
PAPER

JULY 2017

Taking Stock
Estimating Vulnerability Rediscovery

Trey Herr

Bruce Schneier

Christopher Morris

T H E C Y B E R S E C U R I T Y P R O J E C T

The Cyber Security Project

Belfer Center for Science and International Affairs

Harvard Kennedy School

79 JFK Street

Cambridge, MA 02138

www.belfercenter.org/Cyber

Statements and views expressed in this report are solely those of the authors and do not imply

endorsement by Harvard University, the Harvard Kennedy School, or the Belfer Center for Science

and International Affairs.

Design & Layout by Andrew Facini

Cover image and opposite page 1: A screenshot from the Google Chrome source code.

Copyright 2017, President and Fellows of Harvard College

Printed in the United States of America

PAPER

JULY 2017

T H E C Y B E R S E C U R I T Y P R O J E C T

Taking Stock
Estimating Vulnerability Rediscovery

Trey Herr

Bruce Schneier

Christopher Morris

About the Authors

Trey Herr, Post-Doctoral Fellow
Belfer Center Cyber Security Project, Harvard Kennedy School
trey_herr@hks.harvard.edu

Bruce Schneier, Research Fellow and Lecturer
Belfer Center Cyber Security Project, Harvard Kennedy School
schneier@schneier.com

Christopher Morris, Research Assistant
Harvard School of Engineering and Applied Sciences
christophermorris@college.harvard.edu

Acknowledgments

This paper acknowledges support from the Belfer Family and the Flora and
William Hewlett Foundation. The dataset and the resulting paper would
not have been possible without Eduardo Vela Nava and Andrew Whal-
ley of Google; Casey Ellis and Payton O’Neal of Bugcrowd; Rich Salz of
OpenSSL; Richard Barnes, Dan Veditz, and Al Billings of Mozilla; and Art
Manion and Allen Householder of CERT/CC. Special thanks are also owed
to Martin Shelton, Katherine Bjelde, and Jim Waldo for their help cleaning
and formatting the data. The authors would additionally like to thank Beth
Friedman, Annie Boustead, Sasha Romanosky, Jay Healey, Mailyn Fidler,
Thomas Dullien, Herb Lin, Fabio Massacci, Gary Belvin, Beau Woods,
Tudor Dumitras, Ben Laurie, Tod Beardsley, and the Belfer Cyber Security
team for their feedback.

Table of Contents
Abstract ... 1

1 Introduction .. 2

2 Background .. 3

Value of Rediscovery ...5

Rediscovery and Previous Literature .. 6

3 Methodology and Data .. 9

Counting Duplicate Vulnerabilities ... 9

Coding and Data Sources ... 11

4 Analysis ...15

Vulnerability Rediscovery in the Aggregate ..15

Multiple Rediscovery ..16

Vulnerability Rediscovery Lag ..18

Rediscovery Over Time .. 20

5 Limitations of the Dataset .. 22

6 Implications ... 25

7 Conclusions ..31

1Belfer Center for Science and International Affairs | Harvard Kennedy School

Abstract

How often do multiple, independent, parties discover the same vul-
nerability? There are ample models of vulnerability discovery, but little
academic work on this issue of rediscovery. The immature state of this
research and subsequent debate is a problem for the policy commu-
nity, where the government’s decision to disclose a given vulnerability
hinges in part on that vulnerability’s likelihood of being discovered
and used maliciously by another party. Research into the behavior of
malicious software markets and the efficacy of bug bounty programs
would similarly benefit from an accurate baseline estimate for how
often vulnerabilities are discovered by multiple independent parties.

This paper presents a new dataset of more than 4,300 vulnerabilities,
and estimates vulnerability rediscovery across different vendors and
software types. It concludes that rediscovery happens more than twice
as often as the 1-9% range previously reported. For our dataset, 15% to
20% of vulnerabilities are discovered independently at least twice within
a year. For just Android, 13.9% of vulnerabilities are rediscovered within
60 days, rising to 20% within 90 days, and above 21% within 120 days.
For the Chrome browser we found 12.57% rediscovery within 60 days;
and the aggregate rate for our entire dataset generally rises over the
eight-year span, topping out at 19.6% in 2016. We believe that the actual
rate is even higher for certain types of software.

When combined with an estimate of the total count of vulnerabilities
in use by the NSA, these rates suggest that rediscovery of vulnera-
bilities kept secret by the U.S. government may be the source of up
to one-third of all zero-day vulnerabilities detected in use each year.
These results indicate that the information security community needs
to map the impact of rediscovery on the efficacy of bug bounty pro-
grams and policymakers should more rigorously evaluate the costs of
non-disclosure of software vulnerabilities.

2 Taking Stock: Estimating Vulnerability Rediscovery

1 Introduction

Vulnerabilities are an important resource. Both intelligence and law
enforcement activities increasingly emphasize the use of software vul-
nerabilities to gain access to targeted systems. These same software flaws
are also a critical piece of defensive information, granting companies like
Apple and open source projects like Apache insight into where there are
holes in their software in need of repair. Left unfixed, software vulnerabil-
ities provide malicious parties a point of access into any computer system
running the software. Programs to pay researchers and others who dis-
close vulnerabilities to software developers, so-called bug bounties, are an
increasingly popular way for companies to discover flaws in their code.

Underlying the choices to pay for a software vulnerability, as well as gov-
ernment decisions to keep some a secret, are assumptions about how
often those same software flaws could be discovered by someone else, a
process called rediscovery. There is very little rigorous research into how
often rediscovery takes place, and yet we know it happens, sometimes in
high-profile ways. For example, the Heartbleed vulnerability in OpenSSL
lay dormant for three years, and yet was discovered twice within just a
few days, by both Neel Mehta of Google and researchers at the Finnish
information security firm Codenomicon.1 This rediscovery rate becomes
particularly important if the software in question is a widely used open
source project or a cryptographic library.

