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ABSTRACT
In recent years, the emerging Internet-of-Things (IoT) has
led to concerns about the security of networked embedded
devices. There is a strong need to develop suitable and cost-
efficient methods to find vulnerabilities in IoT devices - in
order to address them before attackers take advantage of
them. In traditional IT security, honeypots are commonly
used to understand the dynamic threat landscape without
exposing critical assets. In previous BlackHat conferences,
conventional honeypot technology has been discussed multi-
ple times. In this work, we focus on the adaptation of hon-
eypots for improving the security of IoTs, and argue why we
need to have a huge innovation to build honeypot for IoT
devices.

Due to the heterogeneity of IoT devices, manually crafting
the low-interaction honeypot is not affordable; on the other
hand, purchasing all of physical IoT devices to build high-
interaction honeypot is not affordable. This dilemma forced
us to seek an innovative way to build honeypot for IoT de-
vices. We propose using machine learning technology to au-
tomatically learn behavioral knowledge of IoT devices and
build “intelligent-interaction” honeypot. We also leverage
multiple machine learning techniques to improve the quality
and quantity.

1. INTRODUCTION
In recent years, the emerging Internet-of-Things (IoT)

has led to rising concerns about the security of network-
connected devices. Different from conventional personal com-
puter, such IoT devices usually open network ports to per-
mit interaction between the physical and virtual worlds. In
2020, the number of interconnected devices will grow from 5
billion to 24 billion, attracting 6 trillion investment in var-
ious domains and applications like healthcare, transporta-
tion, public services and electronics [5]. The well-known
IoT device exploration website, Shodan [22], has shown that
millions IoT devices are exposed in Internet without proper
protection. Therefore, finding vulnerabilities on IoT devices
become the frontline of battle between white and black.

Honeypot is one of the common methods to discover 0-day
vulnerabilities that widely used by security practitioner. In
general, honeypot mimics interaction in real fashion and en-
courages unsolicited connections to perform attacks. Even
though Honeypot is a passive approach, it can still efficiently
find zero-day exploit attempt at the early stage of mas-
sive attack. There are many commercial honeypot products

available, and more than 1000 honeypot projects on Github.
However, we find out that the majority of the honeypot for
IoT devices are low-interaction with fixed replying logic and
limited level of interaction.

On the other hand, vulnerabilities on IoT device are usu-
ally highly depend on specific device brand or even firmware
version. This leads to the fact that attackers tend to per-
form several checks on the remote host to gather more device
information before launching the exploit-code. It turns out
that such a limited level of interaction for existing honeypot
projects is not enough to pass the check and fail to capture
the real attack. Although malware for IoT device is rela-
tively simpler than traditional ones, without properly han-
dling the responses, the effectiveness of the IoT honeypot
will be compromised.

In this paper, we present a method to build IoT hon-
eypot in a automatic and intelligent way, named intelligent-
interaction. Utilizing the public available IoT devices on the
internet to gather the potential responses for the requests
captured by our honeypot, we are able to obtain behaviors
of different type of IoT devices. However, to pass attacker’s
checks, we also need to learn the best response which has
a higher probability to be the expected one for attackers.
We leverage multiple heuristics and machine learning mech-
anisms to customize the scanning procedure and improve
the replying logic to extend the session with higher chance
to capture the exploit code.

The rest of the paper is organized as follows: Section 2
gives a brief overview of honeypot and our motivation for
building intelligent-interaction IoT honeypot. Section 3 ex-
plains how we customize the scanning module, IoTScanner,
to collect raw behavior knowledge from the internet. Sec-
tion 4 talks about our method to cluster IoT responses and
generate IoT-ID to pinpoint IoT devices accuracy. Section 5
discusses how we leverage machine learning techniques to
improve the reply logic. Evaluation and our interested find-
ings from the captured traffic are presented in Section 6.

2. BACKGROUND AND MOTIVATION
In this section, we discuss a novel way to simulate the

behavior of IoT devices to build an intelligent-interaction
honeypot. The dilemma we are facing is that neither low
nor high-interaction method can be used to build honey-
pot for IoT devices. Our honeypot can achieve the high
coverage (the advantage of low-interaction honeypots), and
behavioral fidelity (the advantage of high-interaction honey-
pots) at the same time. Since our honeypot only simulate
the behaviors of the IoT devices, the requests and code sent
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from the attackers to our honeypot would be processed as
the real device. Therefore, unlike the high-interaction hon-
eypots, there is no risk for our honeypot to be compromised.

2.1 Conventional Honeypot
In the honeypot research area, there are two categories

of honeypots: high and low interaction. Low-interaction
honeypots are nothing more than an emulated service and
give the attacker a very limited level of interaction, such as a
popular one called honeyd [18]; High interaction honeypots
are fully fledged operating systems and use real systems for
attackers to interact with. A good survey paper [4] revisited
all of the honeypot research projects since 2005.

Both Low and High interaction honeypots have pro and
cons. Low-interaction honeypots are limited and easily de-
tectable; High-interaction honeypots are commonly more
complex, furthermore deployment and maintenance often
takes more time. In addition, more risks are involved when
deploying high-interaction honeypots since an attacker can
get complete control of the honeypot and abuse it, e.g., to
attack other systems on the Internet. Thus it is necessary to
introduce and implement data control mechanisms to pre-
vent the abuse of honeypots. This is usually done using very
risky and resource intensive techniques like full system emu-
lators or rootkit-type software as in the GenIII honeynet [2].

