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Abstract

The Internet infrastructure relies entirely on open stan-
dards for its routing protocols. However, the overwhelm-
ing majority of routers on the Internet are proprietary and
closed-source. Hence, there is no straightforward way to
analyze them. Specifically, one cannot easily and sys-
tematically identify deviations of a router’s routing func-
tionality from the routing protocol’s standard. Such de-
viations (either deliberate or inadvertent) are particularly
important to identify since they present non-standard
functionalities which have not been openly and rigor-
ously analyzed by the security community. Therefore,
these deviations may degrade the security or resiliency
of the network.

A model-based testing procedure is a technique that al-
lows to systematically generate tests based on a model of
the system to be tested; thereby finding deviations in the
system compared to the model. However, applying such
an approach to a complex multi-party routing protocol
requires a prohibitively high number of tests to cover the
desired functionality. We propose efficient and practical
optimizations to the model-based testing procedure that
are tailored to the analysis of routing protocols. These
optimizations mitigate the scalability issues and allow
to devise a formal black-box method to unearth devi-
ations in closed-source routing protocols’ implementa-
tions. The method relies only on the ability to test the
targeted protocol implementation and observe its output.
Identification of the deviations is fully automatic.

We evaluate our method against one of the complex
and widely used routing protocols on the Internet –
OSPF. We search for deviations in the OSPF implemen-
tation of Cisco. Our evaluation identified numerous sig-
nificant deviations that can be abused to compromise the
security of a network. The deviations were confirmed by
Cisco.

1 Introduction

The Internet owes much of its success to open standards.
These standards are being developed in an iterative and
open process. They are the fruit of extensive delibera-
tions, trial implementations, and testing. Furthermore,
open standards are thoroughly documented and freely
available, so they can be readily scrutinized at any time
even after their creation. It is generally believed that
open standards led to a more robust and secure Inter-
net. Routing protocols are a prime example of open stan-
dards. They are a critical part of the Internet infrastruc-
ture, allowing seamless interoperability between separate
networks.

In stark contrast to the open nature of routing proto-
col standards, the Internet infrastructure predominantly
relies on proprietary and closed-source routers made by
large vendors like Cisco. A router’s vendor can add, re-
move or alter the standardized functionality of a rout-
ing protocol as it sees fit, as long as interoperability
with other vendors’ routers is preserved. Even so, it
is not uncommon to have two routers of different ven-
dors that, under some networking scenarios, cannot co-
operate seamlessly [16]. Vendors have several possible
motivations for deviating from the standardized function-
ality [4]: development cost reduction, optimization of the
protocol functions, or increasing customers’ switching
cost to other vendors. Additionally, inadvertent devia-
tions may rise due to misunderstanding of the standard
or failure to implement it completely.

Identifying these deviations is crucial to assessing
their full impact on a network’s resilience and security.
But the routers’ closed source makes this a difficult chal-
lenge for the security community. To address this chal-
lenge, we leverage formal analysis methods that assist in
identifying deviations of a routing protocol implementa-
tion from its standard. Our analysis is black-box: access
to the implementation’s source code or binary code is
not required. We only assume the ability to send pack-



ets to the router and observe its external behavior. This
includes the packets sent by the router and information
explicitly available through its user interface. Its black-
box nature makes our analysis applicable to any router
with minimal changes.

We use a model-based testing approach [8, 34] in
which a reference model of a system under test (SUT)
is formulated. The model embodies the desired func-
tionality for that system and serves as the basis for test
generation. Each test has a desired outcome as deter-
mined by the model. The tests are then executed against
the SUT and the resulting outcome is compared to the
desired result. In our case, the model is formally de-
fined according to the protocol’s standard. The SUT is
the router’s implementation of the protocol, and a failed
test indicates a deviation of the implementation from the
standard. We use concolic execution [20, 29] to automat-
ically generate tests from our model. Concolic testing
is a dynamic symbolic execution technique for system-
atically generating tests along different execution paths
of a program. It involves concrete runs of the program
over concrete input values alongside symbolic execution.
Each concrete execution is on a different path. The paths
are explored systematically and automatically until full
coverage is achieved.

The model-based testing approach has been success-
fully employed to find bugs in open source software as
well as in open-source implementations of one-to-one
network protocols such as TCP and UDP [12]. How-
ever, routing protocols involve multiple participants. In
the realm of these complex multi-party protocols, model-
based testing can not be practically applied due to scal-
ability issues. The functionality of routing protocols de-
pends on the dynamics between the participants, their
relative locations in the network, and the role each par-
ticipant plays. A certain protocol may expose parts of
its functionality only in specific complex interactions be-
tween the participants. Therefore, the number of tests re-
quired to verify the protocol’s functionality may be pro-
hibitively high.

We propose practical optimizations to the model-
based testing procedure that significantly reduce the
number of tests generated while still covering the en-
tire functionality of the model. Our main optimization
merges different tests that pass through a joint intermedi-
ate state. Namely, we merge two long test scenarios that
reach the same intermediate state into a single shorter
test scenario that starts from the intermediate joint state.
This optimization is especially useful for test scenarios in
which multiple packets are sent. For example, consider
two non-identical sequences of packets, P1 and P2, that
are sent during two test scenarios, t1 and t2, respectively.
Assume that the model ends up in the same final state fol-
lowing each of the two tests. Therefore, a test having a

sequence of packets of the form P1||P (the sequence of
packets in P1 followed by a sequence of packets in P)
can be merged with a test that has the sequence P2||P.
The merged test shall have a sequence of packets P and
it should be executed from an initial state that is identical
to the intermediate joint state of the original two tests.

Our optimized method allowed us to implement the
first practical tool to automatically identify deviations in
black-box implementations of one of the most complex
and widely deployed routing protocols on the Internet –
OSPF (Open Shortest Path First) [24]. The OSPF pro-
tocol is a widely used intra-domain routing protocol de-
ployed in many enterprise and ISP networks. We applied
the tool to search for deviations in the OSPF implementa-
tion of the largest router vendor in the world – Cisco. We
analyzed three different versions of Cisco’s implementa-
tion of OSPF in IOS1 and found 7 significant deviations,
most of which compromise the security of the network.
Two of them were found in the latest version of IOS. The
deviations were acknowledged by Cisco.

To further demonstrate the generality of our tool, we
also employed it to analyze the OSPF implementation of
the Quagga Routing Suite [2] – the most popular open
source routing software. The analysis of Quagga re-
vealed one significant deviation.

To summarize, our contributions are as follows:

1. We propose efficient optimizations to the applica-
tion of model-based testing to routing protocols.

2. We devised the first practical tool that automatically
identifies deviations in black-box implementations
of the OSPF routing protocol.

3. We found multiple logical vulnerabilities in widely
used OSPF implementations by Cisco, Quagga and
others.

The remainder of the paper is organized as follows,
Section 2 gives background on symbolic execution and
concolic testing. Section 3 discusses the formal proce-
dures we use to analyze an implementation of a routing
protocol and the optimizations we employ to reduce the
number of tests. In Section 4 we describe the application
of the formal procedures to a tool that analyzes OSPF
implementations. In Section 5 we describe the evalua-
tion of the method against Cisco’s and Quagga’s OSPF
implementation and detail the deviations we discovered.
Section 6 discusses the advantages and limitations of our
approach. Finally, Section 7 presents related work and
Section 8 concludes the paper.

1Cisco’s IOS is a software family that implements all network-
ing and operating system functionality in many of Cisco’s routers and
switches.
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2 Preliminaries

2.1 Symbolic execution

Symbolic execution [15] allows analyzing the execution
paths of a program and generating corresponding test
cases. The input variables of the program are defined
as symbolic variables. Then, the program is symboli-
cally run, where symbolic expressions represent values
of the program variables. On each execution path a
constraint is obtained by collecting all the symbolic ex-
pressions that correspond to conditional branches on that
path. The path-constraint is a quantifier-free first-order
formula over the symbolic variables. Its solutions form
a set of concrete values of the input variables for which
the program runs via the same execution path. A test that
covers this path is then derived from this solution, con-
taining concrete values of the input variables.

Concolic testing ([20, 29]) is a dynamic symbolic ex-
ecution technique to systematically generate tests along
different execution paths of a program. It involves con-
crete runs of the program over concrete input values
alongside symbolic execution. Initially, some random
concrete input values are chosen. During a run of the pro-
gram with this input, symbolic constraints are gathered
over the conditional branches of the current execution.
Thus, at the end of the run the symbolic path-constraint
is obtained. A constraint solver is then used to construct
the next concrete execution on a different path. This can
be achieved, for instance, by negating the last conjunct
on the path-constraint not already negated. A new solu-
tion for the variant of the path-constraint with negations
should necessarily steer a new concrete execution over
a different path. This process is repeated systematically
and automatically. Finally, the process terminates based
on some time limit, coverage criteria, or when full cov-
erage is achieved.

