AUTOI\/IATED DETECTION OF
VULNERABILITIES IN
BLACK-BOX ROUTERS

How to Fmd Vulnerabllltles in Dozens of Router I\/Iodels Wlthout Using IDA
TN y = input() « T y=10

yas D t() YE 10
l L) ly 10 1 y =-b ly 10
it ol if (x > 2) 17 f(xs > 2)

a+5>2/\a+5 < Adi Sosnowch Orna Grumberg and Gabi Naklbly SR
if (y == 2789) END if (y == 2789) END i
b == 2789 b != 2789 10 == 2789 10 !'= 2789
b == 2789 b != 2789 10 == 2789 10 !'= 2789
ERROR END ERROR END
ERROR END ERROR END

INTRODUCTION — GABI NAKIBLY

* Chief research scientist at the National Cyber and
Electronics Research Center

- Operated by Rafael —Advanced Defense Systems Itd.

* A former Visiting Scholar at Stanford University

- Senior adjunct lecturer and research associate at the =¥ TeCHNION

Technion —Israel institute of Technology u el es

* | mostly spend my days doing network security
research.

OUTLINE

- Motivation

* The method we use

- What is symbolic execution

* Unique optimizations that make our approach work
* Application of the method to Cisco’s OSPF

- The vulnerabilities we found

MOTIVATION

* Network protocols are based on open standards
* However, the Internet runs mostly on proprietary and closed-source network devices

* A hidden deviation of a device’s implementation from a protocol standard may create a
logical vulnerability

MOTIVATION (CONT.)

 However, finding deviations in closed-source routers demands great efforts.

* In this work we present a method that leverages a formal black-box method to unearth
implementation deviations in closed-source network devices

- No need to access the binary or source code of the device!

- Just observe the external behavior of the router

THE BASICIDEAINANUTSHELL

- Compare the behavior of a network device (called SUT) to that of a formal model
that captures standard functionality of the network protocol.

= SUT = System Under Test

THE BASICIDEAINANUTSHELL

- Compare the behavior of a network device (called SUT) to that of a formal model
that captures standard functionality of the network protocol.

= SUT = System Under Test
Formal model Real devices (SUT)

Attacker

standard
router

compare

standard

standard
router

standard
router

OUR METHOD IN A GLANCE

Topology

Symbolic model
of a routing
protocol

Concolic-
exection

Generated
test files

—

Black-box
testing
script

Deviations
report

simulation input

SUT’s
implementation

simulation result

SYMBOLIC EXECUTION

* Symbolic execution allows analyzing the execution
paths of a program and generating corresponding
test cases.

* The input variables of the program are defined as
symbolic variables.

* Then, the program is symbolically run, where
symbolic expressions represent values of the
program variables.

* On each execution path a constraint is obtained by
collecting all the symbolic expressions that
correspond to conditional branches on that path.

X = input()

lx-oa

X=X+05
lx -a+5
if (x > 0)
a+5>0 a+5<=0
y = input() y =10
ly—-b ly-»lo
if (x > 2) if (x > 2)

a+5> i///\\\g +5 <=2 a+h>2 a+5<=2

if (y == 2789) END if (y == 2789) END

b == 2789 b !'= 2789 10 == 2789 10 != 2789

ERROR END ERROR END

CONCOLICTESTING

» Concolic execution = symbolic execution + real execution

* Concolic testing is a dynamic symbolic execution technique to systematically
generate tests along different execution paths of a program.

* Itinvolves concrete runs of the program over concrete input values alongside
symbolic execution.
* Initially, some random concrete input values are chosen.

* During a run of the program with this input, symbolic constraints are gathered over the
conditional branches of the current execution.

- A constraint solver is then used to construct the next concrete execution on a different
path.

1. CREATE A MODEL OF APROTOCOL

* The first thing is to create a model of the protocol.

A model (which can be written in C, Python,....) captures the functionality of the
protocol.

* It can be elaborate or detailed as needed.
- It written based on the protocol standard or based on existing software.

* The model simulates the execution of the protocol among the network devicesin a
predefined topology.

- The network devices we want to test needs to be setup in the above topology.

2 3 4

- The model receives as an input rogue protocol messages sent [§
by an attacker.

- These messages are symbolic variables.

Black-box
testing
script

Torcahe- | Generated |
test files d

::> Deviations
report

2. GENERATE TEST CASES

- The tool uses concolic execution on the model of the protocol to cover all execution
paths of the protocol’s model.

- Each execution path is driven by a specific sequence of rogue protocol messages
sent by the attacker.

» Each such execution path represents a test case.

- A test case entails sending the sequence of the rogue messages to the network
devices we actually.

—

1 3 4
Topology
li | lack-
S Symbolic n‘_lode — B ack. box Deviatlons
of a routing - testing ::)

- report
protocol script P

< SUT's \
implementation /

-

3. EXECUTE TESTS

- Each generated test file is executed on the SUT.

- Before each test the devices are initialized to a predefined initial state.

* During the test execution the sequence of rogue protocol messages are sent to the
network devices.

* At the end of the test the state of the devices are extracted.
- For example, for routers the state is their routing table and routing advertisements DB.

