

DIPARTIMENTO DI ELETTRONICA INFORMAZIONE E BIOINGEGNERIA

black hat USA 2017

JULY 22-27, 2017 MANDALAY BAY / LAS VEGAS

Breaking the Laws of Robotics Attacking Industrial Robots

<u>Davide Quarta</u>, <u>Marcello Pogliani</u>, Mario Polino, <u>Federico Maggi</u>, Andrea M. Zanchettin, Stefano Zanero

Industrial robots?

black hat USA 2017 Industrial Robot Architecture (Standards)

Flexibly programmable & Connected

PROC main() **TPErase;** trapped := FALSE; done := FALSE; MoveAbsJ p0, v2000, fine, tool0; WaitRob \ZeroSpeed; CONNECT pers1int WITH stopping; IPers trapped, pers1int; CONNECT monit1int WITH monitor; ITimer 0.1, monit1int; WaitTime 1.0; MoveAbsJ p1, vmax, fine, tool0; speed **ENDPROC**

1.2 (192.168.8.217)

16:08 2013-06-17

blackhat "Implicit" parameters

"Implicit" parameters

bláčk hať

USA 2017

Flexibly programmable & Connected (Part 1)

black hat

They are already meant to be connected

17.3 Sending/receiving e-mails on C4G Controller

A PDL2 program called "email" is shown below ("email" program): it allows to send and receive e-mails on C4G Controller.

DV4_CNTRL Built-In Procedure is to be used to handle such functionalities.

	_
	- 1
18	
18	

See DV4_CNTRL Built-In Procedure in Chap. BUILT-IN Routines List section for further information about the e-mail functionality parameters.

17.3.1 "email" program

```
PROGRAM email NOHOLD, STACK = 10000
CONST ki_email_cnfg = 20
ki email send = 21
```

17.4 Sending PDL2 commands via e-mail

The user is allowed to send PDL2 commands to the C4G Controller Unit, via e-mail. To do that, the required command is to be inserted in the e-mail title with the prefix 'CL' and the same syntax of the strings specified in SYS_CALL built-in. Example: if the required

Connected Robots: Why?

- Now: monitoring & maintenance ISO 10218-2:2011
- Near future: active production planning and control
 some vendors expose REST-like APIs
 ... up to the use of mobile devices for commands
- Future: app/library stores
 "Industrial" version of robotappstore.com?

Connected?

Do you consider **cyber attacks** against robots a **realistic threat?**

important than the vulnerabilities alone.

How do we assess the **impact** of an attack against **industrial robots?**

We assess impact by reasoning on requirements

Requirements: "Laws of Robotics"

Safety

Accuracy

Integrity

Requirements: "Laws of Robotics"

Safety

Accuracy

Integrity

Acknowledgements T.U. Munich, YouTube -- Dart Throwing with a Robotic Manipulator

Requirements: "Laws of Robotics"

Safety Accuracy

Integrity

Safety violating any of these Accuracy --> requirements via a digital vector

black hat USA 2017 Control Loop Alteration

black hat USA 2017 Control Loop Alteration

Control Loop Alteration

black hat Calibration Tampering

Production Logic Tampering

density config. weight 0

Attack 3 Accuracy

black hat Displayed or Actual State Alteration

black hat Displayed or Actual State Alteration

Displayed State Alteration PoC

bláčk hať

USA 2017

Malicious DLL

Displayed State Alteration PoC

bláčk hať

USA 2017

Malicious DLL

Is the Teach Pendant part of the safety system?

Is the Teach Pendant part of the safety system?

NO

🗲 #BHUSA / @BLACKHATEVENTS

Fwd:

to 📕

Standards & Regulations vs. Real World

Researchers hijack a 220-pound industrial robotic arm

has long had a robotics program and laboratories with larger robot arms than the one shown. These were the kind of robot arms where the lab floor had a red line to show the swing distance - inside that line and you could be struck by the arm, potentially fatally. Some of the early models were controlled by PCs connected to the corporate network. When powered down, the arms and their controllers were supposed to be safed. However, the COTS computers had a wake-on-LAN function. The internal security folks ran nmap with ping and happened to include the robotics labs' LAN. The PC woke up, automatically ran the robotics control program, and the arm extended to full length and swung around its full arc. This was witnessed by workers in the lab who, fortunately, were behind the red line.

🗲 #BHUSA / @BLACKHATEVENTS

...so far, we assumed the attacker has already compromised the controller...

ቻ #BHUSA / @BLACKHATEVENTS

... let's compromise the controller!

User Authorization System

User \in roles \rightarrow grants Authentication: username + password Used for FTP, RobAPI, ...

User Authorization System

All controllers have a default user named *Default User* with a publicly known password *robotics*. The *Default User* cannot be removed and the password cannot be changed. However, a user having the grant *Manage UAS settings* can modify and restrict the controller grants and application grants of the *Default User*.

Operating manual RobotStudio Note

From RobotWare 6.04 it is also possible to deactivate the *Default User*, see *User* Accounts on page 421.