2.2 Threat Model

Our analysis is security-motivated, namely we seek to
find deviations in routing protocol implementations that
may compromise the security of the network. To serve
this purpose we design the model, on which we base
our testing, such that it incorporates an attacker model
that fits a plausible threat to the network. We adopt the
common threat model found in the literature ([36, 38, 22,
25]). This model assumes the attacker has the ability to
send routing advertisements to any router within the rout-
ing domain. This assumption can be trivially achieved
by an attacker that gained control over a single router
within the routing domain. The attacker can gain control
of a router, for example, by remotely exploiting an imple-
mentation vulnerability on the router. Several such vul-

Figure 1: The flow of our method

nerabilities have been published in the past (e.g., CVE-
2010-0581, CVE-2010-0580, and CVE-2009-2865).

The attacker’s goal is to poison the routing tables of
other routers. Because the attacker would like to control
the routing domain for an extended period of time, the
poisoning should be persistent. Namely, the attack’s ef-
fects will not be immediately reverted once the attacker
finishes executing the attack.

3 Black-box analysis procedures

In this section we describe the procedures that compose
our method of analyzing a routing protocol. We use a
model-based testing approach. The model includes a
network topology, where each node executes its mod-
eled protocol. We test the protocol’s functionalities by
systematically generating protocol messages and sending
them to nodes within the network topology. Each sent
message triggers a different execution path of the model.
The details of the method’s flow are given in Section 3.1.

Generally speaking, the described method flow can be
applied to any network protocol; however, a naive appli-
cation of this method to a complex multi-party routing
protocol will have severe scalability issues in the con-
colic execution phase, known as the path explosion prob-
lem. In this phase a prohibitively high number of tests
may be generated. In Section 3.3 we propose optimiza-
tions that reduce the number of tests generated without
loss of functionality cover of the model.

3.1 The method flow

The method flow is depicted in Figure 1. Below we ex-
plain each numbered box in that figure:

1. Produce a symbolic model of a network topology
on which the protocol will be executed. Symbolic
topology can represent any concrete topology. It al-
lows us to generate tests of the protocol under var-
ious topologies, thereby covering specific protocol
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behaviors that are topology-dependent. The sym-
bolic topology is fed to the next stage in the process.
We further elaborate on the symbolic model of the
network topology we use in Section 3.2.

2. Given a symbolic network topology, the model pro-
duces a run of the protocol. Each execution path
of the model is represented by a concrete run that
starts from the standard initial state on the chosen
topology. In the standard initial state, all the nodes
are consistent and stable. Additionally, all their in-
coming message queues are empty. During the run,
messages of the protocol are sent to the nodes, and
the run terminates in a stable state after no messages
are sent between any nodes on the network.

3. Applying the concolic execution tool on the sym-
bolic model of the routing protocol generates a test
file for each execution path of the model. Each test
file contains the sent message and the initial and fi-
nal local states for all nodes in the network. Each
execution path is finite and reaches a stable state in
which there are no more messages that need to be
sent between the routers.

4. Each generated test file is executed on the SUT.
During the test execution the routers are activated
and initialized according to the model’s initial state.
Then one or more messages are sent to the routers,
and after the routers’ states become stable again,
they are read and compared to the expected state
obtained from the model. If the existing state of the
routers does not match the model’s expected state,
the test fails.

5. A failed test represents a deviation of the SUT’s im-
plementation from the protocol standard. The failed
test is accompanied with traces of all messages ex-
changed between the routers during the run of the
test, both on the model and on the SUT. Comparing
these traces facilitates the analysis of the deviation.

The main advantages of the above method is as fol-
lows:

1. Automatic – once the protocol’s model and topol-
ogy are determined, the identification of deviations
is fully automatic. A deviation may pose a security
vulnerability in the SUT, but this is not always the
case. Further manual analysis is required to infer
what kind of effect the deviation has on security of
the implementation.

2. Full coverage – the generated tests cover the entire
functionality of the protocol’s model. This allows
to test the model against relatively small topologies

with few routers while still being able to check ob-
scure corners of the protocol. Our evaluation in Sec-
tion 5 illustrates this very nicely.

3. Modularity – the analyzed model need not detail the
protocol in its entirety. The model may only include
parts of the protocol deemed relevant to the secu-
rity analysis or parts that may be considered more
prone to deviate from the standard. The model may
abstract away irrelevant details or even omit them
entirely. Furthermore, the analysis may also be split
into separate stages, each focusing on a specific part
of the protocol.

3.2 The topology symbolic model

We model two types of network links: point-to-point and
multiple access. The former connects only two routers
while the latter connects any number of routers. Gener-
ally, the two link types are handled differently by routing
protocols in terms of the routing advertisements describ-
ing them. We assume the topology has a predetermined
number of routers and a predetermined number of mul-
tiple access links, denoted by n and m, respectively. A
symbolic topology model represents any topology that
has n routers and m multiple access links. We do not
constrain the number of point-to-point links; it can be
any number between 0 and n(n−1)

2 . Two routers can con-
nect via at most one point-to-point link and any number
of multiple access links (each multiple access link may
connect a different subset of the routers).

Our aim in implementing the topology symbolic
model is to show that our model need not be constrained
to specific predetermined topology. Rather, tests can be
generated based on execution paths that rely on differ-
ent topologies, thereby increasing the number of states
reached. The downside of using symbolic model for the
topology is scalability issues. The symbolic model ex-
ponentially multiplies the number of tests compared to a
static topology. We discuss this further in Section 5.

3.3 Optimizations

In this section we describe our optimizations to the
method above. They focus on reducing the number of
tests that include multiple messages. It should be noted
that running tests on the SUT is relatively fast, even for
long test sequences. The heavy part of our method is the
generation of tests on the model, due to the path explo-
sion problem. Our optimizations manages to reduce this
effort significantly.

The straight-forward approach to generating tests with
more than one message would be to use several instances
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1. RIS = {standard}
2. ERS = φ

3. k = 1
4. while (k < K )
5. {
6. generated-tests = applyMethod(RIS)
7. RS = extract-reachable-states(generated-tests)
8. ERS = ERS∪RIS
9. RIS = RS\ERS
10. k = k+1
11. }

Figure 2: Systematic extension algorithm

of symbolic messages in the model. However, the disad-
vantage is that the number of symbolic variables is multi-
plied in the number of symbolic messages. This may re-
sult in the path-explosion problem due to the exponential
growth in the number of model paths to execute. Further-
more, this may result in generation of many redundant
tests along different execution paths.

Merging paths with same intermediate state. Let P1
be the set of all model paths with one message, starting
from the standard initial state. Let P2 be the set of all
model paths with two messages, starting from the same
standard initial state. Let P1(S) be the set of all model
paths within P1 that terminate in the model state S. We
observe that all paths in P2 that are extensions of the
paths in P1(S) with a second message m are equivalent
with regard to the functionality they cover in the model.
Replacing these paths with only one path that include
the message m and starts from initial state S rather than
from the standard one will not reduce the coverage of
the paths. Thus, instead of exploring similar execution
paths from each final state of each path in P1(S), we can
apply it only once by using the model state S as the ini-
tial state, and by applying only one symbolic message
from that state. Following this observation we can em-
ploy the following procedure to reduce the number of
paths in the general case where the maximum length of
the paths is K messages. We call K the maximum mes-
sage depth. A pseudo-code describing this procedure
is given in Figure 2. RIS is the set of reachable states
from which exploration via concolic execution has not
yet been applied. ERS is the set of explored reachable
states from which the exploration of concolic execution
has already been applied. For each reachable state, we
also keep a sequence of corresponding messages from
which the reachable state is obtained. For example, con-
sider the pair (S,(M1,M2)), where S is a reachable state
and (M1,M2) are the corresponding messages. The no-

tation means that if a run of the model starts from the
standard initial state and these messages are sent one by
one, eventually the final state observed on the model is S.

In line 1 of the pseudo-code we initialize the set of
reachable initial states with the standard initial state. In
line 2 we initialize the set of explored reachable states
with the empty set. K represents the current depth of the
generated tests. It is initialized to 1, since on the first
iteration we generate tests with a single message sent
from the standard initial state. In each loop iteration for a
new depth, lines 6-10 are applied. In line 6 we apply our
method from the previous section on every state in RIS
with a single symbolic message. The generated tests are
kept and sent to the black box testing script. To initialize
the SUT according to the new initial state, we adjust the
initialization process in the black-box testing script. The
adjustment requires sending the corresponding sequence
of messages that are kept with the reachable state, as part
of the initialization. Afterward, in line 7, we analyze the
generated tests from the previous stage. For each gener-
ated test with K messages we detect its final state. The
set of all reachable states (and their corresponding mes-
sage sequences) from the generated tests are kept in RS.
In line 8, we add to the set of explored reachable states
the set of the reachable states from which the method was
applied on the current iteration. Then, in line 9, we up-
date the set of reachable states from which exploration
of depth K + 1 should be applied by removing the set
of all explored reachable states from the set of the de-
tected reachable states of the last iteration. Finally, K is
increased by 1 in preparation for the next iteration.

We note that each reachable state may actually have
multiple sequences of messages leading to it in the
model. We choose to use one representative message se-
quence out of all possible sequences.