1 2

li |
Symbalic n‘_lode Torcahe- | Generated
of a routing

protocol testfiles

Deviations
report

4. FIND DEVIATIONS

* The devices states for each test are compared to the expected state obtained
from the model.

- If there is @ mismatch — the test fails.

- A failed test represents a deviation of the protocol’s implementation from the
protocol standard.

- Which likely represents a vulnerability

* The failed test is accompanied with traces of all messages exchanged between
the devices during the run of the test, both on the model and on the SUT.

—

1 2 3

e

Black-box
testing
script

Generated |
test files d

- Comparing these traces facilitates the analysis of the le smbolcmodel |)

o X
of a routing

vulenrability. povocol

IMPORTANT CHARACTERISTICS

- Logical vulnerabilities — our tool does not aim to find technical vulnerabilities(such as
buffer overflows or UAF), but rather logical vulnerabilities of the protocol implementation.

* Such logical vulnerability stem from the fact that the protocol was not implemented as it
should.

* They pose a serous threat to the robustness of the protocol’s design.

- Automatic — once the protocol’s model and topology are determined, the identification of
deviations is fully automatic.

- Full coverage — the generated tests cover the entire functionality of the protocol’s model.

- Modularity — the analyzed model need not detail the protocol in its entirety. The model
may only include parts of the protocol deemed relevant to the security analysis or parts
that may be considered more prone to deviate from the standard.

SCALABILITY ISSUES

* If the protocol model is complexi.e. we model large chunk of the standard or we
model many devices in the topology, many tests may be needed to cover the
entire functionality model.

* This is called the path explosion problem.

* We deal with it using a unique optimization that is tailored to testing network
protocol in general — and routing protocols in particular.

* Our optimizations allow to dramatically reduce the number generated tests
without reducing the coverage of the protocol’s model.

OPTIMIZATION

 We reduce execution paths that cross the same intermediate states.
* Let's examine all test cases that have a sequence of N messages of the following form:

Sequences of N-1 messages

Initial Intermediate

Final state
state state

* We can reduce them to following single test without loosing functionality coverage:

Intermediate

Final state
state

OSPF ANALYSIS

* We now describe how we applied our method to find vulnerabilities in the OSPF
implementation of routers.

* OSPF is one of the most widely used and most complex routing protocols on the
Internet.

OSPF 101

Every router advertises it’s link state (i.e. "who are my
neighbors?”).
- This is called Link State Advertisement (LSA).

* The LSAs are flooded throughout the autonomous system hop-
by-hop.

Every router receives the LSAs of all other routers.
* This allows to build the topology map of the AS.

OSPF 101 (CONT.)

THE ATTACKER

Location: inside the AS
Controls a single legitimate router in an arbitrary location
This means it can flood LSAs to its neighbors

Goal: Significant and persistent control of the routing tables of other routers in
the AS.

OSPF FORMAL MODEL

- To serve the purpose of finding security vulnerabilities our OSPF model focuses on the
core parts of the protocol that are relevant to its security against the above type of attack.

- We modeled the OSPF using a Python code having roughly 1000 LoC.
 The symbolic variables are the fields of the LSA:

 Sequence number
- Destination

* Advertising Router
- LSID

* For each symbolic LSA, the LSA is sent to its destination and then a loop is applied. On
each loop iteration every router runs its procedure once.

- The router’s procedure implements the core functionality of OSPF.

OSPF FORMAL MODEL (CONT.)

* The model included 5 routers in the following simple topology:

* The symbolic LSAs are sent from cloud 1.

TESTBED (FOR CISCO)

* To test Cisco’s OSPF implementation we used alternately two network
simulation software: GNS3 and VIRL.

- Both software suites allow to simulate a network of multiple routers, each running an
emulation of an actual 10S image (identical to the images used in real Cisco routers).

* We used the following 10S versions:

10S Version Release date
2011

This is the
latest I0S
version

RESULTS

- For Cisco we discovered 7 deviations in all three I0S versions.
- 2 of those deviations were new and exist in the most up-to-date 10S version.

* The new vulnerabilities allow an attacker to remotely erase the routing table of a
remote router
- And even update the routing table with arbitrarily false information.

VULNERABILITIES - DETAILS

* Incomplete fight-back for Rogue LSA with maximum sequence number

- A spoofed LSA having the maximum sequence number was sent by unicast to a victim
router R on behalf of R itself.

- Rdid NOT sends a “fight-back”, hence the content of the spoof LSA persists.

* Incorrect MaxAge LSA origination during fightback:
* A spoof LSA having the maximum sequence number was sent on behalf of R2 to R1.

* R2 originates a fight-back with the incorrect content, hence the content of spoofed LSA
persists.

QUAGGA (OPEN SUSE)

» Similar vulnerabilities have been discovered in Quagga.

* However we used a different testbed setup to run those routers.

INSUMMARY

» Our approach can be adapted to any routing protocol or network protocol for that
matter.

* All our tool need is a model of the protocol and you are good to go!

* You do not have to write your own model. An exiting open-source of the protocol
can work as well with the right adaptations.

* Once you have a model you can test any implementation of that protocol fully
automatically

- allowing you to discover many vulnerabilities is a short time.

