
Honey, I Shrunk the Attack Surface
Adventures in Android Security Hardening
Nick Kralevich - Blackhat
July 27th, 2017

Agenda

Brief history of Android security

Strategies for dealing with vulnerabilities

Bugs and attack surface reduction efforts

Recognition

The future

Questions?

Before we begin...

Android security is more than device
security...

Layers of defense even before code gets to the device...

Sandbox &
permissions

Runtime
Security
Checks

Verify Apps
Warning

Verify Apps
Consent

Install
Confirmation

Unknown
Sources
Warning

Google Play

Knowledge
PHA or Not

Data
App

installs
Install

Source

Google
Play

Application Analysis

Static
Dynamic

Reputation
Etc.

Other Google
Services

Search
Drive
Ads
Etc.

SafetyNet
Analysis

Exploit Detection
ACE
SIC
Etc.

Android

App Sandbox
Verified Boot
Encryption

Etc.

Chrome

Smart Lock

Device Manager

Safe Browsing

Google Play
Protect

Verify Apps

App
X

App
Y

App
Z

Install
Apps

Apps

Knowledge
PHA or not

Best practices

Knowledge
PHA or not

Apps

Knowledge
Risk Signal

Data
Rare Apps

App Install
Checks

Attest
API Protections

Warnings
Configuration

changes
Etc

Device Data
Events

Measurements
Configurations

Etc.

Technology throughout Google working together

Key Principles

Key Android Security Principles

● Exploit Mitigation

● Attack Surface Reduction

○ Exploit Containment

○ Principle of Least Privilege

● Safe by design APIs and interfaces

● Architectural Decomposition

Stepping back in time...

10 years ago...

● Windows Vista was released

○ Replaced "administrator-by-default" philosophy of Windows XP

● All desktop OSes

○ No difference between application capabilities and user

capabilities (remains mostly true today)

○ User has Administrator / root access (still mostly true today)

● Mobile devices

○ Primarily feature phones

○ Smart devices not widely available

Android enters the picture

● HTC Dream - October 22nd, 2008

○ First commercially available Android device

● Centralized application store

● Application sandboxing

● Memory safe programming language (Java)

● Designed with security in mind

● Strong desire to not repeat the security mistakes of

legacy consumer OSes

Early Android Security

● Exploit mitigation technologies

were the primary focus
○ -fstack-protector

○ ASLR

○ NX

○ FORTIFY_SOURCE

○ mmap_min_addr

○ Format string vulnerabilities

○ etc...
https://source.android.com/security/enhancements/

https://source.android.com/security/enhancements/

Early Android Security

Applications sandboxed using Linux UID
technologies. Sandboxing of other
processes done on a limited basis.

Global “root” user which was unconstrained
and targeted for attack.

IPC boundaries were not consistently defined
and enforced.

http://powerofcommunity.net/poc2016/keen.pdf

Security “policy” not auditable.

Heavy early use of discretionary access
control (DAC) tools.

● Address space separation/process isolation

● UID controls

● UNIX permissions

● DAC capabilities

● namespaces

● ...

Greater focus on
compartmentalization,
attack surface reduction
● Sept 2011

● Proven effectiveness at preventing

or mitigating 7 rooting exploits

● Oct 2013: Android 4.4 partially

enforcing

● Oct 2014: Android 5.0 fully

enforcing

Immediate success in mitigating exploits!

● vold “asec create” exploit (Android 4.4)

● Constrained attack surface mitigated exploit

● Blocked several ways

○ /data/local/tmp directory and file access disallowed

○ No symlink following allowed

○ Mount restrictions

● http://www.androidpolice.com/2014/06/04/android-4-4-3-patch-finally-closes-ancient-vulnerability-shuts-several-serious-security-exploits/
● https://plus.google.com/u/0/+JustinCaseAndroid/posts/7BxgPNc7ZJs?cfem=1

http://www.androidpolice.com/2014/06/04/android-4-4-3-patch-finally-closes-ancient-vulnerability-shuts-several-serious-security-exploits/
https://plus.google.com/u/0/+JustinCaseAndroid/posts/7BxgPNc7ZJs?cfem=1

Modern Day Android
Security

http://powerofcommunity.net/poc2016/keen.pdf

Every process compartmentalized (including
UID=0 processes)

● “root” no longer exists on Android

Principle of least privilege widely deployed

Attack surface limited through tightly
controlled IPC boundaries

Auditable security policy

Most executable code comes from signed
source / cryptographically verified (dm-verity).