User Authorization System

All controllers have a default user named *Default User* with a publicly known password *robotics*. The *Default User* cannot be removed and the password cannot be changed. However, a user having the grant *Manage UAS settings* can modify and restrict the controller grants and application grants of the *Default User*.

Operating manual RobotStudio Note

From RobotWare 6.04 it is also possible to deactivate the *Default User*, see *User* Accounts on page 421.

tl;dr; read deployment guidelines & deactivate the default user

How? FTP at boot

FTP	116	<pre>Request: SIZE /hd0a/ROBOTWARE_5.13.1037/TPS//SxTPU/2.0/TpsStart.exe</pre>
FTP	66	Response: 213 415744
FTP	116	<pre>Request: RETR /hd0a/ROBOTWARE_5.13.1037/TPS//SxTPU/2.0/TpsStart.exe</pre>
FTP	95	Response: 150 Opening BINARY mode data connection

.... plus, no code signing, nothing

FTP? Credentials? Any credential is OK during boot!

FTP 105	Response: 220 ABB Robotics FTP server (VxWorks5.5.1) ready.
FTP 77	Request: USER TpuStartUserXz
FTP 77	Response: 331 Password required
FTP 77	Request: PASS
FTP 74	Response: 230 User logged in

ABBVU-DMRO-124644

🗲 #BHUSA / @BLACKHATEVENTS

black hat USA 2017 Autoconfiguration is magic!

IUSA / @BLACKHATEVENTS

Autoconfiguration is magic!

FTP	117	Response: 220 ABB Robotics FTP server (VxWorks5.5.1) ready.
FTP	84	Request: USER _SerB0xFtp_
FTP	89	Response: 331 Password required
FTP	81	Request: PASS
FTP	86	Response: 230 User logged in
FTP	72	Request: PASV
FTP	114	Response: 227 Entering Passive Mode (192,168,125,1,4,25)
FTP	93	Request: RETR / command/startupInfo
FTP	107	Response: 150 Opening BINARY mode data connection
FTP	89	Response: 226 Transfer complete
FTP	72	Request: QUIT
FTP	91	Response: 221 Byesee you later

ABBVU-DMRO-124642

FTP RETR /command/whatever read system info FTP STOR /command/command execute "commands"

ABBVU-DMRO-124642

FTP RETR /command/whatever read system info FTP STOR /command/command execute "commands"

89 Request: STOR /command/command

priority 70
stacksize 5000
remote_service_reg 192.168.125.83,1426,60

ABBVU-DMRO-124642

FTP GET /command/whatever read, e.g., env. vars
FTP PUT /command/command execute "commands"

shell reboot
shell uas_disable

+ hard-coded credentials? \rightarrow remote command execution

Let's look at cmddev_execute_command:

shell → sprintf(buf, "%s", param)
other commands → sprintf(buf, "cmddev_%s", arg)

overflow **buf** (on the stack) \rightarrow **remote code execution**

Other buffer overflows

Ex. 1: RobAPI

- Unauthenticated API endpoint
- Unsanitized strcpy()
- \rightarrow remote code execution
- Ex. 2: Flex Pendant (TpsStart.exe)
- FTP write / command / timestampAAAAAAAA.....AAAAAAA
- file name > 512 bytes ~> Flex Pendant DoS

Some memory corruption

Mostly logical vulnerabilities

All the components blindly trust the main computer (lack of isolation)

🔰 #BHUSA / @BLACKHATEVENTS

Complete attack chain (1)

FTP PUT malice.dll	\rightarrow	FP/MC will load malicious library at next boot
FTP PUT /command/command.cmd script: "shell reboot"]>	FP/MC will reboot
 malice.dll will call home (C&C functionality)]>	Robot controller is now under attacker's control

🔰 #BHUSA / @BLACKHATEVENTS

Complete attack chain (2)

Using static credentials
 FTP PUT /command.cmd

2 FTP PUT /command/command.cmd script: "shell-uas_disable"

bláčkhať

USA 2017

AUTH is now disabled

FTP PUT malice.dll
 FP/MC will load malicious
 library at next boot

Complete attack chain (3)

bláčk hať

USA 2017

"Sensitive" files:

- Users' credentials and permissions
- Sensitive configuration parameters (e.g., PID)
- Industry secrets (e.g., workpiece parameters)

"Sensitive" files:

- Users' credentials and permissions
- Sensitive configuration parameters (e.g., PID)
- Industry secrets (e.g., workpiece parameters)

Obfuscation: bitwise XOR with a "random" key. Key is derived from the file name. Or from the content. Or ...

That's how we implemented the attacks

🔰 #BHUSA / @BLACKHATEVENTS

Flexibly programmable & Connected (Part 2)

🗲 #BHUSA / @BLACKHATEVENTS

Remote Exposure of Industrial Robots

Search	Entries	Country
ABB Robotics	5	DK, SE
FANUC FTP	9	US, KR, FR, TW
Yaskawa	9	CA, JP
Kawasaki E Controller	4	DE
Mitsubishi FTP	1	ID
Overall	28	10

Not so many...