Efforts on Automated Building High-Interactive Hon-
eypot. Automatically building an interaction system for
the honeypot have been studied by [7, 13, 14]. They inves-
tigate how to generate responses for certain request in a
protocol-independent way, involving traffic clustering, build-
ing state machine and simplifying states. However, the ma-
jor difference distinguish our work from the prior research
is that all of prior projects rely on a large dataset for a
specific protocol that was captured from live traffic. With
this dataset as the ground truth, they extract the common
structure from the traffic as the template, and generate the
random data to fill the template. On the other hand, due to
the various of customized protocol for IoT devices, it is hard
to find such a clean and complete traffic dataset. Moreover,
the live traffic contains only small portion of malicious traffic
and it is hard to identify them from the dataset. Since the
honeypot only need to simulate the behaviors that attackers
are interested in, which can lead to the vulnerability. There
is no need to learn all the behaviors, but it is important to
learn the critical ones, which are highly possible to be missed
from the live traffic.

Challenges for IoT Honeypot. Honeypot is not a
new topic. Lots of honeypot frameworks are available (e.g
honeyd [18], GenIII honeynet [2], and nepenthes [1]) either
open-sourced or commercialized. Why do we want to talk
about building a honeypot on IoT devices? Short answer
is that IoT honeypot cannot be built on conventional hon-
eypot technology. The heterogeneity feature of IoT de-
vices makes the development of low-interaction IoT honey-
pot very time-consuming; and the price of real device as
well as the lack of emulators makes it impossible to build
high-interaction IoT honeypot.

We have to explain it with our journey on creating a pro-
totype honeypot for IoT devices. The very straightforward
way is to search for open-sourced IoT honeypot, and we did
find a lot of them, such as IoTPot [17], SIPHON [9] and
etc. Nevertheless, all of them are low-interaction honeypot

like ”Honeyd” [18], which is nothing more than a emulated
service and give the attacker a very limited level of interac-
tion. Obviously, those low-interaction honeypots can only
get limited information for us. Due to the heterogeneity
of IoT devices, it is challenging to mimic the interaction of
different types of IoT devices from different vendors. Al-
though not impossible, this requires a significant amount of
technical work that cannot be easily reused. For example,
consider the case of IP cameras, in order to visualize or sim-
ulate their behavior in a realistic way, one would need to
not only broadcast some video to an attacker, but also react
faithfully to commands such as tilting the camera.

Since low-interaction honeypot fails to satisfy our need, we
turn into another direction, building high-interaction honey-
pot, which is impossible neither. There are two ways to build
a high-interaction honeypot: physically or virtually. In the
traditional definition, a physical honeypot is a real machine
on the network with its own IP address. In IoT’s context,
it means we need to purchase real IoT devices for different
brands and different types, and connect them to the inter-
net. This solution is not practical due to the limited spaces
and financial restrictions, not to mention the risks to intro-
duce and implement data control mechanisms to prevent the
abuse of honeypots. On the other hand, a virtual honeypot
is a software that emulates a vulnerable system or network.
But the fact is that, unlike operating systems (e.g. Android,
Windows), the majority of IoT devices do not have any em-
ulators available.

2.2 Intelligent-Interaction Honeypot
To conquer the challenges, we propose a generic frame-

work toward building an intelligent-interaction honeypot for
IoT devices. We will explain how and why do we need
intelligent-interaction honeypot.

What is Intelligent-Interaction? The goal of intelligent-
interaction is to learn the ‘correct’ behaviors to interact with
clients from zero-knowledge about IoT devices. The correct
responses to the clients should be able to extend the ses-
sion with potential attackers, trick them to pass the check
and send the exploit request. In order to achieve this goal,
it requires our system to automatically collect the valid re-
sponses as candidates, By interacting with attackers, the
learning process helps the honeypot to optimize the correct
behaviors for each request.

How Intelligent-Interaction works? Figure 1 illus-
trates the overview of our system. There are 4 major com-
ponents running separately but sharing the data to each
other during the learning process. IoT-Oracle is a central

Figure 1 IoTCandyJar High-Level Architecture.

2



database that stored every information we obtained regard-
ing to IoT devices. Honeypot module contains the honey-
pot instances we deployed on Amazon AWS and Digital
Ocean. The purpose of them is to receive the traffic of at-
tack and interact with attackers to allure them perform the
real exploitation. They will periodically synchronize with
the IoT-Oracle to push newly received raw request to the
table raw request, and retrieve the iot knowledge table for
up-to-date knowledges of IoT devices.

The module, IoTScanner, leverages captured attack’s re-
quests as the seed knowledge, and scans the internet for any
IoT devices that can respond to these requests. The col-
lected responses will be stored in the table raw response for
further analysis. The module, IoTLearner, utilizes machine
learning algorithm to train a model based on the feedback
from attackers with given response. After several round of
learning iterations, our honeypot can optimize a model to
reply to attackers.

At the very first moment, our system is behaved exactly
like low-interactive honeypot since our system starts from
zero-knowledge about IoT devices and their behaviors. We
have evaluated that given a very short period of time, the
honeypot can cover a lot of IoT devices.

Is Simulation Enough? For high-interaction honey-
pots, they usually deploy the real system or emulator in the
virtual machine to react to attackers (e.g. responding to
requests or executing uploaded/injected script). Our hon-
eypot generates the response purely based on the learned
knowledge, but not running it. Due to the attack surface of
IoT devices, most of the attacks are launched using HTTP
request and other IoT related protocol, and ultimately try to
inject commands without authentication or get login creden-
tials. Injected commands are very simple and concise, and
usually are composed by a wget command to drop a shell
(busybox) code from the malicious server to the device, as-
sign permission to it and execute it. Detail of attacks and
injected commands can be found in section 3.4. Our goal
is to capture the injected script and extract the malicious
shell code from it. Therefore, the interaction with attackers
is not complicated and just reply a response to them. As a
result, simulating the behavior of IoT devices is enough to
build an effective honeypot.