Android Today

Contacts Game X

Google Play

Contacts Game Y

Google Play

System System System System System System System

Trust Zone

Kernel

Hardware

UID=0 UID=0 UID=0 UID=0 UID=0

User 1 User 2

Verify Apps Safe Browsing

Google Play
Protect

Google Security
Services

Email Game Y Email Game Z Device
Manager Smart Lock

Attack Surface Reduction Examples

CVE-2017-6074: DCCP double-free vulnerability (local root)

Networking Protocols

● Only a whitelist of socket families are
allowed

○ Netlink Route Sockets

○ Ping Sockets

○ TCP / UDP Sockets

○ Unix stream and datagram sockets

● Whitelist allowed ioctls

Restrict socket ioctls. Either
1. disallow privileged ioctls,
2. disallow the ioctl permission, or
3. disallow the socket class.

neverallowxperm untrusted_app domain:{ rawip_socket
tcp_socket udp_socket } ioctl priv_sock_ioctls;

neverallow untrusted_app *:{ netlink_route_socket
netlink_selinux_socket } ioctl;

neverallow untrusted_app *:{
 socket netlink_socket packet_socket key_socket
 appletalk_socket netlink_firewall_socket
 netlink_tcpdiag_socket netlink_nflog_socket
 netlink_xfrm_socket netlink_audit_socket
 netlink_ip6fw_socket
 netlink_dnrt_socket netlink_kobject_uevent_socket
 tun_socket netlink_iscsi_socket
 netlink_fib_lookup_socket netlink_connector_socket
 netlink_netfilter_socket netlink_generic_socket
 netlink_scsitransport_socket
 netlink_rdma_socket netlink_crypto_socket
} *;

CVE-2017-6074: DCCP double-free vulnerability (local root)

Layers of attack surface reduction

● Not compiled into Android common

kernels

● Even if compiled in, not reachable

due to SELinux restrictions.

● “dodged a bullet” -> “working as

intended”

Whitelisted socket families - Other bugs mitigated

● Other bugs blocked

○ CVE-2016-2059 - Linux IPC router binding any port as a control port

○ CVE-2015-6642 - Security Vulnerability in AF_MSM_IPC socket:
IPC_ROUTER_IOCTL_LOOKUP_SERVER ioctl leaks kernel heap memory to userspace

○ CVE-2016-2474 - Security Vulnerability - Nexus 5x wlan driver stack overflow

○ etc...

CVE-2017-7184: xfrm kernel heap out-of-bounds access

CVE-2017-7184: xfrm kernel heap out-of-bounds access

● Compiled into Android kernels

● Requires CAP_NET_ADMIN

○ Available to lots of processes on Android.

● Requires netlink_xfrm_socket

● Who has it?

nnk@nick:/android$ adb pull /sys/fs/selinux/policy

/sys/fs/selinux/policy: 1 file pulled. 8.5 MB/s (451031 bytes in 0.051s)

nnk@nick:/android$ sesearch --allow -c netlink_xfrm_socket -p create ./policy

allow netmgrd netmgrd:netlink_xfrm_socket { nlmsg_write setopt setattr read lock

create nlmsg_read write getattr connect shutdown bind getopt append };

● Reachability:

○ Only available to one process!

○ Effectively unreachable.

CVE-2017-7184: xfrm kernel heap out-of-bounds access

Careful attack surface management

kept these bugs from being

reachable.

TL;DR:

Attack Surface Management
Android O: Project Treble

Project Treble

● A modular base for Android

● Allows updating Android without

additional work from silicon

vendor

● Strong separation and APIs

between vendor and Android

code
Vendor interface

Android OS
framework

Vendor
implementation

Android
Apps

Developer
API

https://android-developers.googleblog.com/2017/05/here-comes-treble-modular-base-for.html

https://android-developers.googleblog.com/2017/05/here-comes-treble-modular-base-for.html

Project Treble - Attack Surface Management

https://android-developers.googleblog.com/2017/07/shut-hal-up.html

https://android-developers.googleblog.com/2017/07/shut-hal-up.html

Project Treble - Attack Surface Management

https://android-developers.googleblog.com/2017/07/shut-hal-up.html

● Each HAL runs in its own sandbox
○ Limited to only capabilities

needed

● Calling process no longer requires
HAL permissions
○ Example: 20 HALs moved out

of system_server

● Longer attack chain to the most
vulnerable drivers

https://android-developers.googleblog.com/2017/07/shut-hal-up.html

Mediaserver hardening

Stagefright

● Series of bugs discovered mid 2015

● Integer overflow in parsing process

● Mediaserver architected for containment
with minimal attack surface

● Mediaserver grew up. More features =>
more capabilities

● Android’s first “successful failure”

