassing trick on S6

• Kernel Object protection had been applied on S6
• Could be bypassed by calling rkp_override_creds()

• able to override current process’s credentials via rkp_call() in
secure world

• Not working on S7
• S7 add more checking in secure world

Case study: rkp_override_creds()

• To override process’s credentials

• Allocate new cred from RO kmem_cache

• Ask RKP to update current cred and
security context

• On S6, attacker can call this function to bypass previous
kernel object protection

Further cred verifying in secure world
• rpk_override_creds()

• -> rkp_call(RPK_CMD(0x41)) -> rkp_assign_creds()
• rkp_assign_creds()

• Real implementation of override_cred() in secure world
• Additional verifying in KNOX 2.6

• e
• Part of Data flow integrity

• UID checking

uid_checking()
• Check if adbd and zygote has started up
• If not, allow the override
• If true, the Android initialize has been finished, start UID checking

• Unprivileged process(uid>1000) cannot override the
credential with high privilege(uid 0~1000)
• But still can change its kernel capabilities (very important!)

integrity_checking()
• Do similar checking with security_integrity_current() in
Linux Kernel
• Will analyze security_integrity_current() later

Another old trick to change credential

• For now we know credentials are READ-ONLY
• What if we reuse init’s credential?

• Not working on S7,because of Data Flow Integrity

current

struct cred*

init_cred

Data Flow Integrity
• New in KNOX 2.6
• Implemented in both Linux kernel and Secure world
• security_integrity_current() (kernel)
• Integrity_checking()

• Additional members in struct cred{}
• use_cnt: pointer to refcount of cred
• bp_task: pointer to this cred’s owner
• bp_pgd: pointer to process’s PGD
• type: not used in DFI

Data Flow Integrity
• New in KNOX 2.6
• Implemented in both Linux kernel and Secure world
• security_integrity_current() (kernel)
• Integrity_checking()

• Additional members in struct task_security_struct{}

• bp_cred: pointer to this context’s owner cred

security_integrity_current()
• Hard-coded hooking in every SELinux routines
• Verify process’s credential in real-time
• To check if

• current struct cred{} and struct task_security_struct{}
are allocated in RO page

• cred->bp_task is current process’s
• task_security->bp_cred is current cred
• current mount namespace is malformed

Summary of RKP and DFI
• Even we achieved arbitrary kernel memory overwriting, we
cannot:
• Manipulate credentials and security context in kernel mode
• Point current credential to init_cred
• Call rkp_override_creds() to ask secure world to help us override

credential with uid 0~1000
• But we still can:
• Call kernel function from user mode

• Hijacking ptmx_fops->check_flags(int flag)
• The number of parameters is limited
• Only low 32bit of X0 is controllable

• Override credential with full kernel capabilities (cred->cap_**)
• Overwrite unprotected data in kernel

Bypassing RKP and DFI

• Main idea: ask kernel to create a privileged process for
me
• Creating a root process
• I can’t call call_usermodehelper(path,argv,envp,wait)
via ptmx_fops->check_flags(flag)
• Call orderly_poweroff() instead

orderly_poweroff()

• Call __oderly_poweroff() in worker thread

• Worker create a new root process, cmd is
poweroff_cmd
• poweroff_cmd is writeable

Bypassing steps

• Call rpk_override_creds() via ptmx_fops->check_flags()
• Override own cred to gain full kernel capabilities
• But don’t change uid

• Overwrite poweroff_cmd with “/data/data/***/ss7kiler”
• Call orderly_poweroff() via ptmx_fops->check_flags()
• Modify ss7killer’s thread_info->address limit
• ss7killer: call rpk_override_creds() to change its sid
from u:r:kernel:s0 to u:r:init:s0

Result: privileged ss7killer

• root
• u:r:init:s0

u:r:init:s0

• Not good enough
• Still be limited by SELinux
• Almost can do nothing…
• Disabling/Bypassing SELinux is necessary

SELinux enhancement

• Disabled CONFIG_SECURITY_SELINUX_DEVELOP long
time ago
• Cannot disable SELinux by overwrite selinux_enforcing
• Statically enforcing all the time

• init process cannot reload SELinux policy after system
initialized
• Permissive domain is not allowed

Permissive domain

• Officially used by Google before Lollipop
• For policy developing purpose

• All domains are non-permissive since Lollipop
• Domains still can be switched to permissive mode by
policy reloading (/sys/fs/selinux/load)

Permissive domain – kernel support

• A permissive domain’s access vector decision(AVD) will
be set AVD_FLAGS_PERMISSIVE
• All operations are permitted

S7 removed AVD_FLAGS_PERMISSIVE

• avc_denied always simply return –EACCES

Bypass SELinux on S7
• Cheating kernel that SELinux is not initialized yet

• Depends on global variable ss_initialized (writable)

selinux hooking routines

avc_has_perm

security_compute_av

if !ss_initialized ALLOW

check

• All labels will reset to none except kernel domain
• Now able to load customized policy and reinitialize

SELinux

After setting ss_initialized = 0
• All labels missed except kernel

• SELinux must be re-enabled ASAP, or Apps may corrupt files’ label
permanently

• Load customized policy and reinitialize SELinux

Policy customizations

• Policy database locate at /sys/fs/selinux/policy
• Modify the database with libsepol API
• Load policy DB to the user memory
• Add rules into database

• Allow untrusted_app, init, toolbox domain to do everything
• Ask kernel to reload the database

• Set ss_initialized to 1

Gain Root
• Leaking kernel information √
• Bypassing KASLR √
• Overwriting arbitrary memory √
• Bypassing RKP & DFI √
• Bypassing enforced SELinux √