Why Intelligent-interaction? As we just discussed in
the previous paragraphs, contemporary attacks on IoT de-
vices tend to be simple and straightforward and not hard
to catch them using honeypot. However, for the most of at-
tacks, attackers usually did some check on the target devices
to know the device is vulnerable or not. Using the previous
example (CVE-2016-6433) on Cisco Firepower, before send-
ing the exploit request, attackers may check whether the de-
vice is Cisco Firepower and the version is 6.0.1 or not. This
can be done by sending a request to {ip}:443/img/favicon.png?v=6.0.1-
1213 and checking the response status is 200 or not. And
attackers may further try to login with the some credential.
If any of these steps failed, attackers will stop attacks and
our honeypot may not be able to capture the real exploits.

3. IOT-SCANNER: ACTIVE PROBING IOT
BEHAVIORS

The first step to build an intelligent-interaction honeypot
is to collect responses from all types of IoT devices. Fortu-

nately, from the internet, we can find all of the IoT devices
that are accessible. Therefore, we design and implement a
module, IoT-Scanner, to actively probe the IoT devices on
the internet and collect their responses to various of requests
we have captured from the honeypot. Scanned result will be
stored in the central database as the our ‘raw’ knowledge for
further learning procedure.

Importantly, we want our probing to be polite and prevent
unwanted traffic to Internet. The details of our probing can
be found in our previous work [24]. To make the scanning
process effective and not illegal, we have adopted a variety of
filtering to narrow down the scope of remote host, make the
traffic more IoT-related and eliminate the harmful requests.

3.1 IP Filtering.
Comparing to the 4.3 billion IPv4 address space, the num-

ber of IoT device is still tiny. Collecting a subset of IP ad-
dress for IoT devices not only increase the quality of our
scanning result but also speed up the scanning process. To
our best knowledge, we cannot find a reliable and complete
IP address set for IoT devices. Therefore, we build our own
IoT-IP database from the scratch.

Device Type Vender Count
IP-Camera Hikvision 8,785

Avtech 4,391
Dahua 4,002
NetWave 3,713
Kucam 1,302
Tenvis 202
Unknown 892

Router TP-Link 4,560
Linksys 3,604
Netgear 2,461
Sky 2,186
BuffaloTech 235
ZyXEL 1,232

Printer HP 3,200
Epson 2603
Canon 1,989
Brother 1,230

Smart Router Linksys 1,581
Unknown 330

Firewall Huawei 783
Fortinet 623
Cisco 525
SonicWall 553
3com 197
Juniper 30

Voip Gateway D-Link 6,369
Innovaphone 3,598
AddPac 1,671
Technicolor 959
Edgewater 100

ONT Alcatel Lucent 1,263

Table 1 IP collection of IoT devices.

We fetch the raw IP information from either online plat-
forms, such as Censys [6], ZoomEye [25] and Shodan [22], or
our own deployed port-scanning tool (e.g. MASSCAN [15]).
We use the port-scanning tool to collect the basic infor-
mation about a given IP address, like open ports in the
remote machine, and the banner information of that open
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port. Similar information is collected by these online plat-
forms as well, but they provide query tools to search through
their database more conveniently, which (1) Given an port
number, what are IP addresses open the port? (2) Given
a keyword, what are IP addresses serve content containing
the keyword?

Currently, the widely adopted way is to use the differ-
ent types of banner information to determine whether the
machine behinds the given IP address is an IoT device. For
example, the Telnet banner information can be used to iden-
tify the device type. It has been strongly recommended that
computers display a banner before allowing users to log in
since the publication of the “Computer Misuse Act 1990”.
Login banners are the best way to notify offenders before
their unauthorized access.

Hence, we continuously conduct two searches on these
platforms: (1) Search Port number (2) Search keywords,
i.e, brand name, for IoT devices. We periodically store and
update these information in our databases. First, we peri-
odically search information through existing open platforms.
Before using these information, we conduct another around
of sync scanning to verify the port is indeed open. If so, we
will treat these IPs as the higher priority and probe them
to collect possible responses. So far, we have collected more
than 40,000 IP address for IoT devices, as Table 1 shows.
Apart from the feed from open platform, we also conduct
Internet-wide probing if our target port is unique for IoT
devices.

3.2 Port Filtering.
Among the 65535 ports, IoT devices may only listen a

small portion of them for interaction. One of the most pop-
ular one is port 7547 for TR-069 service, which is SOAP-
based protocol for remote management of end-user devices.
It is commonly used by IoT devices such as modems, gate-
ways, routers, VoIP phones and set-top boxes. Another ex-
ample is port 1900 for Universal Plug and Play (UPnP) pro-
tocol, and 67% of routers open this port to facilitate devices
and programs to discovery routers and their configuration
accordingly. For the IoT devices providing remote configu-
ration through an embedded web server, they usually expose
the port like 80, 8080, 81 and etc. We also monitor and scan
the ports used by the protocols that are heavily utilized by
IoT device, including port 5222 for XMPP, port 5683 for
CoAP, and port 1883/8883 for MQTT. Table 2 highlights
the port list we have identified from our analysis and prior
survey [16], and we will prioritize to scan the traffic on these
ports first.

Device Type Open Ports
IP-Camera 81(35%), 554(20%), 82(10%), 37777(10%),

49152, 443, 83, 84, 143, 88
1900(67%), 21(16%), 80(1%), 8080, 1080,

Routers 9000, 8888, 8000,49152,81,8081,8443,
9090,8088,88,82,11,9999,22,23,7547

Printers 80(42%), 631(20%), 21(13%), 443(7%),
23,8080,137,445,25,10000

Firewall 8080, 80, 443, 81, 4433, 8888, 4443, 8443
ONT 8080, 8023, 4567
Misc 5222 (XMPP), 5683 (CoAP),

1883/8883 (MQTT),

Table 2 Ports used by IoT devices.