(yesterday l've just found 10 more)

Remote Exposure of Industrial Routers

Unknown which routers are actually robot-connected

láčk hať

LISA 2017

Brand	Exposed Devices	No Authentication
Belden	956	
Eurotech	160	
eWON	6,219	1,160
Digi	1,200	
InHand	883	
Моха	12,222	2,300
NetModule	886	135
Robustel	4,491	
Sierra Wireless	50,341	220
Virtual Access	209	
Welotec	25	
Westermo	6,081	1,200
TOTAL	83,673	5,105

🔰 #BHUSA / @BLACKHATEVENTS

Trivially "Fingerprintable"

- Verbose banners (beyond brand or model name)
- Detailed technical material on vendor's website
 Technical manual: All vendors inspected
 - Firmware: **7**/12 vendors

	Ser#:1
Added on 2017-07-12 10:26:48 GMT	Software Build Ver Sep 24 2012 06:22:23 WW
United States	ARM Bios Ver v4 454MHz ,0 MAC:
Details	

Outdated Software Components

- Application software (e.g., DropBear SSH, BusyBox)
- Libraries (including crypto libraries)
- Compiler & kernel
- Baseband firmware

Typical Issues (2)

Insecure Web Interface

- Poor input sanitization
- E.g., code coming straight from a "beginners" blog

Bottom line Connect your robots with care

(follow security best practices & your robot vendor's guidance)

🔰 #BHUSA / @BLACKHATEVENTS

Conclusions

Black Hat Sound Bytes

Robots are increasingly being connected Industrial robot-specific class of attacks

Barrier to entry: quite high, budget-wise

What should we do now?

Vendors are very responsive

As a **community** we really need to **push hard for countermeasures**

🔰 #BHUSA / @BLACKHATEVENTS

Short term

Attack detection and deployment hardening

Medium term

System hardening

Long term

New standards, beyond safety issues

🗲 #BHUSA / @BLACKHATEVENTS

Marcello Pogliani marcello.pogliani@polimi.it

@mapogli

Federico Maggi

davide.quarta@polimi.it @_ocean

Davide Quarta

federico_maggi@trendmicro.com @phretor

Papers, slides, and FAQ http://robosec.org_http://bit.ly/2qy29oq

An Experimental Security Analysis

of an Industrial Robot Controller

Davide Quarta*, Marcello Pogliani*, Mario Polino*, Federico Maggi^{*†}, Andrea Maria Zanchettin^{*}, and Stefano Zanero^{*}

at dan que

A TrendLabs Research D

Rogue Robots: Testing the Limits of an industrial Robot's Security

Trend Micro Forward-Looking Threat Research

Davide Quarta, Marcello Pogliani, Mario Polino,

Andrea M. Zanchettin, and Stefano Zanero

Politecnico di Milano

*Dipartimento di Elettronica, Informazione e Bioingegneria – Politecnico di Milano, Italy Ulparumento di Elettronica, informazione e Bioingegneria – Pointecnico di Milano, Italy {davide.quarta, marcello.pogliani, mario.polino, andreamaria.zanchettin, stefano.zanero}@polimi.it that, in the future, a manufacturer could leverage these attack opportunities to affect the reputation of a comp not to mention the possibility that enemy nations cou each others' factories manufacturing critical goods A further exacerbating factor is that robot control be promptly patched, since updates may require downtime, or even introduce regressions and bugs that render the software unusable. This lem" makes the exploitation window of a vu and analyze a concrete deployment from a systems security longer, eventually increasing the impact of and analyze a concrete deproyment from a systems security standpoint. Then, we propose an attacker model and confront Taking advantage of new interconnecti stanopoint. Inen, we propose an attacker model and contront it with the minimal set of requirements that industrial robots devices originally designed to work in should honor; precision in sensing the environment, correctness already observed, for instance, in the a in execution of control logic, and safety for human operators. Following an experimental and practical approach, we then industrial control system (ICS) sectors show how our modeled attacker can subvert such requirements successful attacks have been recently snow now our modeled attacker can subvert such requirements through the exploitation of software vulnerabilities, leading to attack on a German steel mill car

down a blast furnace. In 2015, 2

I to the U.S. ICS CERT IS

Abstract-Industrial robots, automated manufacturing, and Abstract—Industrial robots, automated manufacturing, and efficient logistics processes are at the heart of the upcoming fourth industrial revolution. While there are seminal studies on the vulnerabilities of cyber-physical systems in the industry, as ine vumerabilities of cyper-physical systems in the industry, as of today there has been no systematic analysis of the security of ndustrial robot controllers. We examine the standard architecture of an industrial robot

industrial robot controllers.

democing safety standards and security

DIPARTIMENTO DI ELETTRONICA INFORMAZIONE E BIOINGEGNERIA

black hat USA 2017

JULY 22-27, 2017 MANDALAY BAY / LAS VEGAS

Breaking the Laws of Robotics Attacking Industrial Robots

<u>Davide Quarta</u>, <u>Marcello Pogliani</u>, Mario Polino, <u>Federico Maggi</u>, Andrea M. Zanchettin, Stefano Zanero

🔰 #BHUSA / @BLACKHATEVENTS