○ No evidence of widespread
exploitation for 2 years now.

https://twitter.com/jduck/status/756197298355318784

MediaServer

 MediaServer
 ExtractorService

 AudioServer
 CameraServer
 MediaDrmServer

 MediaCodecService

Media Stack Hardening in Nougat

https://www.blackhat.com/docs/us-16/materials/us-16-Kralevich-The-Art-Of-Defense-How-Vulnerabilities-Help-Shape-Se
curity-Features-And-Mitigations-In-Android.pdf

https://www.blackhat.com/docs/us-16/materials/us-16-Kralevich-The-Art-Of-Defense-How-Vulnerabilities-Help-Shape-Security-Features-And-Mitigations-In-Android.pdf
https://www.blackhat.com/docs/us-16/materials/us-16-Kralevich-The-Art-Of-Defense-How-Vulnerabilities-Help-Shape-Security-Features-And-Mitigations-In-Android.pdf

mediaextractor: seccomp
finit_module(5, "", 0) = ?
ERESTART_RESTARTBLOCK (Interrupted by signal)
--- SIGSYS {si_signo=SIGSYS, si_code=SI_USER,
si_pid=20745, si_uid=2000} ---
+++ killed by SIGSYS +++
Bad system call

$ cat mediaextractor-arm64.policy
Organized by frequency of system call
- in descending order for best performance.
ioctl: 1
futex: 1
prctl: 1
write: 1
getpriority: 1
close: 1
dup: 1
mmap: 1
munmap: 1
openat: 1
mprotect: 1
madvise: 1
getuid: 1
...

Architecture arm arm64 x86

Allowed
syscalls

42 34 42

Kernel
syscalls

364 271 373

Percent
reduction

89% 87% 88%

Significant reduction in syscall attack
surface

mediaserver: additional
changes

open("/system/lib/libnetd_client.so",
O_RDONLY) = 3
mmap2(NULL, 12904, PROT_READ|PROT_EXEC,
MAP_PRIVATE, 3, 0) = 0xb6d9f000

open("/data/data/com.foo.bar/libnetd_client.
so", O_RDONLY) = 4
mmap2(NULL, 12904, PROT_READ|PROT_EXEC,
MAP_PRIVATE|MAP_FIXED, 4, 0) = -1 EACCES
(Permission denied)

mmap2(NULL, 20,
PROT_READ|PROT_WRITE|PROT_EXEC,
MAP_PRIVATE|MAP_ANONYMOUS, 4, 0) = -1 EACCES
(Permission denied)

● Signed and unsigned integer overflow
protections

● Remove “execmem”

○ No anonymous executable memory

● No loading executable code from outside
/system (not new in Nougat)

● Executable content can only come from
dm-verity protected partition

● … and more

mediaserver - Refactoring
results

● Vastly improved architectural
decomposition

● Vastly improved separation of privileges

● Riskiest code moved to strongly sandboxed
process

● Containment model significantly more
robust

https://android-developers.blogspot.com/2016/0
5/hardening-media-stack.html

“I started working on this exploit
on a build of the upcoming
Android N release, and anyone
sitting near my desk will testify to
the increased aggravation this
caused me. A lot of general
hardening work has gone into N,
and the results are impressive.”

Mark Brand
Google Project Zero

https://googleprojectzero.blogspot.com/2016/09/return-to-libs
tagefright-exploiting.html

https://android-developers.blogspot.com/2016/05/hardening-media-stack.html
https://android-developers.blogspot.com/2016/05/hardening-media-stack.html
https://googleprojectzero.blogspot.com/2016/09/return-to-libstagefright-exploiting.html
https://googleprojectzero.blogspot.com/2016/09/return-to-libstagefright-exploiting.html

Mediaserver hardening effectiveness

Security bulletin bugs
in the media stack
for the first 4 months
of 2017

23.8%

3.2%

No longer security issue in N
Downgraded severity from M to N
No change between M and N

73.0%

http://www.theverge.com/2016/9/6/12816386/android-nougat-stagefright-security-update-mediaserver
http://www.theverge.com/2016/9/6/12816386/android-nougat-stagefright-security-update-mediaserver

Media Stack Hardening Improvements in O

 MediaServer
 ExtractorService

 AudioServer Audio HAL
 CameraServer Camera HAL
 MediaDrmServer DRM HAL

 MediaCodecService

 MediaServer
 ExtractorService

 AudioServer
 CameraServer
 MediaDrmServer

 MediaCodecService

Access
to kernel
drivers

with
Project Treble

Access
to kernel
drivers

Android O:
Webview Security

Webview Security

Shipped with the
operating system

Separate APK
updateable via the
Play store

Renderer in isolated
process

Safe Browsing

KitKat Lollipop O Preview

Webview Security

Inter-process boundary

App

WebView 1

Renderer process

 Web content

WebView N

Linux Kernel

The kernel is the new target for vulnerability research

2014 2015 2016

Security bugs reported to Android by year, broken down between userspace and kernel

Why the rise in kernel bugs?

