Research at Google

Attacking encrypted USB keys the hard(ware) way

Jean-Michel Picod, Rémi Audebert, Sven Blumenstein, Elie Bursztein with the help of many Googlers

Of USB drives storing company data are lost or stolen

Are encrypted USB drives really hacker proof?

How to audit encrypted drives

Show-case real attacks found while auditing

On-going research ahead

Encrypted USB key inner working

Logical view of a secure USB key

Key with controller and memory separated

Research at Google

Integrated key

Research at Google

NIST certifications for encrypted USB keys

FIPS certifications

FIPS 140

Cryptographical security disclosure & validation process

FIPS 197 Fancy way to write AES ;)

Research at Google

FIPS 140 scope in a nutshell

Research at Google

One of the many FIPS certification fails

Research at Google

Audit methodology

Attacker type

Serendipitous

Opportunistic attacker with minimal resources

Professional

Attacker with resources, albeit limited

State sponsored

After specific data/keys that are worth a large investment

Attack impact

Weaken security

Makes carrying attack easier

Single drive break

"Only" allowed to recover a single drive data

5

Full break

Recovery attack that affects all drives

Research at Google

Defensive manufacturing key goals

Mitigating hardware attacks

Slowdown initial analysis and prevent physical tampering & counterfeit

Preventing advanced attacks

Defend against very targeted attack: e.g TEMPEST, EVIL MAID

TEMPEST prevention via copper shielding

Research at Google

Mitigate component extraction with epoxy

Research at Google

Fake epoxy insecurity

Research at Google

NIST evaluation fail

PLC. -

(Underlying Steel Chassis) and

Plus (Underlying Steel Chassis)

5 PHYSICAL SECURITY

The cryptographic boundary for the modules is defined as all components within the steel chassis only. All components are coated in epoxy and encased in the steel chassis. The rubber sleeve material which surrounds the steel chassis is not considered part of the cryptographic boundary, and has been excluded from the FIPS 140-2 requirements on the bas that it contributes nothing to the module's security. The modules do not have removable doors or cover. They components with integrated circuit packaging that is production grade using standard passivation within the visible spectrum.

Etching

Etching failed

Leaving debug ports active

Research at Google

Defensive manufacturing criteria

Device is tamper evident				
PCB is dipped in epoxy to make extraction harder		C		
Hardware components marking & serial numbers are erased		C		
Firmware must be properly signed or read-only		5		
PCB is shielded in copper to prevent TEMPEST attack				
Device is counterfeiting resistant				
Encryption key is wiped out upon tampering	*	C		
Serendipitous in Professional State Sponsored Weakness	Single drive break	Full break		

Input mechanism key security goals

Identifying users accurately

Only valid users should be recognized

Securing credential enrollment

Prevent rogue identifiers (fingerprint/badges) to be enrolled

Pinpad

Fingerprint

Fingerprint reader

Software

Software

	IHSFØ			
			_	
En	ter password:			
Ca	ps Lock: OFF			

Research at Google

Unlock command can be replayed

Target		Fingerprint key 1
Impact	5	Full break
Attacker		Professional

Research at Google
Home / Storage

Kingston Admits "Secure" USB Drives Are Vulnerable

🚯 💟 🚱 🖗 🎯 🙄 🕞

By John E. Dunn JAN 5, 2010 8:21 AM PT

Secure USB Flaw Exposed

1/4/2010

06:55 PM

USBs go under the microscope as vulnerability discovered in SanDisk secure USB leads to recall of Kingston USBs and updates to SanDisk, Verbatim USBs

Unlock command replay attack against <mark>software based</mark> key found in 2010

Research at Google

Vulnerable key

Research at Google

Vulnerable key internal

Research at Google

Identification command flow through serial line

Research at Google

Attack setup

Buspirate used for injection

Research at Google

Research at Google

Input can be cloned

Target	HDD with badge
Impact	Single drive break
Attacker	Professional

Research at Google

Vulnerable device

Research at Google

Vulnerable device internal

Research at Google

Cloning equipment

Research at Google

Research at Google

Input audit criteria

Pin is not stored in software	?	5
Unlock command can't be replayed	8	5
Keypad don't show obvious sign of wear and tear		C
Input (e.g tag, fingerprint) can't be cloned		C
Debug ports are disabled		C