Arbitrary prefix paths. We describe now a different
optimization that does not guarantee the model cover-
age. We believe it has merit in analysis scenarios which
do not mandate the full coverage of the model. The
idea is to explore the model starting from states reach-
able by an arbitrary number of messages. Such an opti-
mization allows to explore the model in a greater mes-
sage depth. A reachable state that may require an arbi-
trary number of messages is applied on the routers, after
which a concolic execution with a single symbolic mes-
sage is applied. The arbitrary reachable initial state may
be achieved by random simulation of the protocol with
an arbitrary number of messages, starting from the stan-
dard initial state. This process requires adjustment of the
initialization process in the black-box script as well. The
sequence of messages leading to the new reachable initial
state should be provided. Let (S,(M1,M2, ...,Mk)) be the
reachable state and its corresponding message sequence.
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Let F1,F2, ...,Fn be the set of test files generated from
concolic execution with S assigned as the initial model
state and with a single symbolic message. When running
the generated tests on the SUT, we adjust the initializa-
tion process by sending the sequence of initializing mes-
sages (M1,M2, ...,Mk). Then, we compare the state of
the routers on the SUT with the given model state S and
make sure that they match. Only then we can send the
message from the generated test file Fi and compare the
final states of the SUT and the test file.

It should also be noted that execution time of a test on
the SUT is relatively fast, even for long test sequences.
Therefore, shortening a test sequence is not useful, but
rather to reduce the number of tests as done by the above
optimization.

4 Black-box analysis of OSPF

Towards the evaluation our method we apply it to a tool
that tests one of the most complex routing protocols on
the Internet – OSPF. OSPF is the routing protocol of
choice for many ISP and enterprise networks. We focus
on its most widely used version – version 2 [24]. Before
we detail the model we used, we give a brief overview of
the protocol.

4.1 OSPF Background
OSPF (Open Shortest Path First) is an intra-domain rout-
ing protocol, used within collections of networks, each
of which is called an autonomous system (AS). OSPF
is a link state routing protocol: each router advertises a
message called a Link State Advertisement (LSA), con-
taining its links to neighboring networks and routers and
their associated costs. Each LSA is flooded throughout
the AS. Routers construct a complete view of the AS
topology by compiling all the LSAs they receive into a
single database (LSDB). From this global view routers
compute their routing tables. Each router is identified by
the IP address of one of its interfaces, called a router ID.

A local network having exactly two routers directly
attached to it is called a point-to-point link. Each of the
two routers advertises a link to its peer. In contrast, a lo-
cal network having two or more routers is called a transit
network. A router connected to a transit network adver-
tises a link to the network rather than to the neighboring
routers. In addition, one of the neighboring routers is
chosen to act as a designated router. This router adver-
tises an LSA on behalf of the local network, in addition
to its own LSA, advertising links back from the network
to all the routers attached to the network (including it-
self). An LSA describing the links of a router is called a
Router-LSA. An LSA describing the links of a transit is
called a Network-LSA.

Ra

LSA DB:
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Rb LSA
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Net-1

Net-1
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2 2

3
1

1
1

Figure 3: An example of LSA flooding (taken from [25])

Figure 3 illustrates the flooding of an LSA through-
out the AS while the routers build their LSA database
(LSDB) to construct their view of the AS topology.

OSPF messages are sent directly over IP. Therefore,
OSPF must employ its own mechanisms to ensure reli-
able transmission of messages. Once an LSA is received
from a neighboring router, an acknowledgment is sent to
that router. Once a router detects a change in its local
topology (e.g., it has a new link or one of its links has
gone down), it sends out a new instance of its own LSA
with the new information. Moreover, a new instance of
an LSA is advertised periodically every 30 minutes, by
default, even if there is no change. An LSA includes a
LS sequence number field, which is incremented for ev-
ery new instance. A fresh LSA instance with a higher
sequence number will always take precedence over an
older instance with a lower sequence number. In addi-
tion, an LSA includes an Age field indicating the elapsed
time since the LSA’s origination. When it reaches 1 hour,
the LSA instance is removed from the LSDB.

The sequence number field is 32 bits long. Once the
sequence number reaches its maximum value, it needs
to wrap to zero in the next LSA instance. To do that
the LSA instance with the maximum sequence number
(MaxSeqNum) is first flushed by advertising another in-
stance having the maximum sequence number and an age
field of 1 hour. This instance replaces the current LSA in-
stance but is then immediately removed from the LSDB
due to its age. Therefore, no instance of that LSA is kept
in the LSDB. At this stage a fresh instance of the LSA
with an initial sequence number will be advertised.

One of the dominant defense mechanisms of OSPF
against rogue routers residing within the network is the
fight-back mechanism. Once a router receives a false in-
stance of its own LSA, it immediately advertises a newer
instance which cancels out the false one. The newer in-
stance will have a sequence number that is incremented
by one as compared to the sequence number of the false
instance. This should prevent an attacker from persis-
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tently and stealthily falsifying an LSA of a router the
attacker does not control. Since each LSA is flooded
throughout the AS, we are assured that in the general
case the correct fight-back instance will be received by
all routers in the AS.

An LSA header is composed of the following fields:

• LS age – The time in seconds since the LSA was
originated.

• LS type – The type of LSA (e.g., Router, Network)

• Link State ID – Identifies the part of the AS that is
being described by the LSA.

• Advertising Router – Identifies the router that orig-
inated the LSA.

• LS sequence number – The sequence number of the
LSA.

4.2 The OSPF symbolic model
Our black-box analysis is security-motivated. Hence,
our aim is finding in an OSPF implementation deviations
from the protocol’s standard that may give rise to secu-
rity vulnerabilities. We focus on the most important type
of attack against OSPF: a rogue router advertising false
LSAs on behalf of other routers in the routing domain.
Such an attack – if executed successfully – allows the
attacker to significantly poison the routing tables of all
routers in the routing domain. This allows an attacker to
reroute packets, create routing loops, and cut off connec-
tivity in the network.

To serve the purpose of finding security vulnerabilities
our OSPF model focuses on the core parts of the proto-
col that are relevant to its security against the above type
of attack. These parts include the LSA flooding proce-
dure, the fight-back mechanism, the LSA message struc-
ture, and the LSA purge procedure. We leverage and ex-
tend an OSPF model that was proposed by [33] and [26].
The model was previously used in the context of model
checking to find vulnerabilities in the protocol’s standard
itself. In the following, we will refer to our model as the
OSPF reference model.

Below we detail the main aspects of the OSPF refer-
ence model that we implemented and used for the black-
box analysis.

The modeled LSA structure An LSA in our model
contains the following fields: LS type, Link State ID
(LSID), Advertising Router (AR), Sequence Number
(SeqNum), LS age, and Links List. The LS age is ab-
stracted into a Boolean flag indicating whether it is Max-
Age or not. An LSA message contains the LSA itself,
and in addition the IP packet’s source and destination.

State A state in our model is the set of LSDBs of all
routers and the state of the routers’ incoming queues. A
state is considered stable when all routers’ queues are
empty.

The symbolic variables We use symbolic variables
within the LSAs that are to be sent by the attacker, within
the LSDBs of the routers’ initial states, and to define the
network topology in which the routers and links are ar-
ranged. Below we detail the symbolic variables and their
domains.

• LSA: Each sent LSA message has the following
symbolic variables:

– Sequence number – the seqNum field is
a number in the range [0,maxSeq], where
maxSeq is a predefined constant in the model.

– Destination – the destination field is one of the
routers within the chosen topology.

– Advertising Router – the AR field is the router
ID of any router within the network topology.

– LSID – the LSID field is the router ID of any
router within the network topology.

The symbolic LSA message is of the form:

〈type,src,dest,LSID,AR,seq, links,age〉

The remaining fields, which are not symbolic, are
concretely assigned as follows:

– type = routerLSA

– links = [], i.e., an empty list of links

– src corresponds to dest: The dest field deter-
mines the src field, as we know on the given
topology through which neighbor the LSA is
routed to is destination.

– age = 0 (assigned as not MaxAge).

• LSADB: The LSDBs are initialized in the standard
initial state. The sequence numbers of the LSAs
are symbolically initialized with additional sym-
bolic variables. Their range is [0,k], where k a pre-
defined constant smaller than MaxSeqNum.

• Topology: The existence of a point-to-point link
between each pair of routers is defined by a Boolean
symbolic variable. We have n(n−1)

2 such variables
(where n is the number of routers). The attachment
of a router to a multiple access link is defined by a
Boolean symbolic variable. We have nm such vari-
ables (where m is the number of multiple access
links).
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The main function The main function of the model
has input symbolic arguments as described above. The
run of the model starts with initialization of the LSDBs
according to the standard initial state. Afterwards, for
each symbolic LSA, the LSA is sent to its destination
and then a loop is applied. On each loop iteration every
router runs its procedure once.

The router procedure When a router R receives an
LSA, it checks whether the LSA exists in its LSDB. If
it does not exist or is considered newer than the exist-
ing instance, the router floods the LSA and updates its
LSDB accordingly. If the LSA is self-originated, a fight-
back is triggered. If the sequenceNumber of the fight-
back LSA reaches the MaxSeqNum, the router originates
an LSA with MaxSeqNum and MaxAge, and then a new
LSA with InitialSeqNum. The MaxAge LSA triggers the
other routers to purge R’s LSA from their LSDBs.