● Lockdown of userspace makes UID 0 significantly less useful.

● 2016 is the first year > 50% of devices in ecosystem have

selinux in global enforcing.

● Android Vulnerability Rewards: Critical bugs payout more $$$.

○ … and kernel bugs tend to be high or critical severity

all bugs bugs reachable by apps

How are kernel bugs reached - syscall (before mitigations)

Data: Jan 2014 → April 2016

100% of perf vulns
introduced in vendor
customizations

commit fa1aa143ac4a682c7f5fd52a3cf05f5a6fe44a0a

Author: Jeff Vander Stoep <jeffv@google.com>

Date: Fri Jul 10 17:19:56 2015 -0400

 selinux: extended permissions for ioctls

 Add extended permissions logic to selinux. Extended permissions

 provides additional permissions in 256 bit increments. Extend the

 generic ioctl permission check to use the extended permissions for

 per-command filtering. Source/target/class sets including the ioctl

 permission may additionally include a set of commands. Example:

 allowxperm <source> <target>:<class> ioctl unpriv_app_socket_cmds

 auditallowxperm <source> <target>:<class> ioctl priv_gpu_cmds

Mitigations - attack surface reduction
Ioctl command whitelisting in SELinux

● Wifi
○ Originally hundreds of ioctl commands → 29 whitelisted safe network socket ioctls

○ Blocks access to all bugs without restricting legitimate access.

○ Unix sockets: wifi ioctls reachable by local unix sockets :(Hundreds → 8 whitelisted unix socket

ioctls

○ No ioctls allowed on other socket types including generic and netlink sockets

● GPU
○ e.g. Shamu originally 36 -> 16 whitelisted commands

○ Ioctl commands needed varies by device but < 50% needed seems consistent across KGSL drivers

Mitigations - attack surface reduction

● Restrict access to perf

○ Access to perf_event_open() is disabled by default.

○ Developers may re-enable access via debug shell

● Remove access to debugfs

○ All app access to debugfs removed

● Remove default access to /sys

○ App access to files in /sys must be whitelisted

○ 38,000 files to 500 files (98% reduction)

Impact of mitigations

Because most bugs are driver specific, effectiveness of mitigations varies across

devices. In general most previously reachable bugs were made unreachable

● Case study of bugs reachable by apps on Nexus 6 (Shamu)

○ 100% of wifi bugs blocked

○ 50% of GPU bugs blocked

○ 100% of debugfs bugs blocked

○ 100% of perf bugs blocked (by default)

SELinux Effectiveness

44%SELinux reduced severity of
almost half of kernel bugs
(Android security bulletin data for Jan-Apr, 2017)

Reduced
severity

Other Attack Surface Reductions

● Restricted /proc/PID visibility (hidepid=2, credit CopperheadOS)

○ Limit visibility between Android processes

○ Prevents popups, notification spam, and phishing

○ Addresses UI State Inference attacks

● DAC capabilities removal

○ Kernel module loading, writes to /system, most root capabilities

● Whitelist of /proc files (new in Android O)

○ 4400 files -> 2500 files (remainder mostly in /proc/sys/net)

● Hardlink removal

https://www.usenix.org/system/files/conference/usenixsecurity14/sec14-paper-chen.pdf

Recognition

Good reviews from attackers :-)

Q: It might be good for everyone to know: Which Android
devices do you find the most secure?

CunningLogic (aka jcase)

A: Android 5.x and up is particularly annoying for me to try and
root, my go to tactics are often dead due to the strengthened
SELinux policies.

https://www.reddit.com/r/Android/comments/3hhciw/ask_us_almost_anything_about_android_security/

Now ~70% of Android devices!

https://www.reddit.com/r/Android/comments/3hhciw/ask_us_almost_anything_about_android_security/

Good reviews from attackers :-)

https://papers.put.as/papers/macosx/2016/sandbox_defcon.p
df

https://papers.put.as/papers/macosx/2016/sandbox_defcon.pdf
https://papers.put.as/papers/macosx/2016/sandbox_defcon.pdf

Second highest exploit cost!