3.3 Seed Requests Filtering.
One of the critical input to our scanner is the requests

captured by the honeypot. Our goal is to learn how IoT
device reacts to each of them in order to simulate the be-
haviors. In our database, we stored around 18 million raw
requests in total in the past several months. It is not feasible
and efficient to scan all of them, and we clean up the raw
request database to eliminate the traffic that is clearly not
IoT-related. For example, nearly half (53%) of the captured
requests that not contain payload. Other none-IoT traffic
including the ones of BitTorrent protocol (7%), MS-RDP
protocol (5%) and SIP protocol (4%). It is important to
notice two types of special traffic among the HTTP traffic:
the HTTP proxy traffic (6%) that are redirected by proxy
agents (usually looks like “GET http://full-url HTTP/1.1”)
and the scanning traffic (1%) for root path only. For the
UDP traffics, we also identified the majority of them (6%)
is some shell code such as the command using busybox. By
applying the heuristics we explained above, we successfully
reduce the total number of raw requests for scanning from
18 million to less than 1 million (as Figure 2 shows).

Figure 2 Raw Requests from Low-Interaction.

In addition, we group the traffic based on the port and
further reduce the duplicated and similar requests within
each group. Figure 3 shows the number of requests on each
port. The most popular port attackers tend to scan the port
80, and more than 90 percent of the traffic is a meaningful
HTTP request. Due to the recent botnet Mirai, scanning on
port 7547 suddenly ramps up in the past several months.

Figure 3 Traffic Type by Ports.

4



3.4 Exploit Traffic Filtering
When we use the captured traffic as the content to scan

internet, it is important to filter out the dangerous ones,
such as the requests containing exploit code. In our system,
we leverage multiple heuristics and existing detecting tools
(e.g. snort rules, our firewall) to detect the exploit code
in the traffic. Once the exploit request is detected, we will
mark it and won’t use it to scan, which means our simulation
will stop at this phase.

Remote Command Execution (RCE). Command in-
jection is one of the most prevalence attacks on IoT devices.
Attackers usually embed the malicious shell-code inside the
request, and send it to the vulnerable device. Due to the
poor implementation, the vulnerable IoT device will exe-
cute the injected command without authorization. Usually,
the injected code can be executed with the privileges of the
vulnerable program that handles the request (e.g. the web
server).

The body in the HTTP POST request is the most common
place to embed command. Other protocols can be used to
inject command as well. For example, Mirai botnet com-
promises other devices using a documented SOAP exploit
located in the implementation of a service that allows ISPs
to configure and modify settings of specific modems using
the TR-069 protocol (port 7547). One of those settings al-
lows, by mistake, the execution of Busybox commands such
as wget to download malware. For example, the embedded
shell-code in the NewNTPServer1 field will drop malicious
code and execute it.

POST /UD/act?1 HTTP/1.1
Host: x.x.x.x:7547
SOAPAction: urn:dslforum-org:service:Time:1

<?xml version="1.0"?>
<SOAP-ENV:Body><NewNTPServer1>
cd /tmp;wget http://host/1;chmod 777 1;./1
</NewNTPServer1></SOAP-ENV:Body></SOAP-ENV:Envelope>

Other protocols can also be used to embed malicious shell-
code. For example, multiple types of D-Link routers are
vulnerable to UPnP remote code execution attack, allow-
ing the shell-code embedded in the SSDP broadcast packet.
The content of the M-SEARCH packet turns into shell ar-
guments.

M-SEARCH * HTTP/1.1
Host:239.255.255.250:1900
ST:uuid:‘;telnetd -p 9094;ls‘
Man:"ssdp:discover"
MX:2

Obfuscation and decoding is a common way to evade the
detection. For example, we have capture the traffic to the
url /shell?%75%6E%61%6D%65%20%2D%61, which is de-
coded from the original url /shell?uname+-a for command
injection. We also integrate the detection on the commonly
used obfuscation mechanisms.

Info Disclosure. Due to lack of access control and au-
thentication, a great number of IoT devices unintentionally
leak information about their configuration and other sensi-
tive information of the system. Often, this information can
be leveraged to launch more powerful attacks. Although it
is not harmful for the target remote device, we also sanitize
such requests.

For example, D-Link personal Wi-Fi Hotspot, DWR-932,

exposes CGI script /cgi-bin/dget.cgi to handle most of the
user side and server side requests. It replies the request from
unauthorized users, so the attacker can view Administrative
or wifi password in clear text by padding DEVICE web passwd
as the value of cmd parameter in the url. Path traversal is
another type of attack for gathering leaked information, such
as passing the url like ../../../../etc/shadow.

Data Tempering. Lots of vulnerabilities on IoT device
allows attackers to temper data on the device. For exam-
ple, IoT devices powered by the operating system AirOS
6.x allows unauthenticated users to upload and replace ar-
bitrary files to airMAX devices via HTTP of the airOS web
server, since the ”php2” (maybe because of a patch) don’t
verify the ”filename” value of a POST request. An attacker
can exploit the device by overriding the file like /etc/passwd
or /tmp/system.cfg. Similar to detecting the path traversal
attack, we sanitize the path to sensitive files in requests.

3.5 Scanning Result
Due to the budget, we only deploy our IoT-Scanner on

3 machines in our lab. They fetch the seed request from a
shared redis queue, and the newly captured request will be
inserted into this queue as well. For each second, we send
300 different requests using separate threads, and set the
timeout as 3 seconds. To speed up the scanning process, we
tend to reuse the established session to the previous scanned
IP addresses. Therefore, we send 10 requests to the same
host machine at the same time. We also have 3 machines
to periodically check the change of open port of existing
marked IoT devices, and scan through the internet to find
more available host machines.

For the existing seed requests, we successfully finish scan-
ning around one week and collect 2 million responses in the
database, although lots of open ports failed to reply any re-
sponse or reset the connection. Since the majority of the
scanning data is HTTP traffic, we extract the status code
from them (Table 3) to quickly analyze them. For all of the
ports, response code with 403 (Forbidden), 404 (Not Found)
and 401 (Unauthorized) are the top 3 status codes from the
IoT devices.

aaaaa
Rsp Port 8000 80 8080 88 7547

403 651,646 120,659 12,953 26,660 0
404 88,034 175,497 30,746 10,789 3,832
401 31,468 36,388 36,863 3,870 373
200 3,483 3,742 1,289 300 1267
501 481 1,898 6,337 3 6,080
307 40 0 0 0 0

unknown 52 1,693 10 2 2720
others 1,320 8,193 1,938 6 5140

Table 3 Scanning Result for HTTP protocol.