The attacker procedure The attacking router denotes
a compromised router within the topology. We predeter-
mine that the compromised router to be router number
0. No generality is lost due to this definition since our
model considers a symbolic topology. During the exe-
cution of the model the attacker sends the sequence of
symbolic LSAs according to their predefined order.

Interleaving The model simulates each router’s run se-
quentially, in a round-robin scheduling. When a sin-
gle LSA is sent, the interleaving does not affect the fi-
nal state. As long as only one ’external’ LSA is being
sent among the routers, all interleavings of subsequent
LSAs result in the same final state. For multiple LSAs
in the model, we consider interleavings in which every
LSA is sent separately in a specific order. After each
LSA is sent, the routers are activated until stabilization
is achieved. Only then is the next LSA sent, and so on.
Thus, for every number of sent LSAs, we can expect that
an actual run on the SUT would terminate in a similar
final state as in our model.

Test generation We use concolic testing procedure2

to generate test cases that cover our model’s execution
paths. We use z3 [18] as the constraint solver to per-
form the concolic executions. The structure of a gener-
ated test includes the network topology, the initial state
of the routers, the content of the sent LSAs, and the final
states of the routers.

2Our concolic executions are based on a tool called mini-mc [37]
which we adapted to our use case.

4.3 Model implementation

We implemented the above OSPF model using Python.
The model code consists of roughly 1000 lines of code.
The amount of time devoted for the protocol modeling
and its implementation was about a couple of weeks.
Code 1 gives a high level pseudo-code of the main func-
tion in the model and the two principal functions of a
router.

Code 1: An overview of part of the model implementation
def runModel ( s y m b o l i c v a r s ) :

i n i t t o p o l o g y ( )
i n i t r o u t e r s ( )
i n i t m e s s a g e s ( s y m b o l i c v a r s )

f o r m in Messages :
send m by a t t a c k e r t o i t s d e s t
whi le not s t a b l e s t a t e :

f o r R in R o u t e r s :
R . r u n p r o c e d u r e ( )

g e n o u t p u t ( i n i t s t a t e , messages , f i n a l s t a t e ) ;

c l a s s R ou t e r :
def r u n p r o c e d u r e ( s e l f , t o p o l o g y ) :

i f l e n ( s e l f . queue ) >0 :
m = s e l f . queue . pop ( 0 )

i f m. d e s t != s e l f . ID :
nextHopID = s e l f . r o u t i n g T a b l e . getNextHopID ( s e l f . ID , m. d e s t )
m. i n t e r f a c e = t o p o l o g y . g e t L i n k I n t e r f a c e ( nextHopID , s e l f . ID )
t o p o l o g y . r o u t e r s [ nextHopID ] . queue . append (m)

e l s e :
s e l f . handelLSAMsg (m, t o p o l o g y )

def handelLSAMsg ( s e l f ,m, t o p o l o g y ) :
s h o u l d f l u s h = F a l s e
i f m. age == Age . max and m.AR != s e l f . ID :

s h o u l d f l u s h = True

i f l s a not in s e l f . LSADB:
s e l f .DB. append (m)
s e l f . f l o o d (m, t o p o l o g y )
re turn

i f l s a in s e l f . LSADB and i s newer i n s t a n c e AND m.AR != s e l f . ID :
s e l f . f l o o d (m, t o p o l o g y )
d e l e t e o l d LSA in DB
s e l f .DB. append (m)
re turn

i f m.AR == s e l f . ID :
s e l f . F igh tBack ( )
re turn

4.4 Black-box testing of the generated tests

The black-box testing script interacts with the SUT’s
OSPF implementation. The script’s input is the set of
test files to run that was generated in the previous stage.
For each test file the script applies a corresponding test
run on the SUT. The results of the run are compared with
the expected results that are specified in the test file. Af-
ter completing a run of a test file on the SUT and be-
fore applying a new run of another test file, the routers
are restarted to avoid side effects from previous runs on
the following runs. The output of the script is the list of
failed tests for which the results of the SUT’s run did not
match the expected results obtained from the model.

Let (mInitialState,mLSAs,mFinalState) be the spec-
ified initial state, sent LSAs, and final state within a test
file obtained from the model. We detail below the signif-
icant procedures applied in this stage by the black-box
testing script to allow the comparison between the runs
of the OSPF model and the SUT:
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Initialization of the routers The initial state of the
routers on the SUT when they are initially activated or
after being restarted is the standard initial state, in which
the LSDBs of all routers are complete and consistent,
containing all of the LSAs originated by the routers in
the network topology. The LSDBs correctly reflect the
network topology view when they are consistent, and the
routing tables of the routers are computed based on the
LSDBs content. The sequence numbers of the LSAs are
arbitrary in the standard initial state of the routers within
the SUT.

Since mInitialState is the standard initial state, the
contents of the LSAs and routing tables of the routers
within the SUT after restart should match the model ini-
tial state as specified in the test file. However, the se-
quence numbers of LSAs within mInitialState have con-
crete values in terms of the model domains, whereas the
LSAs of the routers on the SUT have arbitrary sequence
numbers. We have to make sure that the sequence num-
bers of the routers’ LSAs are consistent with those speci-
fied in mInitialState. This is because the initial sequence
numbers of the LSAs may have an effect on the final
state. Let mSeqA,mSeqB be the initial sequence numbers
of two routers A,B based on a test generated from the
model, and let seqA,seqB be the initial sequence num-
bers of the two routers on the SUT. It is expected that
on the SUT the initial state would match as follows:
seqA− seqB = mSeqA−mSeqB.

A general OSPF implementation does not allow the se-
quence numbers of the routers’ LSA to be manually set.
Therefore, we artificially apply such an initialization by
sending each router a self-originated LSA of its own. As-
sume, for instance, that routers A and B have the follow-
ing initial sequence numbers in mInitialState: mSeqA =
2,mSeqB = 0, and the arbitrary initial state of the routers’
LSAs in the SUT contains the following sequence num-
bers: SeqA = 0x80000005,SeqB = 0x8000000F . Then,
we send to A an LSA with seq= 0x80000012, and to B an
LSA with seq = 0x80000010. Thus, after the fight-back,
we finally have a state with SeqA = 0x80000013,SeqB =
0x80000011, which matches the initial state of the
model.

Sending the symbolic LSA To send the LSA from the
test file, we take into account the concrete values of the
symbolic variables within the generated tests. We use the
Scapy framework [3] to generate a corresponding LSA
packet to be sent on the SUT. The sequence number of
the LSA to be sent is based on the initial sequence num-
ber of the initial matching LSA on the SUT and on the
sequence number of the sent LSA as specified in the test
file. For example, consider a case where mLSAs contains
a sent LSA with the fields:AR = 1,LSID = 1,seqNum =
3. This means that on the test from the model, an LSA

was sent on behalf of R1 with seqNum = 3. In order to
translate it to an LSA to be sent on the SUT, we need to
consider the following values: let mSeq1 = 1 be the ini-
tial sequence number of R1’s LSA on mInitialState, and
let Seq1 = 0x80000005 be the initial sequence number
of R1’s LSA on the SUT after applying the initialization
process in the previous stage. Then, the sequence num-
ber of the LSA to be sent on behalf of R1 on the SUT
would be Seq1 +(seqNum−mSeq1), or in that specific
case: 0x80000005+(3−1) = 0x80000007.

Comparison of matching states To compare the fi-
nal LSDBs from the model and from the test run on the
SUT, we check that for each LSA in the model LSDB
there is a matching LSA in the SUT’s LSDB and vice
versa. LSAs are considered matching if the following
fields match: LS type, LSID, AR, Links. The links list
is considered matching if for every link in the SUT there
is a matching link in the model and vice versa. The se-
quence numbers specified in the final state of the gener-
ated test file are given as symbolic expressions in terms
of the symbolic input variables. Thus, if the test file
states that the final expected sequence of the LSA of R1
is symbR1Initial + 1, then we check that the matching
LSA from the SUT’s concrete run has a sequence num-
ber that is larger by 1 than the initial sequence number of
R1’s LSA at the initialization process.

5 Evaluation

In this section we describe an evaluation of our method
against Cisco’s IOS implementation of the OSPF pro-
tocol. Nonetheless, our method can be similarly and
quite easily applied to other OSPF implementations as
well. To show this we also tested the Quagga Routing
Suite [2]3. See Section 5.4.

We have found 7 deviations in Cisco’s OSPF imple-
mentation and one deviation in Quagga. All deviations
were confirmed by the vendors. Although the deviations
we found are of interest in and of themselves, our main
aim in this section is to verify that the method we pro-
pose is indeed efficient and practical for finding protocol
deviations even in complex routing protocols standards.

5.1 Testbed

To test Cisco’s OSPF implementation we used alter-
nately two network simulation software: GNS3 [1] and
VIRL [27]. Both software suites allow to simulate a net-
work of multiple routers, each running an emulation of

3Even though Quagga is open-source we applied the tests in a black-
box manner as in the case of Cisco.
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# routers # multiple access networks # tests
2 1 259
2 2 1039
3 1 15029

Table 1: The exponential increase in number of tests as
the symbolic topology grows

an actual IOS image (identical to the images used in real
Cisco routers).