This paper introduces the issue of vulnerability rediscovery, our research,
and addresses some of the larger questions raised by this scholarly col-
lision. A particularly challenging issue with rediscovery is that this rate
changes over time and varies for different types of software. We collected
data from multiple software vendors and an open source project to track
vulnerability records and look for duplicates, where a single software flaw
had been disclosed multiple times. We then used those duplicates to esti-
mate the rate at which vulnerabilities were discovered more than once by
independent parties. We also use this data to track how the rediscovery

1 Posted on April Lee, “How Codenomicon Found The Heartbleed Bug Now Plaguing The Internet,”
ReadWrite, April 13, 2014, http://readwrite.com/2014/04/13/heartbleed-security-codenomi-
con-discovery/.

3Belfer Center for Science and International Affairs | Harvard Kennedy School

rate can grow over time and to measure rediscovery lag, the time between
when a vulnerability is first disclosed and subsequent duplicate disclosures.

The paper begins with background information on vulnerabilities and their
discovery, along with a review of relevant literature and previous work.
This leads into a discussion of the data collected for this project and our
methodology, including the challenges present in counting vulnerabilities
and measuring rediscovery. Following this are several analyses of this data,
considering variation such as the vendor in question and change over time
as well as other measures such as rediscovery over time and rediscovery
lag. The final two sections discuss some of the paper’s limitations and then
conclude by suggesting implications of this work for scholarly and policy
communities.

2 Background

Software vulnerabilities are flaws or features in code that allow a third
party to manipulate the computer running this software. The level of
design security in major commercial software products varies widely, from
the vulnerability-rich history of Adobe’s products to Apple’s comparatively
locked-down iOS operating system. Such design insecurity is generally the
result of poorly secured software, insecure programming languages, the
growing complexity of commercial code bases, and simple human error,
among a host of other causes. For example, a program that expects to
retrieve a simple image file but fails to check the supplied file type might
return an executable software program instead. The procedure to retrieve
an image is intentional, but failing to check the file type allows a third
party to manipulate it. The Love Letter virus of 2000 relied on the fact that
Windows 2000 and XP hid known file extensions when reading file names
from right to left. The virus file (LOVE-LETTER-FOR-YOU.TXT.vbs) hid
itself by putting the executable file extension (.vbs) outside of a benign one
(.txt), so Windows would only show .txt and the user would be none the
wiser.2 Vulnerabilities may also be introduced directly to hardware through

2 Microsoft, “VBS.LOVELETTER Worm Virus” (Microsoft, January 29, 2007), http://support.micro-
soft.com/kb/282832.

4 Taking Stock: Estimating Vulnerability Rediscovery

compromises in chip design or manufacture somewhere along the supply
chain.3

Not all vulnerabilities are created equal—some are easier to find than
others and only a small number will provide easy access to the best-secured
software. What this means is that not all groups looking for vulnerabil-
ities are necessarily looking for the same vulnerabilities. An intelligence
organization is likely to have the engineering and mathematics capacity to
take low-value or difficult-to-use vulnerabilities and combine them into
a working exploit. Less capable groups may have to wait until they find a
vulnerability which can immediately be used to gain access to a computer
system to develop a useful exploit.

The knowledge of a vulnerability’s existence is valuable information, with
similar properties to the location of buried treasure on a map or a secret
told to a friend. The bug hunter’s challenge is to choose who to whisper
their secret to, along with proof-of-concept code that proves their secret
is in fact true. This secret is a source of value and creates a dilemma: mali-
cious actors who wish to gain access to a vulnerability are almost always
willing to pay more than the software’s original vendor—sometimes a great
deal more.4 Because a vulnerability is something embedded in a piece of
software, a person who independently discovers it has no guarantee of
being the only one who knows about its existence. Every passing day brings
a higher probability that someone else working to find vulnerabilities in the
same piece of software will stumble upon the bug, leading to rediscovery.
This leads to an economy of buying and selling vulnerability information
among criminal groups, companies, and governments.5

3 Georg T. Becker et al., “Stealthy Dopant-Level Hardware Trojans,” August 21, 2013, http://people.
umass.edu/gbecker/BeckerChes13.pdf; Bruce Schneier, “How to Design — And Defend Against —
The Perfect Security Backdoor,” WIRED, October 16, 2013, https://www.wired.com/2013/10/how-
to-design-and-defend-against-the-perfect-backdoor/.

4 A. Algarni and Y. Malaiya, “Software Vulnerability Markets: Discoverers and Buyers,” International
Journal of Computer, Information Science and Engineering 8, no. 3 (2014): 71–81.

5 T. J. Holt, “Examining the Forces Shaping Cybercrime Markets Online,” Social Science Computer Re-
view 31, no. 2 (September 10, 2012): 165–77, doi:10.1177/0894439312452998; Kurt Thomas et al.,
“Framing Dependencies Introduced by Underground Commoditization,” 2015, http://damonmccoy.
com/papers/WEIS15.pdf; Herr and Ellis - Ch.7 “Disrupting Malware Markets” in Richard Harrison
and Trey Herr, eds., Cyber Insecurity: Navigating the Perils of the Next Information Age (Lanham,
MD: Rowman & Littlefield, 2016), https://books.google.com/books?id=NAp7DQAAQBAJ&source.
For more on the policy debate around which vulnerabilities governments should disclose, see Ari
Schwartz and Rob Knake, “Government’s Role in Vulnerability Disclosure” (Belfer Center, June
2016), http://www.belfercenter.org/sites/default/files/legacy/files/vulnerability-disclosure-web-fi-
nal3.pdf; Fidler - Ch.17 “Government Acquisition and Use of Zero-Day Software Vulnerabilities” in
Harrison and Herr, Cyber Insecurity.