2x increase in exploit cost!

pwn2own

Category Phone Price (USD) “Master of Pwn”
Points

Obtaining Sensitive Information

Apple iPhone $50,000 10

Google Nexus $50,000 10

Other Android $35,000 7

Install Rogue Application

Apple iPhone $125,000 23

Google Nexus $100,000 20

Other Android $60,000 15

● http://blog.trendmicro.com/presenting-mobile-pwn2own-2016/

http://blog.trendmicro.com/presenting-mobile-pwn2own-2016/

pwn2own
Phone Price (USD)

Apple iPhone $50,000

Google Nexus $50,000

Other Android $35,000

Apple iPhone $125,000

Google Nexus $100,000

Other Android $60,000

● Price parity among the major

mobile operating systems

● Smaller attack surface increases

complexity and cost of finding an

exploit

pwn2own successes
Contest Core Android

Platform Bug
Additional Notes

2009 pwn2own NO All mobile devices unexploited

2010 pwn2own NO iPhone 3GS compromised. No Android compromised

2011 pwn2own NO Google Stays Strong

2012 pwn2own NO Non-Android device specific parsing bug - NFC delivered

2013 pwn2own NO Non-Android device specific bug

2014 pwn2own YES 1. NFC triggered remote leak of Bluetooth MAC address
2. DHCP code execution (partial win)

2015 pwn2own NO Chrome exploit -> Google Play Install - No OS compromise

2016 pwn2own NO Chrome exploit -> Google Play Install - No OS compromise

https://en.wikipedia.org/wiki/Pwn2Own#Mobile_device_rules
https://en.wikipedia.org/wiki/Pwn2Own#Contest_2010
http://techland.time.com/2011/03/14/pwn2own-roundup-apple-fails-google-stays-strong/
https://labs.mwrinfosecurity.com/blog/mobile-pwn2own-at-eusecwest-2012/
http://www.zdnet.com/article/ios-samsung-galaxy-s4-conquered-in-mobile-pwn2own-2013/
http://www.aperturelabs.com/pdfs/1%20Mobile%20Pwn2Own%202-5-15.pdf
http://www.zerodayinitiative.com/advisories/ZDI-15-093/
https://community.hpe.com/t5/Protect-Your-Assets/HP-TippingPoint-Mobile-Pwn2Own-Day-2/ba-p/6670636#.WLz64JDyvs0
https://www.theregister.co.uk/2015/11/12/mobile_pwn2own/
https://cansecwest.com/slides/2016/CSW2016_Gong_Pwn_a_Nexus_device_with_a_single_vulnerability.pdf

No success from the Project Zero prize

http://www.zdnet.com/article/didnt-we-offer-you-enough-googles-350000-project-zero-prize-attracts-junk-entries/

http://www.zdnet.com/article/didnt-we-offer-you-enough-googles-350000-project-zero-prize-attracts-junk-entries/

https://www.extremetech.com/mobile/250316-google-increases-android-bug-bounties-much-200000

Accelerating bug discovery

https://www.extremetech.com/mobile/250316-google-increases-android-bug-bounties-much-200000

https://security.googleblog.com/2017/06/2017-android-security-rewards.html

“... no researcher has claimed the top reward for an
exploit chains in 2 years ...”

Old Amount New Amount

Remote chain to
TrustZone or Verified

Boot compromise
$50,000 $200,000

Remote to Kernel $30,000 $150,000

https://security.googleblog.com/2017/06/2017-android-security-rewards.html

Wikileaks: CIA Hacking Tools Revealed

“Furthermore, when SELinux became common on
Android, this became more problematic since the

radio SELinux context that rild started with was too
restrictive for the implant to function.”

https://wikileaks.org/ciav7p1/cms/page_28049453.html

https://wikileaks.org/ciav7p1/cms/page_28049453.html

Future

Future: Global Seccomp Whitelist

Architecture syscalls provided by
kernel syscalls in bionic reduction (%)

arm 364 204 44

arm64 271 198 27

x86 373 203 46

x86_64 326 199 39

Future Attack Surface Reduction

● Take better advantage of Treble - system / vendor split

● Continued reduction in /proc files

● Removal of useless /dev files

○ Faster boot time, less kernel code, less attack surface

● Stronger IPC controls

● System Properties

● Finer grain attack surface reduction for applications

● Scale back shared data stores

Takeaways

Takeaways

● Attack surface management is critical to preventing or mitigating

unknown bugs.

● Android has invested significantly in reducing attack surface and

containing processes.

● Vulnerabilities will never go away, but they can be contained and

managed.

“Perfection is achieved not when

there is nothing more to add, but

when there is nothing left to take

away.”
- Antoine de Saint-Exupery - 1939

THANK YOU
security@android.com

Nick Kralevich
nnk@google.com