As noted in Section 3.2 the symbolic topology model
causes the test generation phase to suffer scalability is-
sues. In table 1 we summarize the number of generated
tests for small-size symbolic topologies. It is obvious
that as the symbolic topology grows the number of gen-
erated tests grows exponentially. Very quickly the num-
ber of tests even for moderate size networks becomes
too large. We shall address the scalability issues due
to symbolic topology in future work. For this evalua-
tion we chose to use a handful of static topologies. One
of the main topologies we analyzed is depicted in Fig-
ure 4. We have chosen a simple topology that contains
only 5 routers and 5 links. This is with the explicit inten-
tion of showing the power of our method with regard to
functionality coverage. The full coverage of the model
makes it possible to unearth protocol deviations even in
simple topologies that may seemingly do not expose the
full complexity of the protocol. The attack messages are
sent through router R0 (see Figure 4).

We extract the contents of the LSDB and the rout-
ing table from each router by connecting to it using a
Telnet or SSH session and issuing the appropriate CLI
commands. Every test is preceded by a soft reset of all
routers4.

We emulated the routers in those topologies using im-
ages of three stable IOS versions as detailed in Table 2.
These versions were evaluated due to the large time gap
between their release dates – 5 years in total. This time
gap leads us to assume that the there are non-negligible
changes in the code base between the three versions, even
though the core functionality of the OSPF standard re-
mained the same during this time period. The changes
may be due to new proprietary features, optimizations
of protocol functions or bug fixes. These changes in the
code base allowed us to verify that our method indeed is
capable of identifying different deviations in the different
versions of the same vendor’s implementation.

Examining past versions also allowed us to get a sense
of the extent of false negatives (missed deviations) of our
analysis. We know we missed a deviation if we do not
discover a vulnerability that Cisco already announced.
Since Mar. 2011 (the release date of the earliest version

4To reset a Cisco router the ’reload’ CLI command is issued.

IOS Version Release date
15.1(4)M, release software (fc1) Mar. 2011
15.2(4)S7, release software (fc4) Apr. 2015
15.6(2)T, release software (fc4) Mar. 2016

Table 2: Cisco’s IOS versions tested for deviations

Figure 4: One of the static network topologies against
which we ran the evaluation

we tested – 15.1(4)M) Cisco announced 2 vulnerabili-
ties related to OSPF implementation in IOS (CVE-2013-
0149 and CVE-2013-5527)5. Only one of them is related
to a deviating functionality with respect to the standard
(the other vulnerability was related to a parsing bug). Our
tests discovered that vulnerability.

5.2 Tests results overview
We illustrate our findings using the topology depicted in
Figure 4. We first discuss the performance gain afforded
by the optimizations we presented in Section 3.3. Then
we summarize the deviations we uncovered throughout
our analysis.

Table 3 summarizes the number of generated tests and
the time it took to generate them while using either 1 or 2
symbolic LSA messages. For both cases we generate the
tests with and without the path merging optimization de-
scribed in Section 3.3. The number of generated tests for

5Based on a search in NIST’s National Vulnerability Database

Number
of LSAs

No optimization
(# tests, time)

With optimization
(# tests, time)

1 395, 20 min 395, 20 min
2 N/A, ¿24 h 40188, 2h

Table 3: A summary of the number of generated tests
with and without the path merging optimization
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Time # of unique model
states reached

No optimization 80 2h
With optimization 120 10 min

Table 4: A summary of the time it took to generate 1000
tests and the number of unique model states they cover
with and without the arbitrary prefix paths optimization.
Path prefix length=3

a single symbolic message is 395. Since the described
optimization does not address single LSA scenarios the
number of tests remain the same regardless of the opti-
mization. Nonetheless, the necessity of the optimization
becomes quickly apparent while generating tests with 2
symbolic messages. We initially tried to generate tests by
directly using two symbolic LSAs (without the use of the
optimization). However, this resulted in the generation of
excessive number of tests. In fact, the concolic execution
process took over 24 hours (after this time we stopped its
execution). This fully exemplifies the well-known path-
explosion problem. The application of a sequence of two
symbolic LSAs to the OSPF model resulted in an over-
whelming number of execution paths.

After applying the path merging optimization, we an-
alyzed the reachable states of the generated tests from
the previous stage (with a single LSA). We found that
out of 395 test files only 103 of them have unique final
state. Then, we were able to generate tests from each
new reachable state out of the discovered 103 states. In
total 40,188 tests were generated for two LSAs using the
optimization just under 2 hours.

Table 4 examines the performance of the arbitrary pre-
fix paths optimization described in Section 3.3. Since
this optimization does not guarantee full model cover-
age we benchmark its benefit differently. Given the same
number of allowed tests, we measure the added number
of model states reached during the concolic testing phase
as compared to a standard application of model-based
testing. In this evaluation we assume we have a bud-
get of 1000 tests that we allow to run against the SUT.
Without using the optimization this number of tests were
generated in 2 hours and reached 80 unique model states.
In contrast, when we employed the arbitrary prefix paths
optimization using the same budget of 1000 tests we are
able to cover 50% more unique model states. This is due
to the fact that the arbitrarty prefix allow us to venture
deeper in to the model and reach new states we could not
have reach with shorter paths.

Moreover, an even bigger benefit of the arbitrary prefix
paths optimization is the fact that the tests were generate
in only 10 minutes (more than 90% improvement). The
time improvement is due to the fact that the concolic exe-

Deviation category 15.1 15.2 , 15.6
Harmed Routing {1,2,3,4,5,6} {1,2}
Affected Stability {2,5,6} {2}
Non-vulnerability {7} {7}
Total # of found deviations 7 3

Table 5: Summary of found deviations in the three IOS
versions, categorized by types

cutions were run with only one symbolic message (which
were prefixed by arbitrary messages). Without the opti-
mization we need to run concolic executions with at least
two symbolic messages which is a much more time con-
suming task.

In total, throughout our evaluation we found 7 devi-
ations in version 15.1. We consider 6 of them as secu-
rity vulnerabilities, 3 of which were also reproduced in
versions 15.2 and 15.6, while the other 4 deviations were
already fixed by Cisco in those versions. Table 5 summa-
rizes the number of found deviations per model version
and categorizes the deviations according to their impact.

In the next subsection we give details of the found de-
viations.

5.3 Analysis of found deviations
5.3.1 Unknown vulnerabilities

Deviations 1 and 2 from Table 5 represent new, previ-
ously unknown security vulnerabilities that our analysis
revealed in all three Cisco IOS versions that we tested.
Cisco acknowledged these vulnerabilities.

1. Incomplete fight-back for Rogue LSA with max-
imum sequence number:
Description: A false LSA having the maximum se-
quence number was sent by unicast to a router R
on behalf of R itself. The router originated an LSA
with MaxSeqNum and MaxAge. However, it un-
expectedly did not originate its LSA with InitialSe-
qNum. The routing tables of the other routers were
affected due to that missing LSA of R.

Impact: This deviation allows an attacker to send
a spoofed LSA that persistently disrupts the routing
in the network. The missing LSA origination results
in loss of connectivity.

Comments: This deviation is topology-dependent.
It was observed on routers R0,R1,R2 only. It was
not observed at all in a smaller topology that Cisco
tested while trying to independently reproduce the
deviation.

2. Incorrect MaxAge LSA origination during fight-
back:
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Description: A false LSA having the maximum
sequence number was sent on behalf of R2 to R1.
Consequently, R1 stored the false LSA in its LSDB
and flooded it to R2, as expected. Since R2 received
a self-originated LSA with MaxSeqNum, it should
first originate a MaxAge LSA, and then an InitialSe-
qNum LSA. Based on the standard, the MaxAge
LSA should carry the same links as the MaxSe-
qNum LSA. However, in the tested implementa-
tions, R2 originated a MaxAge LSA with its own
valid links, instead of the invalid links from the false
LSA. After R2 sent this wrong MaxAge LSA to R1,
R1 had to check whether the MaxAge LSA is newer
than the false LSA in its LSDB. Both LSAs have
the same sequence number, MaxSeq. Based on the
standard, the checksum field is compared in such
a case. The false LSA in R1’s LSDB had a larger
checksum value in our test. Thus, this false LSA
was considered newer. Note that if the MaxAge
LSA would have been correct, the checksum values
would have been identical, and the MaxAge LSA
would have been considered newer, as expected. As
a result, R1 discarded the MaxAge LSA, and re-sent
to R2 the false LSA from its LSDB. Then, R1 kept
sending to R2 the false LSA and R2 kept sending to
R1 the MaxAge LSA.

Impact: This deviation allows an attacker to send
a spoofed LSA that disrupts the routing in the net-
work. During the attack a very long period of in-
stability is observed, on which two routers keep ex-
changing repeated instances of LSAs. During that
period the routers remain with inconsistent rout-
ing tables, and there is loss of connectivity between
some of the routers.

The above deviations manifested themselves even fur-
ther when tests included two LSAs. We partially applied
an analysis of depth two, for two new reachable states,
on IOS versions 15.1 and 15.2.

