
OpenCrypto
Unchaining the 

JavaCard Ecosystem

Vasilios Mavroudis
Doctoral Researcher, UCL



Who we are

Vasilios Mavroudis
Doctoral Researcher, UCL

George Danezis

Professor, UCL

Petr Svenda

Assistant Professor, MUNI

Dan Cvrcek
Founder, EnigmaBridge



Contents

1. Smart Cards & Java Cards

2. What’s the problem?

3. Our solution

4. Tools for developers

5. Future Work



SmartCards

- Pocket-sized card with integrated circuits embedded

- 8-32 bit CPU @ 10+MHz

- Cryptographic Coprocessor

- Persistent memory 32-150kB (EEPROM)

- Volatile fast RAM, usually <<10kB

- Secure Random Number Generator

EEPROM

CPU

CRYPTO

SR
A

M R
O

M

RNG



SmartCards

Intended for physically unprotected environment

- Tamper protection

→ Tamper-evidence (visible if physically manipulated)

→ Tamper-resistance (can withstand physical attack)

→ Tamper-response (erase keys…)

- Protection against side-channel attacks (power,EM,fault)

- Periodic tests of TRNG functionality



Use Cases

- Payments – ApplePay, Chip credit cards, …

- Government – ID cards, authentication, signing

- Cryptocurrencies – wallet protection

- Internet of Things



Why we like smartcards

- Secure – Small attack surface

- Certified to high levels of security (CC EAL5+, FIPS 140-2)

- Programmable secure execution environment

- Suitable for complicated business security transactions

- Inexpensive – 100 JCs form a low-end HSM



Operating Systems

.NET for smartcards

- Similar to JavaCard, but C#

- Limited market penetration

JavaCard

- Open platform from Sun/Oracle

- Applets portable between cards 

MultOS

- Multiple supported languages

- Native compilation

- Certified to high-levels

- Often used in bank cards 





History

Until 1996:

- Every major smart card vendor had a proprietary solution

- Smart card issuers were asking for interoperability between vendors

In 1997:

- The Java Card Forum was founded 

- Sun Microsystems was invited as owner of the Java technology

- And smart card vendors became Java Card licensees



The Java Card Spec is born

Sun was responsible for managing:

- The Java Card Platform Specifications 

- The reference implementation 

- A compliance kit

Today, 20 years after:

- Oracle releases the Java Card specifications (VM, RE, API) 

- and provides the SDK for applet development



A success!

20 Billion Java Cards sold in total

~2 Billion Javacards sold per year

1 Billion contactless cards in 2016

Common Use Cases: 

- Telecommunications

- Payments

- Loyalty Cards

JavaCardForum

https://javacardforum.com/2017/03/02/the-impact-of-java-card-technology-yesterday-and-tomorrow/


The API Specification

- Lists all supported crypto algorithms and the relevant methods

- Straightforward to use for developers

- Ensures interoperability between manufacturers

- Implementations are certified for functionality and security

A full ecosystem with laboratories & certification authorities



The API Specification

3.0.5

3.0.4

3.0.1

2.2.2

2.2.0

2.1.1

2015 - Diffie-Hellman modular exponentiation, RSA-3072, SHA3, plain ECDSA

2011 - DES MAC8 ISO9797.

Wikipedia

2009 - SHA-224, SHA2 for all signature algorithms

2006 - SHA-256, SHA-384, SHA-512, ISO9796-2, HMAC, Korean SEED

2002 - EC Diffie-Hellman, ECC keys, AES, RSA with variable key length

2000 - RSA without padding.

https://en.wikipedia.org/wiki/Java_Card


Bad Omens I

Compliance

Vendors implement a subset of the API specification:

 No list of algorithms supported by each card

 The specific card must be tested by the developers

Examples

- RMI introduced in Java Card Spec. 2.2 (2003)           → never adopted

- Java Card 3.0 Connected (2009) → never implemented

- Annotation framework for security interoperability → not adopted



Bad Omens II

Interoperability

- Most cards run a single applet

- Most applets written & tested for a single card

- Most applets run only on a single vendor’s cards

Three years late

- 1 year to develop the new platform after the release of a specification

- 1 year to get functionality and security certification

- 1 year to produce and deploy the cards



Walled Gardens

Proprietary APIs

- Additional classes offering various desirable features

- Newer Algorithms, Math, Elliptic Curve Operations

- Vendor specific, interoperability is lost

- Only for large customers

- Small dev houses rarely gain access

- Very protective: NDAs, Very limited info on the internet





Motivation

1. Time-to-Market: Speed-up availability of new cryptographic functions

2. Interoperability: provide a consistent library for different JC platforms

3. Learning curve: Make Java Card accessible to Java programmers

A new landscape:

- IoT needs a platform with these security characteristics

- Lots of small dev. houses

- They want to build various new things

- Java devs in awe → No Integers, Primitive Garbage Collection



Things People Already Built!