5Belfer Center for Science and International Affairs | Harvard Kennedy School

Value of Rediscovery

Because vulnerabilities are non-rivalrous, they can be discovered and held
by more than one party simultaneously. A rediscovered vulnerability may
be the same as the original, or a closely related flaw deemed similar enough
to be identical. Rediscovery describes the likelihood that two independent
parties will discover the same flaw in a piece of software. This is slightly
different from a bug collision, which is when a vulnerability which had pre-
viously only been known to a single party enters the public domain. Asking
about the rate of rediscovery only assumes that the two groups that find the
same bug are independent of each other.

Rediscovery is an important issue for the cybersecurity community, per-
haps most prominently in the debate over how government should balance
the choice to keep secret or disclose vulnerabilities to software developers.
In the United States, the Vulnerabilities Equities Process (VEP) is the inter-
agency process intended to make decisions about the disclosure of software
vulnerabilities known by U.S. government agencies and organizations.6 The
key choice for this VEP process is whether to keep the vulnerability secret
or disclose the flaw to its developer, whereupon the government loses the
opportunity to use the vulnerability (though the time this takes to happen
can vary dramatically). Measuring the cost of disclosure vs. non-disclosure
involves a range of factors but an important factor is the likelihood that a
vulnerability, kept secret from a vendor and unpatched, might be rediscov-
ered by another party and used against U.S. citizens.7 The answer is critical
to determining the cost of non-disclosure of a vulnerability. If a vulnerabil-
ity in the possession of the U.S. government is not likely to be discovered
by another party, then the risk of keeping it a secret is lower than if the
likelihood of rediscovery is high.

However, there is more value in the question of rediscovery than just
the VEP. Rediscovery can impact how the software security industry
thinks about bug-bounty programs, which pay researchers in exchange

6 Schwartz and Knake, “Government’s Role in Vulnerability Disclosure”; Jason Healey, “The U.S. Gov-
ernment and Zero-Day Vulnerabilities: From Pre-Heartbleed to Shadow Brokers,” Columbia Journal
of International Affairs, November 2016, 4, https://jia.sipa.columbia.edu/sites/default/files/attach-
ments/Healey%20VEP.pdf.

7 Mailyn Fidler and Trey Herr, “PATCH: Debating Codification of the VEP,” Lawfare, May 17, 2017,
https://www.lawfareblog.com/patch-debating-codification-vep.

6 Taking Stock: Estimating Vulnerability Rediscovery

for disclosure of a software flaw. In paying for a vulnerability, companies
expect that it can be patched (fixed). As these patches accumulate and
users apply them, one of two things should happen: either these compa-
nies slowly reduce the total number of flaws in their codebase, or they find
and fix enough old bugs to keep pace with new ones created as software is
updated over time. Understanding the speed of rediscovery helps inform
companies, showing how quickly a disclosed but unpatched bug could be
rediscovered by a malicious party and used to assault the company’s soft-
ware. This information should drive patch cycles to be more responsive
to vulnerabilities with short rediscovery lag, while allowing more time for
those where the lag is longer. With additional work, rediscovery may also
contribute to more accurate estimates of the density of vulnerabilities in
software.

Academic research into the malware markets is also likely to benefit from
better estimates of vulnerability rediscovery. Rediscovery impacts the lifes-
pan of a vulnerability; the likelihood of its being disclosed to or discovered
by the vendor grows with every instance of rediscovery. Just as one can
compare a supermarket’s need to renew its stock of bread vs. salted herring,
some vulnerabilities are likely to “go stale,” and thus be of little value, much
faster than others.8 Estimating rediscovery can help shed light on which
types of vulnerabilities are more likely to decay relative to others, based on
the frequency with which they are discovered by multiple parties.

Rediscovery and Previous Literature

Despite the importance of this issue, the academic record on rediscovery is
relatively sparse.9 A 2005 paper by Andy Ozment applied software reliabil-
ity growth models to vulnerability discovery to gauge the total population
of software vulnerabilities in the operating system BSD.10 This paper also

8 A vulnerability can rise in value if integrated with many others as part of an exploit kit, a mecha-
nism to deploy malicious software using dozens of vulnerabilities, or if few targets apply the patch
that fixes the corresponding flaw.

9 There is an ample literature on vulnerability discovery that deals with an important but slightly
different question from this paper’s focus on rediscovery. For a detailed literature review, see Fabio
Massacci and Viet Hung Nguyen, “An Empirical Methodology to Evaluate Vulnerability Discovery
Models,” IEEE Transactions on Software Engineering 40, no. 12 (2014): 1147–1162.

10 Andy Ozment, “The Likelihood of Vulnerability Rediscovery and the Social Utility of Vulnerability
Hunting,” 2005, http://www.infosecon.net/workshop/pdf/10.pdf.

7Belfer Center for Science and International Affairs | Harvard Kennedy School

addressed rediscovery, using a collection of vulnerability bulletins from
Microsoft between 2002 and 2004 to catalogue when the company credited
more than one disclosing party. Ozment found an average rediscovery rate
of just under 8%, aggregated over different types of software, including
operating systems, applications, and supporting libraries.

Writing in 2013, Finifter et al. looked at the relative cost efficiency of vul-
nerability reward programs against directly employing security personnel.
Looking at Firefox and Chrome, they found that most vulnerabilities are
reported from within firms, though by 2012 this trend had shifted for crit-
ical vulnerabilities in Chrome and more were reported from outside the
company. In a small section looking at rediscovery, the group’s paper calcu-
lated a mean rediscovery rate for Chrome of 4.6% and provided anecdotal
evidence of similar rates in Firefox.11

A collaboration between the bug bounty company HackerOne and
researchers at Harvard and MIT produced a system dynamics model of
the vulnerability discovery and stockpiling process.12 As part of this work,
the group presented results of a random discovery simulation at RSA that
showed a 9% rediscovery rate for immature software and less than 1% for
“hardened” or more mature codebases. Unfortunately, no formal paper
describing the methodology and data employed in this study has yet been
published.