The new reachable states that we chose are:

1. The LSDBs of all routers contain a spoofed LSA of
R0 with an empty list of links.

2. The LSDB of R1 contains its own LSA with
MaxSeqNum, and the other routers’ LSDBs are
missing the LSA of R1.

The generated tests contained two sent LSAs, where
the first LSA leads to one of the above chosen reach-
able states. We did not find any new deviations in this
analysis. However, we did observe test failures that were
related to deviation #1 specified in the previous section.
For instance, the following scenario was observed:

• Sent LSA #1: an LSA with MaxSeqNum was sent
on behalf of R to R.

• Sent LSA #2: an LSA with MaxSeqNum was sent
on behalf of another router R′ to R.

• Final state: In Cisco’s implementation, in the final
state both LSAs of R and R′ were initialized with
InitialSeqNum on all routers’ LSDBs.

The expected final state from the model was that only
the LSA of R′ would be initialized, and the LSA of R
would remain unchanged (i.e., with MaxSeqNum on R’s
LSDB and missing from the other routers’ LSDBs, as
described in deviation #1). This scenario demonstrates
that the second LSA unexpectedly affected the state of
the routers w.r.t. a different LSA of another router (R) as
well. The result was that R completed its expected pro-
cedure only after the second LSA was sent. This new
observed behavior can be described as a more complete
view of deviation #1 that was initially found in the 1-
depth analysis. Increasing the depth of the analysis has
the potential to reveal additional consequences of previ-
ously found deviation, as demonstrated in this case.

5.3.2 Known vulnerabilities

Below is the detailed list of additional vulnerabilities
found in version 15.1 only. All of these vulnerabilities
were patched by Cisco by version 15.2. In the appendix
we include more details of this list with specific descrip-
tions of how each deviation was found.

3. Inconsistent LSA with LSID 6= AR poisons LS-
DBs and routing tables:
Description: A false inconsistent LSA with
LSID 6= AR was sent to a router R, where the LSID
was equal to R’s ID. The false LSA unexpectedly
replaced the correct LSA of R on its own LSDB
and on other routers’ LSDBs as well. The routing
tables of these routers were re-calculated based on
that false LSA, and consequently no OSPF-derived
route existed in their routing tables

Impact: This deviation allows an attacker to send
a spoofed LSA that persistently disrupts the routing
in the network.

4. Inconsistent LSA with lower sequence number
causes a fight-back:
Description: A false inconsistent LSA with
LSID 6= AR was sent to a router R, with LSID = R
and AR = R′. An unexpected fight-back LSA was
originated by R′, even though the sent LSA had
lower sequence number than its own LSA. This
is not in accordance with the OSPF specification,
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which states that a new LSA (a fight-back) should
be sent in response to a self-originating false LSA
only if that false LSA is newer than the current LSA.

Impact: The impact is similar to the one described
in the previous deviation, since the final state in both
scenarios is similar. This scenario describes an ad-
ditional deviation with respect to the previous one,
but it has no additional effect on the calculated rout-
ing tables.

5. Inconsistent fight-back response:

Description: A false LSA with LSID 6= AR was
sent to a router R. One of the routers originated a
fight-back response. Then, unexpectedly, its neigh-
bor kept re-sending to that router the original false
LSA, and the other router kept sending a new fight-
back response with an incremented sequence num-
ber. This behavior was repeated for many such iter-
ations until stabilization.

Impact: The observed behavior includes the behav-
ior described in deviations 3 and 4, but it also affects
the stability of the routers. It was observed on spe-
cific routers within the topology on several specific
combinations of values for the LSA fields.

6. Inconsistent fight-back response for MaxSeq-1

Description: A false LSA with LSID 6= AR and
seq=MaxSeq−1 was sent to a router R. One of the
routers originated a fight-back with seq = MaxSeq
and age=MaxAge. Consequently, its neighbor kept
sending the original false LSA over and over again,
and it took many such iterations until stabilization.

Impact: The observed behavior includes the behav-
ior observed in deviation 3, but also affects the sta-
bility of the routers.

5.3.3 Non-vulnerabilities

As already noted, not all deviations must be security vul-
nerabilities. A deviating functionality can enhance the
security of the implementation as compared to the stan-
dard. This is the case in one of the deviations we uncov-
ered which we call “Re-flooding of LSA arriving from
DR by unicast”. Due to space constraints this deviation
is detailed in the appendix.

5.4 Testing the Quagga OSPF implementa-
tion

To further demonstrate the generality of our tool, we also
employed it to analyze the OSPF implementation of the
Quagga Routing Suite [2]. The analysis of Quagga con-
sisted of the 94 generated test files (see Table 3).

We found one significant deviation in this version that
also poses a security vulnerability. The deviation is sim-
ilar to deviation 2 from Section 5.3.1 that we found in
Cisco’s implementations. We confirmed the existence of
the deviation in the source code. The deviation mani-
fested itself in Quagga is all routers (in Cisco only some
of the routers exhibited the deviation). This is due to the
fact that once a Quagga router receives an LSA it imme-
diately floods it to its neighbors and only then checks if
it was originated by itself. This allows the false LSA to
propagate to all routers before the fight-back LSA is trig-
gered hence manifesting the described deviation in every
router.

6 Advantages and limitations of our
method

Our method allows us to focus on specific protocol func-
tionality on which an exhaustive testing can be applied
for any implementation of the protocol, and black box in
particular. It can be used to test various implementations
of different versions and vendors, using the same model
and the same set of tests, per chosen network topology.
Since the test generation is systematic and exhaustive
with full coverage, it is very effective in finding devia-
tions of a protocol from its standard. The effectiveness is
demonstrated by the large number of deviations that we
found on an OSPF implementation with a single sym-
bolic LSA and a standard initial state.

Furthermore, our tool can be easily adapted to search
for deviation in a different vendor’s implementation. One
need only adapt the commands required to fetch LSDB
and routing table from the routers and parse them as
needed. Adapting our method to a different network pro-
tocol is also straightforward; however, it requires a new
reference model and adjustments of the black box testing
script, including the comparison method.

In Section 7 we present some previous work related
to black box analysis. Many past works used automatic
model inference. When comparing black-box implemen-
tations with the standard of the protocol as we did here,
the automatic inference approach would require applying
such inferences for every new version that needs to be
tested. Then, specific predefined properties would have
to be tested on the inferred models. In our approach a
reference model has to be implemented once, and its gen-
erated tests can be directly applied on every new imple-
mentation version, without inference. It should also be
noted that even though our method requires knowledge
of the protocol and manual abstractions, such knowledge
may also be required for the inference method. The infer-
ence process may require non-trivial abstractions to en-
able inferring a certain part of the protocol in the form of
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a regular automaton with some abstracted alphabet. This
abstraction process is non-trivial and requires knowledge
of the protocol.

Limitations The limitations of our approach include
the manual implementation of a reference model. It is
possible that the reference model has unintended devia-
tions from the standard, therby undermining the credibil-
ity of the analysis. The reference model should be com-
pact, and thus must be limited to certain chosen function-
alities of the protocol. The method may have scalability
issues for larger models. In such cases heuristics and pri-
orities may have to be developed for partial generation of
test cases. Another option is to split a large model into
several smaller compact models.

Furthermore, as for all black box analysis methods,
our method cannot guarantee full coverage of the imple-
mentation code. The generated tests only provide full
coverage of the model. Therefore, our method is not
geared towards finding software vulnerabilities that stem
from buffer overflows, race conditions, parsing errors
and the like.

Additionally, despite our optimizations, the number of
symbolic variables and their domains may grow along
with any increase in the number of sent messages or the
topology size, leading to the path explosion problem. In
this paper, we do not explore the topology size limit or
message depth limit of our method. Nonetheless, we
have shown in previous section that large topologies are
not necessarily required to expose non-trivial deviations.

7 Related Work

7.1 Fuzzing

Fuzzing [23] is a common black box testing approach.
It is based on generation of random or faulty unexpected
input. Such inputs are tested against the SUT to reveal
implementation errors.

Some previous works have developed network pro-
tocol fuzzers for vulnerability analysis. SPIKE [5] is
a framework for creating block based network fuzzers.
Block-based fuzzing involves splitting messages into
static and dynamic parts, where fuzzing is applied on
the dynamic parts. In [11], a stateful fuzzing approach
was implemented for the SIP protocol. In [28], a fuzzing
approach that generated test cases at runtime was pre-
sented. The authors generated behavioral fuzz test cases
from UML sequence diagrams by applying a set of
fuzzing operators.

Unlike random fuzzers that generally do not guarantee
completeness of the analysis, our approach is designed to
apply an exhaustive and systematic analysis for certain

modeled functionalities. Thus, our approach thoroughly
tests a predefined set of protocol functionalities.

7.2 Formal Black Box Analysis

Some previous works have used model based approaches
for black box analysis. For example, in [39], a black box
analysis was applied on networked applications for fault
detection by analyzing traces of system calls. The anal-
ysis was used to find deviations from expected network
semantics on certain points in the ordered execution. In
[12] a technique for rigorous protocol specification was
developed and applied on the TCP and UDP protocols.
The specification is written as operational semantics def-
inition in higher order logic. A specification-based test-
ing approach is used to test some implementations. It is
based on capturing SUT traces and using a checker, writ-
ten above HOL, that performs symbolic evaluation of the
rigorous specification along the captured traces. In [9] a
black box approach was used by modeling real-time em-
bedded systems environment in UML. The work focused
on random testing, adaptive random testing and search-
based testing.

