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Defeating Samsung KNOX with zero
privilege

Di Shen (@returnsme)
Keen Lab Tencent (@keen_lab)

Overview of KNOX 2.6

Bypassing KNOX is necessary if you are trying to apply a rooting exploit on Samsung devices.
In April 2016 I found CVE-2016-6787 affected large numbers of Android devices shipped with
3.10 & 3.18 Linux kernel, and successfully make out the rooting exploit. However, the original
exploit wasn’t working on Samsung Galaxy S7 edge. KNOX introduced many mitigations in
Android kernel to prevent from local privilege escalation, including KASLR, DFI, and

SELinux enhancement.

In this section we will have a look at the kernel defence implemented by Samsung KNOX 2.6,
all analyses are based on Galaxy S7 edge, the Qualcomm-based devices, Hong Kong
version.(SM-G9350)

KASLR (Samsung’s implementation)

Samsung implemented its own KASLR for arm64 Linux kernel earlier than UPSTREAM. By
enabling CONFIG_ RELOCATABLE KERNEL, kernel will be complied as a PIE executable.
Bootloader will pass two parameters to the start entry of Linux kernel, one is the physical
address of kernel, another is the actual load address of kernel. Kernel may save the two address

to boot kernel offset[3], calculate the randomized offset of kernel.

ENE(s text)

Must intialize RRK to zero before any RET/BL
mov RRK,

We need RRS to be loaded before we take our
load_function_entry_magic_number_before_reloc h

mov x22, x1 x1=PHYS_OFFSET

mov x19, x2 x2=real TEXT_OFFSET
adr x21, _ boot_kernel_offset

stp x1, x2, [x21]




Then relocate kernel() handles kernel relocating,it’s very similar to a aarch64 linker in user

space. There is a “.rela’ section, contains entries of relative addresses.

__relocate_kernel

sub x23, x19,

adrp x8, __dynsym_start

add x8, x8, :1012:__ dynsym_start x8: start of symbol table
adrp x9, __reloc_start

add x9, x9, :10l12:__reloc_start //x9: start of relocation table
adrp x10, __reloc_end

add x10, x10, :lo0l2:__reloc_end x10: end of relocation table

Real-time kernel protection (RKP)

RKP is implemented in both Linux kernel and secure world. The secure world can be TrustZone
or hypervisor, it depends on devices model, for S7 the secure world is TrustZone. According to

samsungknox.com, RKP provides following security features:
1. “completely prevents running unauthorized privileged code”
2. “prevents kernel data from being directly accessed by user processes”

3. “monitors some critical kernel data structures to verify that they are not exploited by

attacks”

rpk_call() is the syscall entry of RKP. Many critical kernel functions call this function to enter
the secure world, including SLAB allocation and deallocation routines, page table

operations,and copy/override/commit credential routines.

Kernel code protection

This is not an exclusive feature for KNOX 2.6. Most 64 bits Android devices had enabled
“KERNEL TEXT RDONLY” while compiling, so that the “.text” section is not writable.
“.data” section is not executable as well. Based on ARM’s feature Privileged eXecute Never

(PXN), user code is never executable in kernel mode.



Kernel page and page table protection

RKP provides read-only kernel pages for sensitive kernel data and objects, only secure world
can allocate,de-allocate and manipulate these kernel pages. So these pages’ table entries should
be protected from page attribute manipulation as well. When kernel need to access protected
PGD/PTE/PMD/PUD, related routines will call rpk_call() to enter the secure world.

static inline void set pte(pte_t *ptep, pte_t pte)
{
#ifdef CONFIG TIMA RKP
if (pte && rkp is pg dbl mapped ( (uc4) (pte)) )
panic ("TIMA RKP : Double mapping Detected pte =
return;
}
if (rkp_is_pte_protected((uéé)ptep)) {
rkp_flush_cache((ué4)ptep);
rkp_call(RKE_PTE_SET, (unsigned long)ptep, pte v
rkp flush cache ((uééd)ptep) ;
} else T -
asm volatile (
"mov x1, %0\n"
"mov %2, %1\n"
"str x2, [x1]\n"
: "r" (ptep), "r" (pte)
: "x1”, "x2", "memory” );
}
#else

*ptep = pte;
#endif /* CONFIG_TIMA RKP */

Kernel data protection
Data protection is based on page protection. Some critical global variables are stored in section

“.rkp.prot.page”, pages in this section cannot be overwritten any more after kernel initialization.