Full break

Controller security key goals

Protect secrets

Pin hash and AES key must be non recoverable

Lock the drive when needed

Ensure that data is only accessed in safe circumstances

Destroy secrets when attacked

Make the drive unusable in case too many attempts are made

Firmware attestation

Ensure that the firmware used is really the one disclosed

USB communication interception

Interception in practice

Password can be extracted

Target		Fingerprint key 2
Impact	5	Full break
Attacker		Serendipitous

Research at Google

Vulnerable key

Research at Google

Key internals

Research at Google

Research at Google

Input can be brute-forced

Target		HDD with badge
Impact	5	Full break
Attacker		Serendipitous

Research at Google

Vulnerable badge

Research at Google

Controller audit criteria

Device is burned out after nth unsuccessful attempts		5
Password & AES key can't be requested		5
AES Key is regenerated upon drive reset		5
Device immediately lock itself when removed from USB port		C
Device lock itself after inactivity period		
Device immediately lock itself after a USB reset		C
Encryption key is zeroed when the device is burnt		C
Data is zeroed out when the device is burnt		C

Research at Google

Cryptography key goals

Data is properly encrypted (duh!)

State of the art encryption with proper initialization and settings

Encryption keys are truly random

Each drive have a unique key that is not predictable

Cryptography audit on hardware complexity

Black box (literally!)

Algorithms are baked in the silicon

Most tests are too expensive in current setting

Audit can only catch the most blatant errors

Use outdated crypto

Target	Password protected key
Impact	Single drive break
Attacker	State sponsored

Research at Google

A few examples we came across

RSA-512 used to communicate on USB port Open the door to factoring attacks

RC4 to encrypt files

Broken cipher

Research at Google

Encryption audit criteria

Encryption key is unique per device		5
There is no recovery/master key		5
Encryption key derivation use PBKDF2 algorithm with enough round		C
Encryption key is randomly generated	*	
A secure random generator is used		
Data is encrypted with AES or newer standard		C
IV are properly randomized		C
Encryption chaining algorithm is secure		