In each of these instances, the question of rediscovery was tangential to a
different debate. Ozment’s work was a response to Eric Rescorla’s conten-
tion that there was little long-term utility to vulnerability discovery and
patching.13 Finifter and his group were studying the efficacy of bounties
over hiring security talent as full-time employees, and the HackerOne esti-
mate of rediscovery came in the context of discussing the relative density
of vulnerabilities in old vs. new software. In each of these, there was little

11 Matthew Finifter, Devdatta Akhawe, and David Wagner, “An Empirical Study of Vulnerability
Rewards Programs,” in USENIX Security, 2013, https://www.usenix.org/system/files/conference/
usenixsecurity13/sec13-paper_finifter.pdf.

12 Katie Moussouris and Michael Siegel, “The Wolves of Vuln Street: The 1st Dynamic Systems Model
of the 0day Market” (RSA, 2015), https://www.rsaconference.com/events/us15/agenda/ses-
sions/1749/the-wolves-of-vuln-street-the-1st-dynamic-systems.

13 Eric Rescorla, “Is Finding Security Holes a Good Idea?,” IEEE Security and Privacy 3, no. 1 (January
2005): 14–19.

8 Taking Stock: Estimating Vulnerability Rediscovery

actual data available to judge the rate of rediscovery and other potentially
interesting characteristics.

Most recently, a 2017 study from the RAND Corporation used a small
private dataset to evaluate the nature and behavior of zero-day vulnera-
bilities—those used by attackers before the vendors learn about them.14
The study found that over the span of a year, on average only 5.76% of
vulnerabilities were rediscovered in the public domain, while for 90 days
or less the figure was less than 1%. This is much lower than our findings
that 13% to 20% of vulnerabilities are rediscovered within a year, including
more than 21% in the Android operating system. While the two papers
are scoped to different ends, much of the distinction is likely attributable
to differences in data sources and methodology. For more on these differ-
ences, see Section 6.

14 Lillian Ablon and Andy Bogart, “Zero Days, Thousands of Nights” (Santa Monica, CA: The RAND
Corporation, 2017), https://www.rand.org/content/dam/rand/pubs/research_reports/RR1700/
RR1751/RAND_RR1751.pdf.

9Belfer Center for Science and International Affairs | Harvard Kennedy School

3 Methodology and Data

This paper addresses a gap in the literature by integrating vulnerabilities
reported in several different codebases, including the browsers Firefox and
Chrome, the open source project OpenSSL, and the Android operating
system to generate estimates of vulnerability rediscovery and related mea-
sures such as rediscovery lag.15 The goal in selecting these codebases was
to cover more than one software type, span multiple vendors, and have the
best possible access to complete data.16

Counting Duplicate Vulnerabilities

Measuring rediscovery is difficult because once the original vulnerability
is disclosed and made public, there is little incentive for anyone to come
forward and make a new disclosure about the same vulnerability, except
where to do so might result in reputational rewards. The dataset collected
here, and all those that look at disclosure records, don’t measure discovery
directly. Instead, this data captures disclosure as a proxy for disclosure. This
limits the “rediscovery window” to capture rediscovery for each vulnera-
bility record to the period between an initial vulnerability disclosure and
public notice of the bug’s existence.

Limiting our data to this rediscovery window has some benefit as well.
Looking at rediscovery, there is a reasonable assumption that over a long
enough period any vulnerability will be discovered multiple times. Because
the window in which we can observe rediscovery is effectively limited
to the period between initial disclosure and when a patch is made pub-
licly available, there is a natural time constraint. This is built on Ozment’s
method of counting multiple credited discoverers, a record-keeping pro-
cess that would end with a patch being made available to the public.

15 A codebase is the collection of code used to develop a piece of software, including both current and
previous versions.

16 All the data we used is available in our GitHub repository (https://github.com/mase-gh/Vulnerabil-
ity-Rediscovery), and we continue to work to expand this dataset to include closed source software
and other open source projects.

10 Taking Stock: Estimating Vulnerability Rediscovery

Within this rediscovery window, our method of tabulating the discovery of
a rediscovered vulnerability looks for two criteria: are there multiple par-
ties given credit for independently disclosing the same vulnerability and/or
has the bug been marked a duplicate and merged with another? We employ
one or both approaches with each codebase. More detail on the specific
method of counting duplicates for each piece of software can be found
below.

Calculating rediscovery, we take measure of the number of all vulnerabil-
ity records with duplicates as a proportion of all vulnerability records. In
a given period, if there are ten different vulnerability records and one of
those records has received duplicate disclosures, then only one vulnerabil-
ity record has a duplicate. As a result, the rediscovery rate is 1/10 or 10%.17
In our estimates, we collect the total population of vulnerabilities and
sample those of high or critical severity to measure this rediscovery rate.

The other two measures presented in this paper, rediscovery over time and
rediscovery lag, are derived from the same data. The likelihood of rediscov-
ery appears to grow in the months after a vulnerability’s initial disclosure,
eventually leveling off within a few months. Rediscovery over time mea-
sures this rate of change, the brevity of which suggests that the distribution
of discovery attention is not uniform and changes over time. Rediscovery
lag measures the time between an original disclosure and any subsequent
duplicate disclosures; e.g., the time between DisclosureOriginal and Disclo-
sureDuplicateA is X and time between DisclosureDuplicateA and DisclosureDuplicateB
is Y. Thus, the rediscovery lag for DuplicateA would be X while the lag for
DuplicateB would be X + Y.