#define RKP_ RO AREA _attribute_( (section ("..prot.page")) )
extern int rkp cred enable;

extern char rkp ro start[], rkp ro end[];

evtern stract cred init ored:
So far following variables are protected by RKP:
struct cred init_cred

struct task_secrity struct init_sec

Struct security _oprations security _ops



Kernel object protection

The kernel objects in kernel heap also can be protected by RKP. So far following objects (and
their kmem_cache) are protected:

cred_jar ro : credential of processes
tsec_jar: security context
vfsmnt_cache: struct vfsmount — mount namespace

These objects are all read-only in kernel/user mode. Allocation, de-allocation and overwriting
must be done in secure world. For example, in original Linux kernel, kernel can call

override creds() to update a process’s credential. But in Samsung’s repository, this function is
replaced by rkp override creds() , it will allocate credential and security context in read-only

kmem_cache then call rkp call(cmid=0x46) to ask secure world to update process’s credential.

CONFIG_RKP_KDP
struct cred *Xrkp_overriide_creds(struct cred xkcnew)

struct cred xoverride_creds( struct cred xnew)

struct cred xold = current->cred;
CONFIG_RKP_KDP
struct cred *new = *cnew;
struct cred xnew_ro;
unsigned int rkp_use_count = rkp_get_usecount(new);
void xuse_cnt_ptr = NULL;
void *tsec = NULL;

kdebug("override_creds (%p{%d,%d})", new,
atomic_read(&new->usage),
read_cred_subscribers(new));

validate_creds(old);
validate_creds(new);
CONFIG_RKP_KDP
(rkp_cred_enable) {
cred_param_t cred_param;
new_ro = kmem_cache_alloc(cred_jar_ro, GFP_KERNEL);
(!'new_ro)
panic("override_creds(): kmem_cache_alloc() failed");

use_cnt_ptr = kmem_cache_alloc(usecnt_jar,GFP_KERNEL);
('use_cnt_ptr)
panic("override_creds() : Unable to allocate usage pointer\n");

tsec = kmem_cache_alloc(tsec_jar, GFP_KERNEL);
(!tsec)
panic("override_creds() : Unable to allocate security pointer\n");

rkp_cred_fill_params(new,new_ro,use_cnt_ptr,tsec,RKP_CMD_OVRD_CREDS, rkp_use_count);
rkp_call(RKP_CMDID(0x46), (unsigned long long)&cred_param,9,0,0,0);

rocred_uc_set(new_ro,2);
rcu_assign_pointer(current->cred, new_ro);




Credential verifying in secure world

On Galaxy S6, attacker can simply call tkp override creds() to bypass the kernel object
protection and escalate privilege, but this trick isn’t working for S7 any more. RKP add another

checking to verify if the submitted new credential is a legal one.

if ( IviT)
return rkp_printk("NULL pData"”, OLL, OLL, OLL);
__memcpy((__int64)&vlil, vl, 0x30u);
result = intergrity_chk();
if ( result )
3 = get_caller_thread_info();
cb = get_physical_addr( ;
d ed = get_physical_addr(*(_QWORD *) (; + 8 * hardcode_table[17]));
e ed = get_physical_addr( )i
= get_physical_addr( )i
if ( new cred & v7 & lsub_85803838(v7) )
if ( (unsigned int)check_there_is_adbd_zygote(pcb, old_cred) && (unsigned int)uid_checking(new_cred, old_cred) )

rkp_printk(
"Priv Escalation!"”,

new_cred,
*(_QWORD *)(new_cred + 8LL * HIDWORD(hardcode_table[19])),
*(_QWORD *)(old_cred + 8LL * HIDWORD(hardcode_table[19])));
result = priv_escalation_abort(new_cred, old_cred, 1LL);
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Uid checking()

Before adbd and zygote start up, uid_checking will always return ALLOW; after that
unprivileged process(uid>1000) cannot override the credential with high privilege (uid 0~1000)
any more. That is why the old tricks on S6 was not working any more. However, in fact, on S7
you call still use this trick to modify the kernel capabilities of your current credential, even

changing uid is not permitted.