4. IOT-ID: PINPOINT IOT DEVICE
Currently, we determine whether the machine behind a

given IP address is to check the existence of some predefined
keywords or patterns in the response. For example, if we
found one of the ports in the given IP address returns a
header that contains pattern“NETGEAR WNR1000v3”, we
can tell that the machine behinds this IP address is a netgear
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Figure 4 Visualization of Exemplary LDA Model

router and its version. However, many factors may lead to
the ambiguous or even wrong information about the IoT
device. For example, we observed that some IP addresses
returns banner contents of multiple IoT devices in different
ports. It returns a login portal of a camera at port 80, and
returns management page of a switch at port 99. Another
issue is that we found thousands of IoT devices changed
their IP address frequently. As the result, we mark the IP
address as an IoT device when we fetch the banner content
from it, and it changed to a none-IoT device when we scan
it to collect response to various of requests.

Therefore, we propose the concept IoT-ID that enables
us to distinguish different IoT devices and obtain accurate
knowledge of them. Our idea is to leverage machine learning
algorithm to cluster the scanning result and extract patterns
from them as the signature of certain type of IoT device.

LDA-based Solution. To find the signatures, we take
a closer look at the IoT traffic we collected. Our insights
about the traffic is that traffic of similar devices should con-
tain similar pattern. Based on this, we treat our problem as
a natural language processing problem. Our goal is to find
some word-combination, which is referred as topic in NLP
, such that the combination can uniquely label common li-
braries, common expressions for same brand and firmware.

We propose to use a generative statistical model, Latent
Dirichlet allocation (LDA) [11], that allows sets of observa-
tions to be explained by unobserved (topic). In detail, we
treat each response as a document and the type of IoT device
that reply the response as the topic of it. We split each doc-
ument into a series of words by predefined delimiters. Then
we calculate the statistical distribution of each word in the
corpus and organize them into n categories. Each category
is further formulated as topic and each topic is expressed as
a generative statistic distribution.

Our implementation is based on one open-source imple-
mentation [12]. One of our generated models is presented
by open-source LDA visualization tool, pyLDAvis [20] in
Figure 4. This model contains HTTP traffic from 6 dif-
ferent router vendors and we summarize 15 different topics
for them. As shown in the figure, the LDA model can suc-
cessfully cluster words which are unique in each library and
firmware. One library example is shown in the right side of
the figure. This library provides multiple language support
and LDA can group these language-specific words together
as one topic. At the same time, we can find some topics
share some common words which implies their traffic con-
form to common HTTP syntax.

The output of our LDA model is some topics, which is
a series of mapping relations between word and its confi-
dential probability. Based on the output, we can efficiently
cluster collected similar traffic and extract the topic-to-word
mapping as its IoT-ID.

5. IOTLEARNER: AN INTELLIGENT EN-
GINE TO LEARN IOT BEHAVIORS.

With the help of IoTScanner, our honeypot is enable to
reply a valid response to client based on the received re-
quest instead of responding the fixed one. In this section,
we discuss how to leverage markov decision process model to
optimize the response selection with the maximal possibility
to capture attacks.

5.1 IoTLearner Overview.
For for each individual request, the IoTScanner module

could collect at least hundreds or even thousands of re-
sponses from the remote host. All of them are valid re-
sponses, but only few of them are the correct ones. This is
because, for a given request, various of IoT devices can re-
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spond to it under their own logic to process it and generate
response. The most straightforward example is the request
to access the root path of their web service: some devices
may reply the login portal page, others may redirect it to
another resource, and the rest may respond with an error
page. Therefore, all of the scanning results are potential
candidates as the response to the client, but the challenge is
to find the one which is expected by the attacker.

Our approach. The idea behind our approach is to
first randomly select the response from the candidate pool
and record the next move from client side. We assume if
we happen to select the correct one, attackers will believe
our honeypot is the vulnerable target IoT device and they
continue to send the malicious payload (e.g. injected com-
mand). Therefore, we need to store each transaction in a
session table, and leverage machine learning techniques to
extract the correct behaviors form the dataset.

System architecture. The architecture of IoTLeaner
module is depicted in figure 5 to fetch raw response from the
database and record each transaction to the database. Every
incoming request to the honeypot will be forward to this
module, and the selected response will be returned to the
client. The core part of the module is selection engine, which
normalizes the request and fetches the potential responses
list from the scanning result. In random selection mode, it
just randomly pick one from the candidate list and return
it. In MDP selection mode, it first locates the state in the
graph from the the normalized request, and followed by the
model to select the best one.

Figure 5 IoTLearner Overview.

Each decision that is made by the selection engine will
create a new transaction to extend current session. All of
the session information will be stored in the session table.
Each row in the table represents a transaction like the tuple
<req1, rsp1, conn info>, and conn info is the connection
information as source ip, source port, destination ip, desti-
nation port, and protocol. For example, if the engine selects
the response with id rsp1 to reply the incoming request with
id req1, such row will be inserted into the session table.

Challenges in learning best response. There are
many factors that makes the learning process hard. The
first one is that not all the clients who talk to our honeypot
are attackers. It leads to the problem that not all the session
are malicious to us. Only the ones can reach the exploitation
is important to us.

5.2 Model Formulation.
We discuss how we formulate the response selection prob-

lem into the markov decision processes model. We assume
whether the client continues the session or perform the at-

tack simply determined by the response of the previous re-
quest. This is a reasonable assumption based on our best
knowledge on existing malware samples we have analyzed.
Therefore, we can approximate the statistical structure of
session activities using a simple mathematical model known
as an order-1 Markov property.