17 This 10% figure shows the proportion of vulnerabilities that are rediscovered and not the total
number of duplicates. If that same vulnerability was rediscovered 10 more times, for a total of 20
vulnerability disclosures, the rediscovery rate is unchanged in this methodology. This is not to say
these additional duplicates aren’t of interest; we address their frequency and significance in Multi-
ple Rediscovery in Section 4 below.

11Belfer Center for Science and International Affairs | Harvard Kennedy School

Coding and Data Sources

In each source of data for vulnerability rediscovery, we used only vulner-
abilities of high or critical severity to improve the quality of our data and
impact of our analysis. Software bugs are generally given a severity score
to help organize them and prioritize which need to be fixed first. The defi-
nitions of high and critical severity vary somewhat between organizations
but generally settle on critical including anything that allows the execution
of arbitrary code while high covers most instances where an attacker could
manipulate software functions or operate without restriction if local to the
targeted computer. For example, Google defines severity as:

• Critical: “issues allow an attacker to run arbitrary
code on the underlying platform with the user’s
privileges in the normal course of browsing.”

• High: “...vulnerabilities allow an attacker to execute code
in the context of, or otherwise impersonate other origins.
Bugs which would normally be critical severity with unusual
mitigating factors may be rated as high severity.”18

By constraining this dataset to high and critical vulnerabilities, the paper
offers analyses based on the most impactful software flaws. This means that
the dataset comprises only a subset of the total population of vulnerabilities
but emphasizes those most critical to developers and policymakers. This
has also generally improved the quality of data, as record keeping appears
to be most detailed for these most important bugs. We intend to expand to
medium- and low-severity bugs, and their equivalent naming conventions
across different vendors, in future work.

Data for this range of products and vendors came from four sources that
we integrated into a single dataset. There are numerous challenges in
counting vulnerabilities, and the variable state of record keeping discov-
ered across vendors and open source projects only underlines this. By

18 The Chromium Projects, “Severity Guidelines for Security Issues,” For Developers, https://sites.
google.com/a/chromium.org/dev/developers/severity-guidelines.

12 Taking Stock: Estimating Vulnerability Rediscovery

limiting our collection to these high- and critical-severity vulnerabilities,
the dataset is made less generalizable but more reliable.

• Firefox: The Firefox dataset is scraped from records in the Bugzilla
bug tracker for Firefox and related software dependencies.19 This
data constitutes all bugs labeled as high-priority or critical in the
Severity field from Extended Service Release (ESR) advisories
for Firefox between 2012 and 2016 and comprises 473 vulnera-
bility records and 81 records with duplicates. Firefox presented
a challenge in how to create a working subset of only those
vulnerabilities from the total pool of bug records. Firefox has
nightly builds—new versions of the codebases with small changes
or trial features—and many of the vulnerabilities discovered in
Firefox are found there and fixed immediately. This dataset does
not include these vulnerabilities, since they are never exposed
to the public as part of an Extended Stable Release (ESR), and
are thus unlikely to represent bugs that might be independently
rediscovered. By counting only bugs from ESRs, we could obtain
a subset of vulnerabilities that were exposed for discovery and
exploitation by all users. In Bugzilla, each vulnerability record has
a report page, with a Tracker subsection. For some vulnerabilities,
that Tracker subsection contains a Duplicates field with a record
of associated bug codes and their status. Those records with data
in the Duplicates field were what was coded as duplicates.

• Chrome: The Chrome dataset is scraped from bugs collected for
Chromium, an open source software project whose code consti-
tutes most the Chrome browser. 20 On top of Chromium, Google
adds a few additional features, such as a PDF viewer, but there
is substantial overlap, so we treat this as essentially identical to
Chrome.21 Chrome presented a similar problem to Firefox, so to

19 Mozilla, “Bugzilla,” Bugzilla@Mozilla, https://bugzilla.mozilla.org/buglist.cgi?quicksearch=ALL%20
kw:sec%20cf_status_firefox_esr31%3Afixed%2Cverified.

20 The Chromium Projects, “Chromium Bug Tracker,” Bugs, current, https://bugs.chromium.org/p/
chromium/issues/list?can=1&q=label%3ASecurity_Severity&sort=security_severity&col-
spec=ID+Component+Summary+Security_Severity+Reward+Reporter+Status&x=m&y=release-
block&cells=ids.

21 Others have previously made this same choice, including Finifter, Akhawe, and Wagner, “An Empiri-
cal Study of Vulnerability Rewards Programs.”

13Belfer Center for Science and International Affairs | Harvard Kennedy School

record only vulnerabilities with a reasonable likelihood of public
discovery, we limited our collection to bugs labeled as high or
critical severity from the Chromium bug tracker. This portion of
the dataset comprises 3,397 vulnerability records of which there
are 468 records with duplicates. For Chrome, we coded a vulner-
ability record as a duplicate if it had been merged with another,
where merges were noted in the comments associated with each
vulnerability record, or marked as a Duplicate in the Status field.

• OpenSSL: Our data comprises all vulnerability records from 2014
to 2016 for the OpenSSL project.22 The start time for this window is
the disclosure of Heartbleed. Based on conversations with members
of the OpenSSL community, the consistency of record keeping
appears to have improved commensurate with a new influx of
resources after the Heartbleed disclosure in April 2014. This portion
of the dataset comprises 85 vulnerability records of which 2 have
duplicate disclosures.23 In OpenSSL, vulnerabilities are noted as a
duplicate if they credit two separate disclosers for the bug. Records
with an ‘and’ between credited reporters are coded as a collabora-
tion and so not duplicate disclosures. Records with an ‘&’ between
reporters are coded as independent discoveries and thus duplicates.