Integrity checking()

This checking will check if current credential belongs to current process, and check if current
security context belongs to current credential. This is very similar to function
security integrity current() in Linux kernel. We’ll analyze this function in next section “Data

Flow Integrity”.

Data Flow Integrity (DFI)

There is another old trick to manipulate current credential. For now, we know that credentials

are read-only, what if we reuse init process’s credential in current context?




Actually it’s not working because of Data Flow Integrity. DFI defines additional members in
struct cred {}

struct user_struct xuser;
struct user_namespace *user_n
struct group_info *xgroup_info
struct rcu_head rcu;
CONFIG_RKP_KDP

atomic_t *use_cnt;

struct task_struct xbp_task;
void *bp_pgd;

unsigned long long type;

B R AT =)
References <

-
Na

Name
=] security_integrity_current
& security_integrity_current

bp_task is a pointer to this cred’s owner, bp_pgd is a

pointer to process’s PGD. During committing/overriding a &) selinux_set_mnt_opts
. . . & selinux_cmp_sb_context
new credential in secure world, RKP will record the owner & selinux_sb_clone_mnt_opts

& selinux_parse_opts_str

& selinux_sb_show_options
selinux_binder_set_context_mgr
selinux_binder_transaction
selinux_binder_transfer_binder
selinux_binder_transfer_file
selinux_ptrace_access_check
selinux_ptrace_traceme
selinux_capget

selinux_capset
selinux_capable
selinux_quotactl
selinux_quota_on
selinux_syslog
selinux_vm_enough_memory
selinux_bprm_set_creds
selinux_bprm_secureexec
selinux_bprm_committing_creds
selinux_bprm_committed_creds
selinux_sb_alloc_security
selinux_sb_free_security
selinux_sb_copy_data
selinux_sb_remount
selinux_sb_kern_mount
selinux_sb_statfs

=] selinux_mount

& selinux_umount

& selinux_inode_alloc_security
&

=

of this credential in bp_task. RKP also record the owner of

struct task security struct{} in bp_cred.

security integirity current() is a hard-coded hooking in
every SELinux routines, so almost every Linux syscall will
at least call this checking function once to check data’s
integrity.

+

int security_integrity_current(void)
{

( rkp_cred_enable &&
(rkp_is_valid_cred_sp((u64)current_cred(), (u64)current_cred()—>security) | |
cmp_sec_integrity(current_cred(), current->mm) | |

cmp_ns_integrity())) {
rkp_print_debug();
panic("RKP CRED PROTECTION VIOLATION\n");

E-E-5-E-5-E-E-E-E-E-E-E-E-E-E-E-E-E-E-E-E-E-E-E

(0 (0 0 () (0 ) ) () () ) () () (0 1 0

chc
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0;

selinux_inode_free_security
selinux dentry init security
Moo e A A — aa a | .

[

Summary of RKP and DFI

With RKP enabled, even we achieved arbitrary kernel memory overwriting, we cannot 1)
manipulate credentials and security context in kernel mode; 2) point current credential to
init_cred; 3) call rkp override creds() to ask secure world to help us override credential with
uid 0~1000. But we still can: 1) invoke kernel functions from user mode by hijacking

ptmx_fops->check flags(int flag), note that the number of parameters is limited, only low 32bit



of X0 is controllable; 2) Override credential with full kernel capabilities (cred->cap **); 3)

overwrite other unprotected data in kernel.

SEL1inux enhancement

Removed selinux_enforcing

On other Android devices, SELinux can be simply disabled by overwriting “selinux_enforcing”
to 0 in Linux kernel. Samsung removed this global variable in kernel by disabling
CONFIG_SECURITY_SELINUX DEVELOP long time ago.

Disability of policy reloading

And also init process cannot reload SELinux policy after system initialized, which means after
Android initialization, attacker cannot simply change its domain to init and reload a customized

policy to bypass SELinux.