Other past works ([19, 21, 17]) approached the black box
analysis task using active learning algorithms ([7, 30]) to
automatically infer a model of the black box system in
the form of an automaton. In [19] the inference algo-
rithm was used to learn an automaton model for a frag-
ment of the TCP protocol in two different implementa-
tions. The inferred models were then compared to ob-
tain fingerprinting of these implementations. It should
be noted that an abstraction of the TCP packets was used
in the learning process. Thus, applying the method to a
black box implementation still requires some knowledge
of the protocol itself. The authors of [17] used similar
inference methods to learn models of botnet Command
and Control protocols. To analyze the inferred model,
they defined certain properties to check on the inferred
state-machine. In [21] a black box implementation of
the MSN Instant Messaging Protocol is automatically in-
ferred. A fuzz testing technique is used to analyze the
inferred model and to search for inputs that can crash the
implementation.

In [10] an approach based on automata learning is de-
veloped. It consists of a black-box differential testing
framework based on Symbolic Finite Automata (SFA)
learning. It is based on inferring SFA models of the tar-
get programs using black-box queries and enumerating
the differences between the inferred models. The method
was evaluated on TCP implementations and Web Appli-
cation Firewalls, and revealed differences between im-
plementations.
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7.3 Symbolic Execution

Symbolic execution is a very effective and common tech-
nique for test generation. It is used to analyze protocols
(e.g. [32],[31],[6]) mostly when the implementation is
white box with available source code. For example, in
[31], an analysis that uses symbolic execution is applied
directly on the source code of network protocol imple-
mentations, such as DHCP and Zeroconf. It is used to
test the protocol implementation against its specification.
The specification from an RFC document is translated
into a specification in a rule-based language. The input
packets generated from the tests are then used to detect
violations of the specified rules.

7.4 OSPF analysis

Several works have analyzed the OSPF standard itself
for security vulnerabilities [26, 33, 22]. A few of these
works have used the same threat model and even the
same formal model of the OSPF standard, as we did here.
However, these works used a formal analysis process to
identify security issues in the model: namely, they iden-
tify states in which the model has an undesirable prop-
erty from a security point of view. In contrast, we use the
formal model as a benchmark to test implementations,
thereby allowing us to find security issues in specific im-
plementations of the standard rather than in the standard
itself.

A few earlier works have also addressed deviations
in OSPF implementations. In [36, 38, 35], the authors
identify some deviations in OSPF implementations. All
of the identified deviations related to incorrectly wrap-
ping of the LS sequence number field, potentially caus-
ing false LSAs to remain in the LSDB. The deviations
found there are a result of an ad-hoc manual analysis.

7.5 Deviations analysis

There are some past works that suggested approaches for
finding deviations between implementations of the same
protocol. In [14], the suggested approach consists of au-
tomatically building symbolic formulas from the given
implementation programs. Deviations between the im-
plementations are identified by solving formulas gener-
ated from the two implementations. The approach was
evaluated on the HTTP and NTP protocols. Our ap-
proach, on the other hand, is focused at finding devia-
tions between an implementation and a reference model.
It does not require access to the implementation code or
to its binary code. In addition, our approach focuses on
complex multi-party routing protocols.

In [13], the authors developed a method for adver-
sarial testing of certificate validation logic in SSL/TLS

implementations. It is based on frankencerts, synthetic
certificates randomly mutated from parts of real certifi-
cates. They applied differential testing with frankencerts
and found implementation flaws. The suggested method
focuses on a specific protocol and the analysis was based
on the new concept of frankencerts.

8 Conclusions

In this work we developed and implemented a black-box
method to find deviations of a closed-source protocol im-
plementation from its standard. We used a model based
approach in which we modeled core parts of the proto-
col’s standard and used it as a reference model. We have
shown that the method is efficient and practical for find-
ing deviations in complex multi-party protocols. We did
so by applying the method to the complex and widely
used OSPF routing protocol. We tested three versions of
Cisco’s implementation and found different deviations in
each. The method uses concolic execution to generate
tests with high coverage, and thus it allowed us to find 7
significant deviations of the tested implementations even
in relatively simple topologies. Most of these deviations
pose security vulnerabilities and they were all confirmed
by Cisco. By applying our method to the OSPF imple-
mentation of the Quagga Routing Suite and revealing a
significant deviation, we further demonstrate the gener-
ality of the method.
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A Detailed description of deviations

Table 6 summarizes the number of generated tests per
topology and model version.

In Topology 2 we tested the implementation of ver-
sions 15.2 and 15.6, and no new deviations were found.
Two of the found deviations (1,2) were reproduced in this
topology.

In this section we give more specific details on each of
the found deviations.

A.0.1 Results on Topology 1 with version 15.1

We started with Topology 1 on version 15.1. The model
was configured with one symbolic LSA. We found the
following deviations as detailed below.

1. Incomplete fight-back for Rogue LSA with max-
imum sequence number:

• Sent LSA: 〈src = R0,dest = R1,LSID =
R1,AR = R1,seq = MaxSeq, links = []〉

• Description: A false LSA having the maxi-
mum sequence number was sent from Cloud 1
to R1. The false LSA had an LSID and Adver-
tising Router fields that correspond to R1 ID.
In response R1 flooded over all its interfaces a
new LSA having maximum sequence number
and maximum age in order to flush the false
LSA from all the routers in the network. This
action is expected and is in accordance with
the OSPF specification. Following the recep-
tion of the LSA Acks from all its neighbors
R1 was expected to send yet another LSA, but
this time with the minimum sequence number.
However, R1 does not send this LSA. As a
result, the LSA of R1 is not installed in the
LSDB of the routers in the network, causing
their LSDB to be inconsistent with the actual
network topology.

• Impact: This gap allows an attacker to send a
spoofed LSA that persistently harms the rout-
ing in the network.

• Comments: The same behavior was observed
on the corresponding tests of R0 and R2 (with
dest = LSID = AR = R0 or R2), but on routers
R3 and R4 the expected behavior was observed
on this topology.

• Status: This deviation was acknowledged by
Cisco.

2. Incorrect MaxAge LSA origination during fight-
back:

• Sent LSA: 〈src = R0,dest = R1,LSID =
R2,AR = R2,seq = MaxSeq, links = []〉

• Description: A false LSA having the maxi-
mum sequence number was sent on behalf of
R2 to R1. Consequently, R1 stored the false
LSA in its LSDB and flooded it to R2, as ex-
pected. Since R2 received a self-originated
LSA with MaxSeqNum, it should first orig-
inate a MaxAge LSA, and then an InitialSe-
qNum LSA. Based on the RFC, the MaxAge
LSA should carry the same links as of the
MaxSeqNum LSA. However, in the tested im-
plementations, R2 originated a MaxAge LSA
with its own valid links, instead of the invalid
links from the false LSA. After R2 sent this
wrong MaxAge LSA to R1, R1 had to check
whether the MaxAge LSA is newer than the
false LSA in its LSDB or not. Both LSAs have
the same sequence number, which is MaxSeq.
Based on the RFC, the checksum field is com-
pared in such case. The false LSA in R1’s
LSDB had a larger checksum value in our test.
Thus, this false LSA was considered newer.
Note that if the MaxAge LSA would have
been correct, the checksum values would have
been identical, and the MaxAge LSA would
have been considered newer, as expected.
As a result, R1 discarded the MaxAge LSA,
and re-sent to R2 the false LSA from its
LSDB.
Then, R1 kept sending to R2 the false LSA and
R2 kept sending to R1 the MaxAge LSA. In
addition, the following message showed up in
the console: “Detected router with duplicate
router ID” (with RID of R2).

• Impact: This deviation allows an attacker to
send a spoofed LSA that harms the routing in
the network. During the attack a very long pe-
riod of instability is observed, on which two
routers keep exchanging repeated instances of
LSAs. During that period the routers remain
with inconsistent routing tables, and there is
loss of connectivity between some the routers.

• Comments: The same behavior is observed
when a similar LSA is sent with any dest that
does not equal R2’s ID.

• Status: This deviation was acknowledged by
Cisco.

3. Inconsistent LSA with LSID 6= AR poisons LS-
DBs and routing tables:

• Sent LSA: 〈src = R0,dest = R1,LSID =
R1,AR = R4,seq = n, links = []〉
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Topology IOS veresion # Generated tests # Found deviations
Topology 1 version 15.1 395 7
Topology 1 version 15.2,15.6 395 3
Topology 2 version 15.2,15.6 395 2

Table 6: A summary of the number of generated tests and found deviations per each topology and IOS version with a
single symbolic LSA

• Description: The false LSA sent to R1 had
an LSID with R1’s ID and Advertising Router
with R4’s ID. In the initial state the sequence
number of R4’s LSA is less than n. In the final
state the LSA originated by R1 is unexpect-
edly replaced with the sent LSA at the LSDBs
of R1,R2,R3. Thus, these LSDBs remain poi-
soned at the end of this test. This is not in ac-
cordance with the OSPF specification which
says that an LSA is identified by the fields
LSID,AR, and type. The sent LSA should not
have replaced the LSA of R1 since their AR
values are different. R4 responds with a fight-
back since the sent LSA contains AR = R4.
Thus, its LSA’s sequence number is increased
and its value is n+ 1 on the final state for all
routers’ LSDBs.