Markov decision process (MDP). Markov decision pro-
cesses [19], also known as stochastic control problem, is an
extension of the standard (unhidden) Markov model. MDP
is a model for sequential decision making when outcomes are
uncertain, such as computing a policy of actions that maxi-
mize some utility with respect to expected rewards. A col-
lection of actions can be performed in that particular state,
which actions serve to move the system into a new state.
At each decision epoch, the next state will be determined
based on the chosen action through a transition probabil-
ity function. It can be treated as a markov chain in which
state transition is determined solely by the transition func-
tion and the action taken during the previous step. The
consequence of actions (i.e., rewards) and the effect of poli-
cies is not always known immediately. Therefore, we need
some mechanisms to control and adjust policy when the re-
ward of the current state space is uncertain. The mechanism
is collectively referred as reinforcement learning.

Problem Formulation. In the standard reinforcement
learning model an agent interacts with its environment. This
interaction takes the form of the agent sensing the environ-
ment, and based on input choosing an action to perform in
the environment. Every reinforcement learning model learns
a mapping from situations to actions by trial-and-error in-
teractions with a dynamic environment. The model consists
of multiple variables, including decision epochs(t), states(x,
s), transitions probabilities(T), rewards(r), actions(a), value
function(V), discount (γ) and estimation error(e).

The basic rule of reinforcement learning task is the Bell-
man Equation [3] as expressed as:

V ∗(xt) = r(xt) + γV ∗(xt+1)

It can be explained as the value of state xt for the op-
timal policy is the sum of the reinforements when starting
from state xt and performing optimal actions until a ter-
minal state is researched. The discount factor γ is used to
exponentially decrease the weight of reinforcements received
in the future. From the definition, the problem of RL is es-
sentially to solve a dynamic programming problem. So the
standard solution of RL is to use Value Iteration, which rep-
resents values V as a lookup table. Then the algorithms can
find the optimal value function V ∗ by performing sweeps
through state space, updating the value of each state by
update policy until there is no change to state values (the
state value have converged). The general update policy can
be expressed as:

∆wt = maxa(r(xt, a) + γV (xt+1))− V (xt)

However, to apply RL in our problem, there is one limita-
tion. Our problem is essentially a non-deterministic Markov
Decision Process, which means at each state, there exists
a transition probability function T to determine the next
state. In other words, our learning policy is a probabilis-
tic trade-off between exploration, reply with responses which
have not been used before, and exploitation reply with the
responses which have known high rewards. To apply general
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valuation iteration is impossible to calculate the necessary
integrals without added knowledge or some decision mod-
ification. Therefore, we apply Q-learning [21] to solve the
problem of having to take the max over a set of integrals.

Rather than finding a mapping from states to state value,
Q-learning finds a mapping from state/action pairs to val-
ues(called Q-values) [10]. Instead of having an associated
value function, Q-learning makes use of the Q-function. In
each state, there is Q-value associated with each action. The
definition of a Q-value is the sum of the reinforments re-
ceived when performing the associated action and then fol-
lowing the given policy thereafter. Likewise, the definition
of an optimal Q-value is the sum of reinforcements received
when performing the associated action and then following
the optimal policy thereafter.

Therefore, in our problem of using Q-learning, the equiv-
alent of Bellman equation is formalized as:

Q(xt, at) = r(xt, at) + γmaxat+1Q(xt+1, at+1)

And the update rule of direct Q-learning is formalized as
and α is learning rate:

∆wt = α[(r(xt, at) + γmaxat+1Q(xt+1, at+1, wt))−

Q(xt, at, wt)]
∂Q(xt, at, wt)

∂wt

Reward Function. Reward function r : (xt, at) → r
assigns some value r to being in the state and action pair
(xt, at). The goal of reward is to define the preference of
each pair and maximize the final rewards (optimal policy).

In our context, the immediate reward r(xt, at) reflects the
progress we have made during the interaction process when
we choose response at to request xt and we move to the
next state xt+1. Since the progress can be either negative or
positive, the reward function can be negative or positive as
well. The heuristics of defining reward is that if the response
a is the target device type expected by the attacker and the
attack launch the attack by sending the exploit-code in the
next request, the reward must be positive and huge. On the
contrary, if the response is not an expected one (e.g. reflects
a not vulnerable device version), the attacker may stop the
attack and end the session. It leads to the dead-end state,
and causes the negative reward. In other words, we reward
the responses the could lead us to the final attack packet,
and punish the ones that lead to the dead-end session.

One of our designs is to assign reward as a value equals to
the length of the final sessions, since we believe the longer
request sent by the attackers, the higher chance the mali-
cious payload is contained. The standard session is 2 which
means after we send our response, there are at least an-
other incoming request from the same IP at the same port.
If no further transition is observed, we assign a negative re-
ward for that response. Other alternative reward assignment
could be based on whether we receive some known exploits
packets or not.

5.3 MDP Model Build
We explain how to initiate parameters that are required

by the model to perform calculation from our existing result.

State and Action. Building the state of the Markov
model without any notion of protocol semantics could lead

to the lack of generality and sparse state space. Therefore,
it is not able to handle anything that has not already been
seen. The solution is to simplify and generalize the states
by grouping the similar ones to a single state. In our case,
we would like to classify the similar requests and similar
responses to a same group. Due to the huge number of com-
munication protocols used by IoT device, we have to do it in
the protocol-independent way. Previous research [7, 13, 14]
have studied how to simplify the state without understand-
ing the protocol, on HTTP, SDP, NSS, NTS and etc. The
details implementation can be found in these papers. In
general, they all rely on the alignment algorithm to identify
the similar portion of multiple strings as the structure of the
protocol.