• Android: We were provided access to data from Google’s tracking
systems for Android vulnerabilities: the public system, CodeSite,
and an internal-use-only platform called Issue Tracker. The
internal site track used by Google employees tracks disclosures
from within the company as well as some from outside while
CodeSite records disclosures from the public. This data provides
a glimpse into rediscovery rates for Android over a 17-month
time frame between July 2015 and November 2016. A member of
the Google security team downloaded bugs from both tracking
systems, then correlated them to remove identical records that
existed in both systems.24 This individual then added a CVE ID

22 OpenSSL, “OpenSSL Vulnerabilities,” News/Vulnerabilities, https://www.openssl.org/news/vulnera-
bilities.xml.

23 Underlining the record-keeping issue—neither of these disclosures includes the Heartbleed bug,
which was discovered twice within the span of a few days and reported in April 2014.

24 This is possible because Google maintains both respective tracking systems’ vulnerability ID value
for all records on both platforms.

14 Taking Stock: Estimating Vulnerability Rediscovery

for all records, to replace the internal tracking IDs. Instances of
rediscovery, duplicate disclosures, were coded when a vulnera-
bility record in CodeSite was noted as a duplicate and linked to
a report credited to a separate researcher(s) from the original.
Duplicates were also coded if two bugs were merged together.
The Android portion of the paper’s dataset comprises 352
vulnerability records where 77 records had at least 1 duplicate.

Table 1—Dataset Summary25

Source Date Range
Total

Population
Sample

Vulnerabilities
Sample

Duplicates
Rediscovery

Rate

Google—Chrome 2009–2016 6817 3397 468 13.8%

Mozilla—Firefox 2012–2016 1112 473 81 17.1%

Google—Android 2015–2016 682* 352 77 21.9%

OpenSSL 2014–2016 85 85 2 2.4%

Total 2009–2016 8696 4307 628 14.6%

The above table summarizes the four sources for this paper’s dataset, cov-
ering more than 4,300 vulnerability records over eight years from four
different software projects.

• Source—the software these vulnerabilities
come from, explained in detail above

• Date Range—the time range for the popula-
tion of vulnerabilities and our sample

• Total Population—the total number of vulnerabili-
ties available from each of the four data sources, of all
criticality levels, from the date range specified.

• Sample Vulnerabilities—our sample of high and
critical vulnerabilities, a subset of the total popula-
tion of vulnerabilities for the source software

25 * Because of our inability to directly access Google’s records for the total population of Android
vulnerabilities, we use here the total number for Android reported to the National Vulnerability
Database in the specified date range

15Belfer Center for Science and International Affairs | Harvard Kennedy School

• Sample Duplicates—the number of vulnerability record from
our sample which had duplicates; see above for more detailed
explanation of what constitutes a duplicate for each source

• Rediscovery Rate—the proportion of vulnerabilities from
each source with at least one duplicate disclosure.

4 Analysis

Our analysis covers vulnerabilities in a range of software types, including
standalone applications like Chrome and Firefox, and the library OpenSSL.
The first section of analysis takes all this software together, producing an
aggregate measure of vulnerability rediscovery. Following this is an anal-
ysis of multiple rediscovery (where there are multiple duplicate bugs),
evaluating trends in specific codebases, and then an analysis of rediscovery
lag, the time between initial disclosure and the first duplicate report. The
final subsection evaluates rediscovery over time. Each section draws from
all or part of the dataset, with explanations for the use of subsets where
appropriate.

Vulnerability Rediscovery in the Aggregate

Vulnerabilities in the eight-year span of this dataset see an aggregate 14.9%
rate of rediscovery. This is higher than previous open-source estimates,
which ranged from 6.84% in early empirical work to 9% in more recent
simulations. Figure 1 below charts the annualized discovery rate over the
whole dataset.

16 Taking Stock: Estimating Vulnerability Rediscovery

Figure 1—Aggregate Vulnerability Rediscovery Rate Change Over Time

This sample of high and critical vulnerability records shows a rate of redis-
covery that is twice as high as previously thought, and which has been
steadily increasing over the past decade in the software we examined.

Multiple Rediscovery

This section looks at the rate of rediscovery by codebase and the phenome-
non of multiple rediscovery, where more than two parties disclose the same
vulnerability. While we are not able to control for each vendor characteristic
individually—for example, the difference between bug bounty payouts or
secure coding practices—this section demonstrates that there are relatively
consistent trends in multiple rediscovery rates between the vendors in our
sample. Across this paper’s entire dataset, where rediscovery did take place,
one duplicate was the norm, though some vulnerabilities saw as many as
four, five, and even one case of 11 duplicate disclosures. The three charts
below in Figures 2–4 describe this multiple rediscovery, putting it in context
across Firefox, Chrome, and Android. Each pie chart has three values:

• No Duplicates: vulnerabilities for which
there was only a single disclosure

• 1 Duplicate: vulnerabilities with an ini-
tial disclosure and one duplicate

• 2 or more Duplicates: vulnerabilities with an initial
disclosure and more than one duplicate. Note that this

17Belfer Center for Science and International Affairs | Harvard Kennedy School

counts all vulnerability records with more than 1 dupli-
cate, not the total of all these duplicates together.

We break the three biggest codebases out below, to show trends and differ-
ences in rediscovery, including distinctions between vulnerabilities with
one duplicate and those with two or more.

Figure 2—Firefox Vulnerability Rediscovery

Figure 3– Chrome Vulnerability Rediscovery

18 Taking Stock: Estimating Vulnerability Rediscovery

Figure 4—Android Vulnerability Rediscovery

Looking at the three codebases, there is a trend where small increases in
the overall rediscovery rate are largely accounted for by vulnerabilities
with two or more instances of rediscovery. That is, newly rediscovered vul-
nerabilities appear to be shallow and more likely to be found by multiple
parties.