Removed support of permissive domain

Furthermore, permissive domain is not allowed neither. The permissive domain was officially
used by Google before Lollipop for policy developing purpose. On KitKat you can see that init
is a permissive domain, which means even SELinux is enforcing, init process still can do

everything it want without a permission deny from kernel.

XRe fKitKat 4.4.4 r1

xref: /external/sepolicy/init.te
Home | History |Annotate | Line# | Navigate | Downloac

1 # init switches to init domain (via init.rc).
type init, domain;

permissive init;

# init is unconfined.

unconfined_domain(init)

b £ A2 2an

NOTL W N

After that Google remove the permissive domain on Lollipop’s SELinux policy, but permissive
domain is still allowed by kernel’s SELinux access vector checking routing. If you can reload a
customized SELinux policy with permissive domain declared, it’s still a good way to bypass
SELinux. Permissive domain’s access vector database will be marked as

AVD FLAGS PERMISSIVE, as you can see in avc_denied(), with this flags all denied

operation can be allowed.



static noinline int AVC denied(ua: ssid, u3l tsid,
ulé tclaégi u3l requested,
u8 driver, uS xperm, unsigned flags,
struct av_decision *avd)

if (flags & AVC_STRICT)
return -EACCES;

if (selinux_enforcing && ! (avd->flags & AUD_FLAGS_PEPMISSIVE))
return -EACCES;

avc_update_node(AVC_CALLBACK_GRAHT, requested, driver, xperm, ssid,

tsid, tclass, avd->seqno, NULL, flags);
return 0;

Samsung modified the function avc_denied(), this function always returns -EACCESS without

any exception on S7.

M

avc_denied.isra.0

MOV WO, #0xFFFFFFF3

RET

; End of function avc_denied.isra.0

Bypassing techniques

Requirements

To build an exploit chain to root Galaxy S7, at least you need two vulnerabilities, one for leak
kernel information, another for arbitrary kernel memory overwriting. Combined with following

bypass techniques, a fully working exploit chain will be explained in this section.

Vulnerabilities I used in this chain

The information leaking vulnerability will be disclosed in section “KASLR bypassing”.

Another one is CVE-2016-6787 found by myself in April 2016, an use-after-free due to race
condition in perf subsystem. Note that the patch for “kernel.perf event paranoid” was not
applied on Android at that time, so that this bug could be triggered by any local application.

And also you can use any other exploitable kernel memory corruption bugs instead of this one.

The root cause of this vulnerability is that moving group in sys_perf event open() is not locked
by mutex correctly. By spraying kernel memory you call refill struct perf event context{} and
control code flow by triggering ctx->pmu->pmu_disable(X0).To make this exploit 100%
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reliable is another long story. A full description of exploiting CVE-2016-6787 may disclose in

the future.

Exploit chain

Rooting a standard Android device normally requires 4 steps.

Arbitrary kernel memory Overwrite Overwrite s()e\élelt;\;:ryl‘fg gﬁdd
overwriting ptmx_fops addes i selinux_enforcing

Rooting S7 requires some additional steps to bypass KNOX mitigation

Arbitrary . Bypass .
Overwrite Overwrite { Gain root
Yo KASLE > kernel memory > ptmx_fops > address_limit > (£}l D17 > SIEILREC T privilege
overwriting Samsung

KASLR bypassing

On S7 there are some debugging files in /proc fs, the following are TIMA logs.

hell@hero2qltechn:/proc $ Lls -1 | grep tz
| shell@hero2qltechn:/proc $ 1s -1 | grep tima
rw-r--r-- root root 0 2016-05-14 16:52 tima_debug_log

rw-r--r-- root root © 2016-05-14 16:52 tima_debug_rkp_log
rw-r--r-- root root 0 2016-05-12 19:44 tima_secure_rkp_log
hell@hero2qltechn:/proc $ |}

Kernel pointers leaked in global readable file /proc/tima_secure rkp log. At 0x13B80 of this
file, it leaked the actual address of init user ns. “init_user ns” is a global variable in kernel’s
data section, so with the leaked information, we can calculate the loading offset of Linux
kernel, and bypass KASLR.