Research at Google

Storage goals

Full encryption

Everything including data, configuration, software should be encrypted

Integrity Storage tampering should be detected

Extracting memory content - not that easy ^^

Research at Google

CD-ROM partition can be backdoored

Target	Password protected key
Impact	Single drive break
Attacker	State sponsored

Research at Google

After removing the metal enclosure

Research at Google

Epoxy removed

Research at Google

Chip-off

Research at Google
Memory dump

Research at Google

Hexdump of the raw dump

	00	01	02	03	04	05	06	07	08	09	AO	0B	0C	0 D	0E	0 F	
0000000000	DA	FA	B1	E0	CE	98	85	FB	AA	89	A7	DB	F2	DD	18	10	Úú±àÎ~…û≗‰§ÛòÝ
000000010	6D	BE	82	73	FB	CE	15	2B	85	3B	2B	A4	FD	25	B3	35	m¾, sûÎ.+…;+¤ý%³5
000000020	5E	4D	EE	87	B1	78	F2	46	42	D1	D3	C9	4C	20	22	E1	^MxòFBÑÓÉL "á
000000030	9E	4A	84	FE	73	C9	25	8D	B1	AA	8A	61	D5	E 5	15	63	žJ"þsÉ% ±ª″aÕå.c
0000000040	EA	B6	76	76	D6	86	39	2F	08	10	B0	B6	57	16	88	21	ê¶vvÖ†9/°¶W.^!
000000050	18	2C	CB	3A	CE	20	23	A8	C9	67	00	AC	84	38	96	29	.,Ë:Î #ŠÉg.⊣"8-)
000000060	4A	AE	9E	C2	4D	99	03	A3	A4	2E	14	EF	C7	EB	93	16	JøžÂM™.£¤ïÇë".
000000070	E0	C7	09	86	1C	FE	C9	D6	6C	89	7E	5D	80	7 F	8A	F4	àÇ.†.þÉÖ1‱~]€ ¨ô
000000080	06	BC	B5	BE	26	2C	ED	38	80	54	07	C6	7C	CA	DA	9 F	.‰µ¾≤,í8€T.Æ ÊÚŸ
000000090	09	F7	CF	3D	89	43	17	D2	AD	4B	5D	56	B8	7 D	D5	B9	.÷Ï=‰C.Ò.K]V,}Õ¹
0A00000000	5C	C2	6E	48	79	11	B8	05	07	33	A7	36	E8	FC	E4	0B	\ÂnHy.,3§6èüä.
0000000B0	C6	B3	9B	D5	55	6E	2C	25	4B	25	8C	DA	D1	CD	E0	CD	Ƴ>ÕUn,%K%ŒÚÑÍàÍ
0000000000	B7	E4	DO	4A	45	7B	44	47	16	45	39	C8	5A	38	D5	CE	·äÐJE{DG.E9ÈZ8ÕÎ
0000000D0	34	ED	8B	2C	E3	DF	03	FE	6A	C9	C8	38	19	BD	92	ED	4í∢,ãß.þjÉÈ8.¾′í
0000000E0	79	DB	B1	3A	7E	5B	6C	41	24	35	FB	93	DB	CC	59	EC	yÛ±:~[1A\$5û``ÛÌYì
0000000F0	F5	F2	FC	DE	1E	6A	66	F1	8D	20	17	E 9	BD	FO	CC	11	őòüÞ.jfñ .é¥ðÌ.
0000000100	87	68	AE	2E	C6	B5	E0	7C	A7	DO	7E	26	0 F	D3	8A	AB	‡h⊗.£µà §Đ~⊊.ÓŠ≪
0000000110	46	69	FO	5D	AC	C6	B4	8B	07	C2	51	66	74	FE	60	2E	Fið]-Æ (.ÂQftþ).
0000000120	48	4A	5B	52	C5	DO	DO	74	C1	8 F	A1	C8	44	11	54	59	HJ[RĂĐĐTÁ ;ÈD.TY
000000130	F2	DC	73	6B	18	2F	92	21	AO	7 D	B1	C8	89	09	89	3C	òÜsk./′!.}±È‱.‰<
0000000140	81	33	73	7 F	D6	2E	77	A5	D4	D2	CB	9A	D6	E8	E3	83	3s Ö.w¥ÔÒËšÖèãf
000000150	A6	62	D3	9 F	0E	3C	E9	F 5	9B	51	4 D	55	70	05	A4	DC	¦bÓŸ.<éõ>QMUp.¤Ü
000000160	E3	BD	22	96	36	10	5C	68	84	64	33	B5	EB	FO	5C	C7	ã⅓"-6.\h"d3µëð\Ç
0000000170	BD	D1	AO	1F	90	A0	D5	DO	1D	6C	1C	EA	D2	27	44	05	₩Ñ ÕÐ.1.êÒ'D.

Splitting areas based on visual patterns

Research at Google

Patterns after unscrambling

Research at Google

After XOR unscrambling

	0.0	01	02	03	04	05	06	07	80	09	AO	0B	00	0D	0E	0 F	
0000000000	42	74	50	72	61	6D	43	64	00	00	00	00	00	00	00	00	BtPramCd
000000010	10	10	08	00	00	00	00	00	00	00	00	00	00	00	00	00	
000000020	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
000000030	2C	48	04	4A	A5	00	00	00	00	00	00	00	00	00	00	00	,H.J¥
0000000040	04	10	01	00	33	08	00	00	00	00	00	00	00	00	00	00	
0000000050	0D	13	80	00	00	00	00	00	00	00	01	00	00	00	00	00	€
000000060	18	80	04	01	00	00	00	00	00	00	00	00	00	00	00	00	
0000000070	34	43	80	00	01	02	03	06	07	AO	0B	0E	0 F	12	13	16	4C€
0800000080	17	1A	1B	1E	1F	22	23	26	27	2A	2B	2E	2F	32	33	36	"#&'*+./236
0000000090	37	3A	3B	3E	3F	42	43	46	47	4A	4B	4E	4 F	52	53	56	7:;>?BCFGJKNORSV
0A00000000	57	5A	5B	5E	5F	62	63	66	67	6A	6B	6E	6F	72	73	76	WZ[^_bcfgjknorsv
0000000B0	00	FF	00	00	00	00	00	00	00	00	00	00	00	00	00	00	.ÿ
00000000000	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
0000000D0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
0000000E0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00000000F0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
0000000100	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
0000000110	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
0000000120	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
0000000130	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
0000000140	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
0000000150	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
0000000160	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
0000000170	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	