- Store and compute on PGP private key

- Bitcoin hardware wallet

- Generate one-time passwords

- 2 factor authentication

- Store disk encryption keys

- SSH keys secure storage

What if they had access to the full power of the cards?

List of JavaCard open-source apps: https://github.com/EnigmaBridge/javacard-curated-list

https://github.com/EnigmaBridge/javacard-curated-list


The OpenCrypto Project

Math 
Library

Dev Tools



Related Work

Features Details

Big Natural Class
• Uses CPU
• Card-specific
• Not maintained

Similar to Java BigInteger • Part of project
• Source code dump

MutableBigInteger Class • Part of project
• Source code dump



JCMath Lib

Class Java JC Spec. JC 
Reality

JC
MathLib

Integers ✔ ✔ ✘ ✔

BigNumber ✔ ✔ ✘ ✔

EC Curve ✔ ~ ~ ✔

EC Point ✔ ✘ ✘ ✔

OpencryptoJC.org/JCMathLib



JCMath Lib

Integer

Addition

Subtraction

Multiplication

Division

Modulo

Exponentiation

BigNumber

Addition (+Modular)

Subtract (+Modular)

Multiplication (+Modular)

Division

Exponentiation (+Modular)

++, --

EC Arithmetic

Point Negation

Point Addition

Point Subtraction

Scalar Multiplication



package opencrypto.jcmathlib;

…

public ECExample() {
// Pre-allocate all helper structures

ecc = new ECConfig((short) 256);
// Pre-allocate standard SecP256r1 curve and two EC points on this curve

curve = new ECCurve(false, SecP256r1.p, SecP256r1.a,
SecP256r1.b, SecP256r1.G, SecP256r1.r, ecc);

point1 = new ECPoint(curve, ecc);
point2 = new ECPoint(curve, ecc);

}

…    



// NOTE: very simple EC usage example - no CLA/INS, no communication with host...    

public void process(APDU apdu) {
if (selectingApplet()) { return; }

// Generate first point at random

point1.randomize();
// Set second point to predefined value

point2.setW(ECPOINT, (short) 0, (short) ECPOINT.length);
// Add two points together

point1.add(point2);
// Multiply point by large scalar

point1.multiplication(SCALAR, (short) 0, (short) SCALAR.length);
}



Convenience Features

We handle the low-level/dirty stuff

- Unified memory management of shared objects

- Safe reuse of pre-allocated arrays:

→ Resource Locking

→ Automated erasure

- Adaptive data placement (RAM/EEPROM) for:

→ performance

→ memory usage



Building the Building Blocks

CPU is programmable! → But very slow ✘

Coprocessor is fast! → No direct access ✘

Hybrid solution

- Abuse API calls known to use the coprocessor

- CPU for everything else



Simple Example

Modular Exponentiation with Big Numbers

- Very slow to run on the CPU

- Any relevant calls in the API?

→ RSA Encryption ✔

→ Uses the coprocessor ✔

→ Limitations on the modulo size ✘

→ Modulo on CPU has decent speed ✔



EC Point-scalar multiplication

1. Input scalar x and point P

2. Abuse ECDH key exchange to get [x,+y,-y]

3. Compute the two candidate points P, P’

4. Sign with scalar x as priv key

5. Try to verify with P as pub key

6. If it works → It’s P

else → It’s P’

7. return P or P’

(co-processor)

(CPU)

(co-processor)

(co-processor)

Co
Proc

x Done!CPU y2 Co
Proc



Performance



Performance



Profiler

- Speed optimization of on-card code notoriously difficult

- No free performance profiler available

- OpencryptoJC.org/JCProfiler

How-to:

1. Insert generic performance “traps” into source-code

2. Run automatic processor to create helper code for analysis

3. The profiler executes the target operation multiple times

4. Annotates the code with the measured timings



JCAlgTest.org



Development Cycle

1. Find a suitable card using our coverage table

2. Code using Eclipse, Netbeans, IntelliJ IDEA

3. Debugging using JCardSim simulator

4. Applet is built using Maven, ant-javacard scripts

5. Upload to real card using GlobalPlatformPro

6. Performance Profiling



More to come…

- Semi-automated porting to JavaCard

→ JavaCard even more accessible to Java devs (e.g., IoT)

→ Endpoint security: Java crypto code safer if run in smartcards

- JCCrypto Lib

→ A collection of crypto algorithm implementations

→ No 3-year lag anymore

→ Call for contributions!



Takeaways

1. JCMath Library                     

→ Developers now free to build

→ Examples & Documentation

2. Performance Profiler

3. JC API Coverage & Performance Survey

→ 60+ Cards

→ 230 Algorithms

OpenCryptoJC.org





OpenCrypto
Unchaining the 

JavaCard Ecosystem

OpenCryptoJC.org