Vulnerability Rediscovery Lag

Rediscovery can be a useful metric, but we should also consider the ele-
ment of time and its impact on subsequent additional discoveries of the
same vulnerability. This section looks at the time between original and
duplicate disclosure, “the rediscovery lag.” Where that lag is longer, it
suggests discoverers are stumbling across the same bug with something
approximating truly independent discovery. This section uses the Chrome
and Android data both to highlight differences between software types and
to make use of the more complete timing data available for both.

Rediscovery lag was calculated by taking the absolute time difference
between original vulnerability disclosure and subsequent duplicates. For

No	Duplicates
82%

2	or	More	Duplicates
6%

1	Duplicate
12%

ANDROID	VULNERABILITY	REDISCOVERY	
[2015- 2016]

19Belfer Center for Science and International Affairs | Harvard Kennedy School

additional duplicates after the first, the time lag was measured between
their disclosure date and that of the original. The Android data for this
paper was made available with assistance from Google and comes from
a combination of public and internal bug tracking systems. This section
presents the Android data sorted into discrete monthly categories because
of the inability to collect original and duplicate disclosure dates for each
vulnerability record. So, if a vulnerability is discovered at t0, rediscovered
once at t30, and then rediscovered again at t60, the chart would include both
disclosures—one each in the one- and two-month categories.

In looking at Android, the average time between initial discovery and
rediscovery was two months, though a sizable number also occurred
within the same month as the original disclosure (0 months). Figure 5
shows a distribution of Android rediscovery lag for all duplicates, includ-
ing vulnerabilities with multiple duplicates, covering 112 duplicates for 77
distinct vulnerabilities.

Figure 5—Android Rediscovery Lag

The disclosure of most duplicate vulnerabilities in Android takes place
months later than the original, while only 20% occur in the same month.
This pushes back on the notion of rediscovery as being largely “simultane-
ous discovery” and suggests instead a more independent activity.

20 Taking Stock: Estimating Vulnerability Rediscovery

Figure 6 shows the time from original to first rediscovery for a subset of the
vulnerabilities in Chrome. There is a wider distribution, including multiple
vulnerabilities spread all the way to eight months, but a strong concen-
tration in the first seven days after the original. This may suggest greater
communication within the Chrome security community either directly or
through more transparency in the Chromium bug tracker.

Rediscovery Over Time

While the rediscovery lag can give some picture of how long it takes to find
a vulnerability, another way to consider the problem is what proportion are
likely to be rediscovered within a given time? This section looks at data for
Android and Chrome to show the same differences between codebase as in
rediscovery lag. With Chrome, nearly 40% of vulnerabilities are reported
within the same 24-hour period, rising quickly to the Chrome lifetime
average of about 14% rediscovery, as shown in Figure 7.

Figure 7—Chrome Aggregate Rediscovery Over Time

For Android, that rediscovery is slower to increase but ends up higher.
While the Android data is sorted into months and so does not cover the
week-to-week detail in the first month as does the Chrome data, there is
a nearly identical rate of same-day rediscovery, while the following two

21Belfer Center for Science and International Affairs | Harvard Kennedy School

months take more time to reach the near peak rate at 19%. Rediscovery
rates rise quickly in the first 90 days, then largely level off as shown below
in Figure 8.

Figure 8—Android Aggregate Rediscovery Rate

For a more direct comparison of these two, look to Figure 9 (page 28),
where data from Chrome is sorted into months in a similar fashion as
Android and the rediscovery over time charts for both are overlaid.

22 Taking Stock: Estimating Vulnerability Rediscovery

5 Limitations of the Dataset

This research deals with several limitations. First, vulnerabilities are
variably difficult to discover and exploit, which may influence discovery
behavior and undermine the feasibility of aggregating them. Second, we
only consider vulnerabilities with high or critical severity, which limits the
generalizability of our results. There are additional factors that influence
our result over which we had no control.

Failure to Report: The ability to count duplicate reports of a single vul-
nerability assumes people will continue to disclose their discoveries. This
may be the case before the original vulnerability is made public, but will
likely drop sharply afterward. This is generally because once a patch is
available (even if not yet broadly applied), additional disclosures add little
marginal value. For individuals with an interest in disclosure, the time to
observe duplicates is during this rediscovery window between the original
vulnerability’s disclosure and the developer making a patch available. Com-
paratively longer patch windows for some codebases could increase that
time to capture duplicates, increasing the total number observed and skew-
ing the rediscovery rate for that software.

Conversely, short rediscovery windows censor data that might otherwise
be valid. One person affiliated with OpenSSL suggested that for open
source projects, this patch window could be as short as seven days, leaving
little chance for multiple parties to disclose.26 The length of this rediscovery
window is unlikely to impact criminal groups and others with much less
interest in disclosing vulnerabilities. This leads to higher rates of redis-
covery than are observed just from tracking disclosures. The format of
disclosure behavior can also impact results; for example, differences may
emerge between independent disclosure, bounty programs, and time-de-
pendent events such as competitions and private bounty events. Discovery
from an internal team may follow a different pattern altogether, as record-
ing a vulnerability allows employees to note the existence of the bug and
pass it off to someone else.

26 Author Communication, 18 Oct 2016.

23Belfer Center for Science and International Affairs | Harvard Kennedy School

Many of the same caveats that apply to Ozment’s original analysis of
Microsoft’s vulnerability bulletins remain an issue here, “...the multiple
individuals/organizations credited may have collaborated on finding the
vulnerability, rather than identifying it independently. Furthermore, the...
window of time for recording independent rediscoveries is [short].”27 The
dataset collected for this paper attempts to account for some of these con-
cerns but is likely to lead to underestimates regardless.