• Impact: Following this attack the routing ta-
bles of R3 and R2 are re-calculated according
to the false LSA and consequently no OSPF-
derived route exists in their routing tables. The
routing tables of R1 and R4 are unaffected by
the attack.

• Status: This gap was already known and was
published in [26]. It was fixed on later ver-
sions. On the applied fix a router ignores in-
consistent LSA with LSID 6= AR.

4. Inconsistent LSA with lower sequence number
causes a fight-back:

• Sent LSA: 〈src = R0,dest = R1,LSID =
R1,AR = R2,seq = n, links = []〉

• Description: A false LSA having LSID = R1
and AR = R2 was sent to R1 from Cloud 1.
This LSA has a sequence number n that was
larger than the seq of R1s initial LSA, but
smaller than the seq of R2s initial LSA. R1
floods the false LSA to all its neighbors in-
cluding R2. R2 initially sends a fight-back
LSA with a seq smaller than the seq of its
own LSA currently installed in its DB (it sim-
ply sent an LSA that has a seq increased by
1 compared to the seq of the false LSA). This
is not in accordance with the OSPF specifica-
tion which says that a new LSA (a fight-back)

should be sent in response to a self-originating
false LSA only if that false LSA is newer than
the current LSA (see Sec. 13.1 in the RFC).
This is not the case in our test. As noted,
the false LSA had a sequence number that is
smaller than that of the current LSA. Eventu-
ally, R2 originates a new fight-back LSA with
a seq that is increased by 1 compared to the
LSA installed in its DB only after R1 sends to
R2 the LSA with the updated seq.

• Impact: The impact is similar to the one de-
scribed in the previous deviation, since the fi-
nal state on both scenarios is similar. This sce-
nario describes an additional deviation with
respect to the previous one, but it has no ad-
ditional effect on the calculated routing tables.

• Status: We are not aware of any report about
this deviation on version 15.1. However, due
to the fix mentioned in the previous deviation,
we could not reconstruct this deviation on later
versions as well.

5. Inconsistent fight-back response:

• Sent LSA: 〈src = R1,dest = R3,LSID =
R0,AR = R4,seq = 0x7, links = []〉

• Description: A false LSA having LSID=R0
and Advertising Router=R4 was sent to R3
from Cloud 1. It is sent with seq = 0x7. The
false LSA is then flooded from R3 to R4. R4
replies with a fight-back having seq=0x8. In
response, R3 sends to R4 the LSA with the
updated seq=0x9, which is larger than the seq
of the fightback (it was the initial sequence
num of R4). Then, R4 sends an updated LSA
with seq=0xA. Until this point the behavior is
as previously described on gap 3 (R4 should
not have sent a fight-back since the LSA se-
quence number was less than its own LSA
). Then, R3 unexpectedly re-sends to R4 the
original (false) LSA with seq=0x7. Eventu-
ally, R4 sends an updated LSA with seq=0xB.
This behavior goes on repeatedly, and for each
such iteration R4 eventually sends an LSA
with seq increased by 1. The last packet sent
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by R4 has a seq=0x16, and then there is a
stable state. Additionally, the following mes-
sage shows up: “Detected router with dupli-
cate router ID” with the ID of R4.

• Impact: The observed behavior includes the
behavior observed on gap 3, but also affects
the stability of the routers.

• Comments: The gap was only observed on
several specific tests from all tests for which
the failure was related to gap 3.

• Status: Since gap 3 was fixed on later ver-
sions, this gap was not observed on later ver-
sions as well.

6. Inconsistent fight-back response for MaxSeq-1

• Sent LSA: 〈src = R1,dest = R4,LSID =
R0,AR = R4,seq = MaxSeq−1, links = []〉

• Description: We send a false LSA having
LSID=R0 and Advertising Router=R4 to R4.
The LSA had a seq=MaxSeq-1. R4 responds
with a fight-back having seq=MaxSeq and
age=MaxAge. However, R3 keeps sending
the false LSA having seq=MaxSeq-1 over and
over again, and it takes many iterations till sta-
ble state is achieved. Additionally, the follow-
ing message shows up: “Detected router with
duplicate router ID” with ID of R4.

• Impact: The observed behavior includes the
behavior observed on gap 2, but also affects
the stability of the routers.

• Comments: The gap was only observed on
several specific tests from all tests that match
to gap 2, with seqNum = maxSeq-1.

• Status: Since gap 2 was fixed on later ver-
sions, this gap was not observed on later ver-
sions as well.

7. Re-flooding of LSA arriving from DR by unicast:

• Sent LSA: 〈src = R1,dest = R3,LSID =
R1,AR = R1,seq = n, links = []〉

• Description: The above LSA is sent to R3.
R3 receives it by unicast from R1. On the ob-
served behavior, R3 floods the LSA by unicast
to R4, and then R4 floods the LSA by unicast
to R1. This results in a fight-back LSA that
R1 originates. On the modeled behavior, R3
does not flood the sent LSA since it was sent
from R1 which is the Designated Router. The
RFC mentions the following: “If the new LSA
was received on this interface, and it was re-
ceived from either the Designated Router or

the Backup Designated Router, chances are
that all the neighbors have received the LSA
already. Therefore, examine the next inter-
face.” Thus, our model follows the RFC in-
structions. However, based on the RFC, the
flooding from the DR within a broadcast net-
work is always expected to be by broadcast
and not unicast: “The only packets not sent as
unicasts are on broadcast networks; on these
networks Hello packets are sent to the mul-
ticast destination AllSPFRouters, the Desig-
nated Router and its Backup send both Link
State Update Packets and Link State Acknowl-
edgment Packets to the multicast address All-
SPFRouters, while all other routers send both
their Link State Update and Link State Ac-
knowledgment Packets to the multicast ad-
dress AllDRouters.”. The RFC assumes this
is always true and does not contain any in-
struction to verify that. Thus, we infer that
Cisco’s implementation verifies whether the
LSA packet sent from the DR was indeed
flooded by multicast and not unicast as ex-
pected. If it is sent by unicast, they add the
additional re-flooding as described on the ob-
served behavior, to make sure that neighbors
receive the LSA.

• Impact: This gap demonstrates improved se-
curity of the implementation with respect to
the model which is based on the RFC. The fi-
nal state on our model results in a poisoned
LSDB of R3 with a fake LSA by R1, whereas
on Cisco’s implementation it is prevented by a
fightback due to the re-flooding of the unicast
LSA.

A.0.2 Results on Topology 1 with versions 15.2, 15.6

We re-applied the generated tests of topology 1 on the
newer versions 15.2 and 15.6 of the OSPF Cisco’s im-
plementation.

On these versions we observed that deviations 3,4,5,6
from the previous section were not reproduced. That is
due to the fix applied on this version, for which a router
ignores inconsistent router LSA with LSID 6= AR. How-
ever, deviations 1,2,7 were still observed on this version.

A.0.3 Results on Topology 2 with versions 15.2, 15.6

We used topology 2, which is a variation of topology 1.
It required to update the model with the new topology,
re-generate test files, and re-run the testing script with
the new test files. On this topology deviations 1,2 were
still observed, and no other deviations were revealed. As
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for deviation 1, on this topology the described behavior
was observed on all routers, and not only on R0,R1,R2
as on the previous topology.

A.0.4 Results on depth 2 for Topology 1 with version
15.2

We partially applied our extension method on Topology
1 with version 15.2. Out of 94 tests of depth 1, only 9
result in a new reachable state. We applied a depth-2
sacn for two reachable states as follows:

• The state: The LSDB of all routers contains a
spoofed LSA of R0 with an empy list of links.
The corresponding LSA leading to that state is:
[dest = 1, type = routerLSA,AdvertisingRouter =
0,LSID = 0,sequenceNum = 1,Links = []]

Results: On this case we did not detect any new
unexpected behavior. For every generated test with
two LSAs where the first LSA is the above and the
second results from the scan from the corresponding
state, no gap on the expected beahvior was found.

• The state: The LSDB of R1 contained its own
LSA with MaxSeqNum, and the other routers LS-
DBs were missing R1’s LSA. This state results from
the gap described in the previous section. The cor-
responding LSA leading to that state is: [src = 0 :
0,dest = 1, type= routerLSA,AdvertisingRouter =
1,LSID = 1,sequenceNum = MAX ,Links = []]

Results: On this case a gap was found: when
the second LSA was sent on behalf of R4 with
MaxSeqNum to R1, the final state contained both
LSAs of R1 and R4 with initialSeqNum on all
routers’ LSDBs. The expected state from the model
was that only the LSA of R4 would bt initialized,
and the LSA of R1 would remain unchanged.
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