ISO9660 partition

0070008A30	20	20	20	20	20	20	20	20	20	20	20	20	20	20	4D	4B	MK
0070008A40	49	53	4 F	46	53	20	49	53	4 F	39	36	36	30	2 F	48	46	ISOFS ISO9660/HF
0070008A50	53	2 F	55	44	46	20	46	49	4 C	45	53	59	53	54	45	4D	S/UDF FILESYSTEM
0070008A60	20	42	55	49	4C	44	45	52	20	26	20	43	44	52	45	43	BUILDER & CDREC
0070008A70	4 F	52	44	20	43	44	2F	44	56	44	2 F	42	6C	75	52	61	ORD CD/DVD/BluRa
08A8000700	79	20	43	52	45	41	54	4 F	52	20	28	43	29	20	31	39	y CREATOR (C) 19
0070008A90	39	33	20	45	2E	59	4 F	55	4 E	47	44	41	4C	45	20	28	93 E.YOUNGDALE (
0070008AA0	43	29	20	31	39	39	37	20	4A	2E	50	45	41	52	53	4 F	C) 1997 J.PEARSO
0070008AB0	4 E	2 F	4A	2E	53	43	48	49	4C	4C	49	4 E	47	20	20	20	N/J.SCHILLING
0070008AC0	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	
0070008AD0	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	
0070008AE0	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	
0070008AF0	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	
0070008B00	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	
0070008B10	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	
0070008B20	20	20	20	20	20	20	20	20	20	20	20	20	20	32	30	31	201
0070008B30	35	31	30	32	32	31	31	31	33	30	39	31	39	0C	32	30	5102211130919.20
0070008B40	31	35	31	30	32	32	31	31	31	33	30	39	31	39	0C	30	15102211130919.0
0070008B50	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	00	000000000000000000000.
0070008B60	32	30	31	35	31	30	32	32	31	31	31	33	30	39	31	39	2015102211130919