11



DFI bypassing

The main idea is asking kernel to create a privileged process for me, so that I’ll not break any
checking rules defined by RKP and DFI. However I cannot call call _userermodehelper() via
ptmx_fops->check flags(int), as I’ve explained above, this function have 4 parameters while I
can only pass one from user mode. So I choose to call orderly poweroff() instead.

int orderly_poweroff(bool force)

{
(force)
poweroff_force = true;
schedule_work(&poweroff_work);
0;
}
EXPORT_SYMBOL_GPL(orderly_poweroff);

orderly poweroff() will create a worker thread to create a new user mode process

“/sbin/poweroff”. The path of this executable file is poweroff cmd which can be manipulated.

char poweroff_cmd [POWEROFF_CMD_PATH_LEN] = "/sbin/poweroff";

s i o rderly_powerof f{l M- ]g«))

char xkargv;
char *envp[] = {
||H0ME=/|I ,
"PATH=/sbin:/bin:/usr/sbin:/usr/bin",
NULL
s

int ret;

argv = argv_split(GFP_KERNEL, poweroff_cmd, NULL);
(argv) {
ret = call_usermodehelper(argv([@], argv, envp, UMH_WAIT_EXEC);
argv_free(argv);

So the bypassing steps are 1) Call rpk_override creds() via ptmx_fops->check flags() to
override own cred to gain full kernel capabilities 2) Overwrite poweroff cmd with
“/data/data/***/ss7kiler” 3) Call orderly poweroff() via ptmx_fops->check flags() 4) Modify
ss7killer’s thread info->address limit 5) ss7killer call rpk_override creds() to change its

context from u:r:kernel:s0 to u:r:init:s0
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hell@hero2qltechn:/ $ ps -Z | grep init

:r:init:so root 1 0 /init

:init:s0 root 20592 1 /data/local/tmp/ss7killer
:init:s0 root 20608 20592 su

:init:s0 root 20611 1 daemonsu:mount:master
:init:s0 root 20614 1 daemonsu:master
:init:s0 root 20797 20614 daemonsu:0

:init:s0 root 21161 20614 daemonsu:10193
:init:s0 root 21163 21161 daemonsu:10193:21157

cCccCcccococcoccwn

Till now we ask kernel thread to create a root process “ss7killer” with u:r:init:s0 security
domain. However, this process is still limited by SELinux, to gain full access we need to bypass
SELinux.

SELinux bypassing

We need to cheat kernel that SELinux is not initialized yet, this status depends on global
variable ss_initialized, which is not protected by RKP. If ss_initialized is set to 0, all security
labels will be reset to none except kernel domain, all operations can be allowed by SELinux

hooking routines, loading customized policy and reinitializing SELinux can be possible.

selinux hooking routines .
—— * All labels will reset to

P— * Now able to load cust

security_compute_av

if Iss. initialized
-
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After setting ss_initialized to 0, we need to load SELinux policy in user space, modify it with
libsepol API. The policy database locates at /sys/fs/selinux/policy. Then insert allow rules into
the database, allow domains including “untrusted app”, init, toolbox to do everything. Finally,
we should recover ss_initialized ASAP, otherwise other process with none security label may
create none label files and corrupt the file system.

Gain root

Finally we got a full root access on Samsung Galaxy S7 with KNOX 2.6.

. . ddshen — adb shell — 91x29 A BFEHME 7
Last login: Wed Jun 29 19:23:54 on ttys0e® P SaouamEays
retme-no-RMBP:~ ddshen$ adb shell

shell@hero2qltechn:/ $ ps -Z | grep s7kill

u:r:init:s0 root 14453 /data/local/tmp/s7killer
shell@hero2qltechn:/ $ ps -Z | grep daemonsu

u:r:init:so root 14593 daemonsu:mount:master
u:r:init:so root 14596 daemonsu:master
u:r:init:so root 14620 14596 daemonsu:0
shell@hero2qltechn:/ $ su

root@hero2qgltechn:/ # id

uid=0(root) gid=0(root) groups=0(root) context=u:r:toolbox:s0O
root@hero2qltechn:/ # getenforce

Enforcing

root@hero2qltechn:/ #
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