State Transition Probabilities. State transition proba-
bilities can be described by the transition function T (s, a, s′),
where a is an action moving performable during the current
state s, and s′ is some new state. More formally, the func-
tion transition function T (s, a, s′) can be described by the
formula:

P (St = s′|St−1 = s, at = a) = T (s, a, s′)

where a is an action moving performable during the current
state s, and s′ is some new state.

In our context, transition function T (s, a, s′) refers to the
probability of receiving request s′ as the next one within
the same session if we reply response a to the client as the
reply of its current request s. To measure the probability
of each combination of (s, a, s′), we deployed a naive algo-
rithm by randomly return a response from the candidate set
and saved the session information to the session table. Af-
ter running a period of time, we are able to collect lots of
sessions, and we parse each of them to count the occurrence
of each combination (s, a, s′), which is denoted as C(s, a, s′).
The value of the transition function T (s, a, s′) are defined as
follows:

T (s, a, s′) = C(s, a, s′)/

x∈S∑
x

(s, a, x)

Online Q-learning Algorithms for Response Selec-
tion. Based on the Q-learning model, our learning pro-
cess starts from receiving a request at the t0 decision epoch.
Given the request, we apply our matching algorithms to se-
lect a set of identical responses. We adopt ε-greedy [23]
policy for action selection. In particular, we assign uniform
probability for each available response as the initial transac-
tion functions. Using this policy either we can select random
action with ε probability and we can select an action with
1− ε probability that gives maximum reward in given state.

Then we start our Q-learning iteration and update our
Q-learning table. When we learn reinforce for one state and
action pair, r(xt, a), we first back propagate and update the
Q lookup table. According, we can do the adjustment by
removing the responses which ends with negative rewards
and updating the ε value. The iteration ends until the model
converges.

In practice, our model is running online and update in real
time. Therefore, it may not converge and reach the global
optimal. However, we think the model is still valuable be-
cause it only allows us to discard these undesired responses
but also keeps sessions going as best as we can.
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5.4 MDP for IoT Honeypot.
We will use the real world example to explain how we

build MDP and calculate the probabilities for each response.
For the demonstration purpose, we simplified the number of
state and action in the graph and represent the model as
a state-space graph. In the graph, each rectangle (black)
represents a single state and each circle (orange) represents
an action can be taken at certain state. The arrow in the
graph refers to the transition from one state to the next state
after certain action is taken. In our context, each state is a
unique request abstraction, and each action for a request is
the unique response candidate to reply.

Build MDP from Session Table for HNAP protocol.
HNAP protocol is quite simple, especially for the attack-
ing scenario. For example, before attacking our honeypot,
attackers usually send a request to the url /HNAP1/ to
get a SOAP response (an XML-formatted document with
the resulting data) which contains the information of the
host machine and its supported SOAP actions. Some de-
vices do not support HNAP protocol, such as SonicWall
firewall which returns 404 Not Found page and TRENDnet
router which returns 401 Unauthorized page. Others may
reply valid SOAP response but with different informations
in the response, such as the model name as WRT110 from
response of LinkSys router and the model name DIR-615
from response of D-Link router. Since we do not have any
prior knowledge on the HNAP protocol and the expected
behavior, we may try to send each of them to the attacker
at the first stage and record the session information.

Figure 6 Build MDP State Graph From Session Table.

CGI-script MDP graph. The graph build by the com-
plete session data we have captured is more complex. We
select the request to the URL of CGI script and generate
the graph of them. CGI script is used by many types of
IoT devices, including camera, router and etc. Lots of pre-
liminary checks and vulnerabilities have been performed on
CGI script. As figure 7 shows, URLs such as get status.cgi,
check user.cgi and get camera params.cgi are frequently scanned
by attackers. Since they are accessible without any privi-
leges, attackers tend to gather device information from them.
After few requests, the session goes to the privileged CGI
script and vulnerable ones.

Figure 7 CGI-script MDP Graph.

6. EVALUATION
In this section, we evaluate the effectiveness of our intelligent-

interaction honeypot and share some interesting findings
from the captured requests. We have deployed it in 5 vir-
tual machine from Digital Ocean. Due to the budget, we
only choose the smallest one with configuration as: 512MB
memory, 1 CPU, 20G SSD disk, and standard network band-
width. For the preparation, we utilized the 1 million re-
quests that captured by the low interaction honeypot as seed
to scan the internet and collected millions of responses using
the scanner we explained above.

6.1 Session Improvement
The length of each session is one of the critical an eas-

ily measured indicator to demonstrate the effectiveness of
our learning process: the more requests we can allure the
attacker to send, the higher chance we can capture the ex-
ploitation. For the low-interaction honeypot, the majority
of the session ends up within 2 transactions, so the average
is below 2.

In our setup, we select 30k unique responses from scan-
ning results and download a copy to each honeypot instance.
The mapping between the response and the corresponding
seed request is downloaded as well. We configure the hon-
eypot as random reply mode at the first two weeks, in order
to collect the reaction from clients. With the random selec-
tion mechanism, we managed to receive more requests from
client. However, as figure 8 depicts, the majority of the ses-
sion is still very short. This result is reasonable considering
that we can get hundreds or even thousand unique responses
from the scanner for an individual request.

Each honeypot instance contains 300k responses we have
selected and its mapping to certain request. 2 of the hon-
eypot instances use random selection algorithm, which will
randomly choose a response from the pool that collected
using the current received request; and the rest of them de-
ployed the MDP algorithm as we explained in the previous
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Figure 8 Session Length Distribution.

section. With 1 month of running, we have collected 1 mil-
lion valid requests.

6.2 Captured Pre-attack Check and Exploita-
tion.

Utilizing intelligent-interaction honeypots, we have cap-
tured more crafted malicious requests from attackers. Us-
ing the session information, we also identified 50 pre-attack
checks in various protocols for different types of IoT devices
(e.g. IPCam, Router, Projector) from the MDP state graph.
We highlights several cases in this part.