Main binary to unlock the key

007620E3C0	4 D	5A	90	00	03	00	00	00	04	00	00	00	FF	FF	00	0.0	MZÿÿ
007620E3D0	B8	00	00	00	00	00	00	00	40	00	00	00	00	00	00	00	,@
007620E3E0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
007620E3F0	00	00	00	00	00	00	00	00	00	00	00	00	10	01	00	00	
007620E400	0E	1F	BA	0E	00	B4	09	CD	21	B 8	01	4C	CD	21	54	68	º´.Í!,.LÍ!Th
007620E410	69	73	20	70	72	6F	67	72	61	6D	20	63	61	6E	6E	6F	is program canno
007620E420	74	20	62	65	20	72	75	6E	20	69	6E	20	44	4 F	53	20	t be run in DOS
007620E430	6D	6F	64	65	2E	0D	0D	AO	24	00	00	00	00	00	00	00	mode\$
007620E440	0E	0 F	63	AC	4A	6E	0D	FF	4A	6E	0D	FF	4A	6E	0D	FF	c-Jn.ÿJn.ÿJn.ÿ
007620E450	54	3C	89	FF	4E	6E	0D	FF	43	16	87	FF	40	6E	0D	FF	T<‰ÿNn.ÿC.≠ÿ@n.ÿ
007620E460	13	4 D	1E	FF	4E	6E	0D	FF	7C	48	06	FF	52	6E	0D	FF	.M.ÿNn.ÿ H.ÿRn.ÿ
007620E470	43	16	9E	FF	51	6E	0D	FF	4A	6E	0C	FF	93	6F	0D	FF	C.žÿQn.ÿJn.ÿ"o.ÿ
007620E480	F7	21	9B	FF	4E	6E	0D	FF	43	16	98	FF	0E	6E	0D	FF	÷!>ÿNn.ÿC.~ÿ.n.ÿ
007620E490	43	16	8E	FF	19	6F	0D	FF	43	16	89	FF	DB	6C	0D	FF	C.Žÿ.o.ÿC.‰ÿÛ1.ÿ
007620E4A0	54	3C	99	FF	4B	6E	0D	FF	43	16	9C	FF	4B	6E	0D	FF	T<™ÿKn.ÿC.œÿKn.ÿ
007620E4B0	52	69	63	68	4A	6E	0D	FF	00	00	00	00	00	00	00	00	RichJn.ÿ
007620E4C0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
007620E4D0	50	45	00	00	4C	01	05	00	FD	97	28	56	00	00	00	00	PELý-(V
007620E4E0	00	00	00	00	E0	00	02	01	0B	01	09	00	00	DC	59	00	àÜY.
007620E4F0	00	0C	37	00	00	00	00	00	A1	4E	03	00	00	10	00	00	
007620E500	00	FO	59	00	00	0.0	40	00	00	10	0.0	0.0	00	02	00	00	. AY A

Sometime a SDcard reader will do

Research at Google

Where are the secret stored?

Interception platform overview

Research at Google

Interception platform simplified overview :)

Interception platform

Logic analyzer

FPGA emulating memory

Key without memory

Key wiring details

Analysing eMMC at the logic level

Research at Google

Emulating an eMMC chip with a FPGA

Analyzer output

[+]	eMMC	fi	rmware	e started			
[+]	eMMC	sy	stem	ready for	command	s!	
[+]	CMD	0,	H2D,	verdict:	ACCEPT,	arg:	0xfffffffa, ctr: 0
[+]	CMD	0,	H2D,	verdict:	ACCEPT,	arg:	0xfffffffa, ctr: 1
[+]	CMD	0,	H2D,	verdict:	ACCEPT,	arg:	0xf0f0f0f0, ctr: 2
[+]	CMD	0,	H2D,	verdict:	ACCEPT,	arg:	0x0, ctr: 3
[+]	CMD	1,	H2D,	verdict:	ACCEPT,	arg:	0x401c0000, ctr: 4
[+]	CMD	2,	H2D,	verdict:	ACCEPT,	arg:	0x0, ctr: 5
[+]	CMD	3,	H2D,	verdict:	ACCEPT,	arg:	0x10000, ctr: 6
[+]	CMD	7,	H2D,	verdict:	ACCEPT,	arg:	0x10000, ctr: 7
[+]	CMD	13,	H2D,	verdict:	ACCEPT,	arg:	0x10000, ctr: 8

AES key can be recovered?

Target	?
Impact	?
Attacker	?

Research at Google

Looking forward to collaborate on this

Research at Google

Storage audit criteria

Data is encrypted :)		5
Should not be stored in memory chip		
- Pin in clear		5
- AES key		5
- User pin in hashed form	*	C
- Firmware signing key		C
Tool (CD) partition integrity must be verified	*	
Serendipitous 😝 Professional 🐳 State 🔓 Weakness	Single drive break	Full break

Certification is important (e.g FIPS-140)

Ensure cryptographic info are (somewhat) disclosed - helps with audit

Current certification is not enough!

Many areas are not covered by current certification as demonstrated

The security of various drives greatly varies

Not all manufacturers or models for a given manufacturers provide the same level of security

Use secure encrypted keys

Don't get breached because sensitive data was on a lost USB key

Demand transparency from manufacturers Key security audit shouldn't be hard - full spec must be disclosed

Let's build a better audit and certification process It is our community responsibility to create a sound methodology

Research at Google

Questions?