6.2.1 In HTTP Protocol
HTTP protocol is widely used by IoT devices for man-

agement. Device information can be leaked from all types
of HTTP responses directly or indirectly. We discuss our
observation based on the status code of the response.

200 OK. This is the most standard response for successful
HTTP requests. Several versions of Netgear routers are vul-
nerable to leak model version, firmware and other informa-
tion in the response to the request on /currentsetting.htm.
If attacker cannot parse or obtain valid token from the re-
sponse content, they won’t perform the attack action. For
Netwave IP camera, we observe quite large number of re-
quest on the URL get status.cgi, /etc/RT2870STA.dat and
login.stm. Authentication is not required to access these
pages which reveal firmware versions (ui and system), times-
tamp, serial number, p2p port number, or wifi SSID.

401 Unauthorized. HTTP status code, 401 Unautho-
rized, means the resource cannot be loaded due to the in-
correct authenticated method or not authenticated at all.
It seems like the 401 response is barely contains any other
meaningful information. However, it still may embed infor-
mation that helps client to perform next action (e.g. re-
authentication, redirection).

For example, WWW-Authenticate field in the response
header is used to describe the authentication schema [8].
Normally, this response generally returned from the web
server to the IoT device, not from the web app1. All types of
IoT device with the same brand share the same mechanism.
Therefore, attackers could utilize the value of this field to de-
termine current IoT device is vulnerable or not, especially
for Netgear modems or routers. Our honeypot observed the
check for pattern NETGEAR R7000 and NETGEAR R6400
to launch the remote code injection attack (CVE-2016-6277)
on this specific router version.

Sometimes the content of 401-unauthorized response may
leak sensitive information as well. For example, netgear
wireless router (N150 WNR1000v3 ) contains credentials (to-
ken) when the request failed on the basic login attempt, as
the following snippet shows:

1The 403 Forbidden response is tied to the web app’s logic.

HTTP/1.0 401 Unauthorized
WWW-Authenticate: Basic realm="NETGEAR WNR1000v3"

<html><head><title>401 Unauthorized</title></head>...
<form method="post" action="unauth.cgi?id=2143918018"

name="aForm">
</form></body></html>

We find out that attackers need to successfully find the pat-
tern and extract the token from it before crafting malicious
payload to further exploit the router.

404 Not Found. When the requested resource could
not be found, the server will return the 404-not-found re-
sponse. 404 page can also be used to identify an IoT device
by attackers. For example, we have observed the attacks on
ZyXEL’s modem Eir D1000. Attackers send a legitimate
request to the URL /globe, and expect a 404-not-found page
with pattern home wan.htm in it. This special 404 page tells
attackers that the host supports the SOAP-based protocol
TR-069 and they can inject command to it by embedding it
in the ‘NewNTPServer’ field of the request.

6.2.2 In Customized Protocol
Besides HTTP protocol, preliminary check happens on

IoT protocols and even customized ones. Home Network Ad-
ministration Protocol (HNAP) is one of the example. This
SOAP-based protocol first invented by Cisco at 2007 for net-
work device management, which allows network devices (e.g.
routers, NAS devices, network cameras, etc.) to be silently
managed. Due to the long history of its buggy implementa-
tion, lots of attacks have been discovered, such as utilizing
GetDeviceInfo action to bypass authentication and inject
shell command to the SOAPAction field to launch the RCE
attack. As we discussed in the section 5, attackers commonly
check the response to the URL /HNAP1/ to get service list
supported by the device. Another example is the customized
protocol used by Netcore and Netis routers, which open an
UDP port 53413 as the backdoor for remote configuration.
Attackers send a payload with 8 bytes of value ‘\x00 ’ and
expect pattern like ‘\xD0\xA5Login:” in it to confirm the
device is vulnerable.

6.2.3 Using Echo Command.
Remote command execution is one of the common attacks

on IoT devices, and some of the vulnerabilities allow attack-
ers to view the output of commands. For example, the re-
cent found vulnerability on router NETGEAR DGN2200 for all
of its firmware versions (v1-v4) which does not require ad-
min access to execute shell commands on the router. The
vulnerable script is ping.cgi which is designed for users to
submit diagnostic information to the router. However, due
to the implementation flaw, if attackers send a POST http
request to this url with the command as the value of param-
eter ping IPAddr in the payload, they are able to execute
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the command with nobody permission. The returning page
contains the result of the injected command.

We have captured malicious requests that tries to take
advantage of this vulnerability, but the command is very
simple such as echo command. We observed that the ma-
jority of the malicious sessions are terminated at the requests
with echo command in it. It is because the attackers usu-
ally generate a random string after the echo command, and
the response content should contain the exact same string if
the command is executed. However, since the random string
changed in every request, it is highly possible that the string
in the scanned result match the current received request.

POST /ping.cgi HTTP/1.1
referer:http://x.x.x.x/DIAG_diag.htm

IPAddr1=1&IPAddr2=2&IPAddr3=3&IPAddr4=4&ping=Ping&ping_
IPAddr=12.12.12.12; echo "zP8ZDXwQCC";

As the request example shows above, the attacker check
whether the random string zP8ZDXwQCC is in the response
before sending the real exploit shell code. We handle this
type of check by inserting the string in the echo command
to the right place in the response page.

7. CONCLUSION
Building honeypot for IoT devices is challenging using

the tradition methods due to the special characteristic of
IoT. However, attacks on IoT devices perform preliminary
check on the device information before launching the at-
tack. Without the proper interaction mechanism with the
attacker, it is extremely hard to capture the complete ex-
ploit payload. We propose an automatic and intelligent way
to collect potential responses using scanner and leverage ma-
chine learning techniques to learn the correct behaviors dur-
ing the interaction with attackers. Our evaluation indicates
that our system can improve the session with attackers and
capture more attacks.
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