Failure to Record: Vulnerabilities are also fixed by internal quality assur-
ance and security teams before they ever reach public versions of software
or duplicates not recorded after the original disclosure. In talking to indi-
viduals affiliated with companies like Cisco and Apple, as well as open
source projects like OpenSSL, many suggested these internal fixes might
go unrecorded. Where the public does find, and disclose, a vulnerability
that has also been discovered internally, many groups are unlikely to record
the subsequent disclosure as a duplicate. This failure to record vulnerabil-
ities isn’t limited to internal discovery. Groups sometimes differ on which
bugs constitute vulnerabilities or fail to record additional disclosure after
the original. OpenSSL provides a good case in point; we know from press
reporting that two separate groups discovered the Heartbleed bug in April
2014, within days of each other, but only one group is credited for dis-
closure in the OpenSSL records. There are likely additional cases like this
across vendors and open source projects.

There are also differences in the rediscovery rates of vulnerabilities at
different severity levels, with some evidence that lower severity flaws are
rediscovered more often. Bugcrowd, a firm that helps integrate companies
with a labor market for vulnerability discovery, found that rediscovery
happened least often with their highest severity bugs, 16.9% of the time.
For second- and third-tier vulnerabilities (based on a five-tier system),
the rediscovery rate jumped to 28.1% and 25.8%, respectively.28 This sug-
gests that rediscovery is more likely with less severe bugs—but this paper
and the associated dataset are focused on the rediscovery rate and result-
ing policy implications from high- and critical-severity vulnerabilities.
This is largely because of the potential consequence these vulnerabilities

27 Ozment, “The Likelihood of Vulnerability Rediscovery and the Social Utility of Vulnerability Hunting.”

28 These figures were provided by Bugcrowd as an analysis of its internal reporting data, which inte-
grates participants from both its public and private programs.

24 Taking Stock: Estimating Vulnerability Rediscovery

could have if used against computing systems and the Internet more
broadly. The difference, at least in a narrow sample, between critical- and
medium-severity vulnerability rediscovery rates does suggest that the esti-
mates generated in this paper are lower than for the larger population of
vulnerabilities.

Some factors contribute to over-, rather than under-estimation. With bug
bounty programs, disclosers will sometimes attempt to game the system by
creating multiple aliases and submitting the same vulnerability repeatedly.
In addition, at least one company’s public bug tracking system aggre-
gated duplicates by linking separate vulnerability records and manually
integrating them. This requires an analyst to discern the duplication and
purposefully account for it. The degree to which bugs are duplicative can
vary with individual judgment. Thus, our estimate of vulnerability records
with two or more duplicates may be high.

The results of this analysis are significant as a baseline estimate representa-
tive of high- and critical-severity vulnerabilities. That the rediscovery rate
for a broader set of software vulnerabilities may be higher only reinforces
the utility of having a starting point to work from. The policy community
doesn’t address the issue of rediscovery in any way informed by empirics,
and the scope of this dataset is far larger and more diverse than previous
work. In addition, because of the emphasis on high- and critical-sever-
ity vulnerabilities, this paper prioritizes analysis of those bugs of greatest
interest to the information security community.

25Belfer Center for Science and International Affairs | Harvard Kennedy School

6 Implications

This section deals with implications from this research and addresses
the results of a similar and more recent study. There are three principle
implications for the rediscovery rates we find in this paper, looking at how
companies handle bug bounties, academic research into the malware mar-
kets, and for government’s handling of bugs in the vulnerability equities
process (VEP).

Patching from Bug Bounties

Bug bounties drive vulnerability disclosure to firms, a major way for
companies to identify bugs to be patched. The volume of these bugs can
be overwhelming leading to prioritization of some patches to be com-
pleted more rapidly than others. Rediscovery rates can help drive that
prioritization, pushing bugs with a higher chance of being discovered
by other parties while in the patching process towards the top of the list.
Rediscovery rates of 15 to 20% in this paper help set the parameters for
what companies running bounty programs could expect – establishing a
potential upper bound for vulnerabilities, especially those in open source
software.

Studying the Malware Markets

Looking at the malware markets, rediscovery rates can help estimate prod-
uct life cycles in malicious software. Higher rates of rediscovery will drive
greater churn as exploit kits and other products dependent on vulnerabil-
ities need to be refreshed more rapidly. At the rates of rediscovery found
for this paper, nearly a fifth of all vulnerabilities may become known to a
vendor or competitor in these markets every year. This discovery by other
parties depresses the value of a vulnerability. These rates may also help
inform a value curve for software vulnerabilities; as rediscovery rates go up
the period of high value shortens and absolute value may increase owing to
scarcity in these flaws.

26 Taking Stock: Estimating Vulnerability Rediscovery

The Vulnerability Equities Process (VEP)

The VEP presents a balancing issue, between public security realized through
updated and well-maintained software and that obtained by vigorous intel-
ligence and law enforcement activity. In deciding to disclose a vulnerability,
the government must weigh the relative costs of using a vulnerability and
not disclosing it against turning that vulnerability over to a vendor so that it
may be patched. If a vulnerability in the possession of the U.S. government is
independently rediscovered by another party, the risk associated with keep-
ing it secret is much higher than if it is never rediscovered.29 This rediscovery
rate becomes particularly important if the software in question is a widely
used open source project or a cryptographic library. Here, the ripple effects
of non-disclosure could impact a far larger number of people.

What do the rediscovery rates from this paper tell us about VEP? There is
little systematic transparency into the types or number of vulnerabilities held
by the U.S. government, but by combining our work with a report produced
by Columbia University, which estimates the U.S. government retains no
more than 50 to 250 vulnerabilities for use at any given time, we can offer
some answers.30 Using the aggregate rediscovery rate for our entire dataset,
14.9%, means that in a given year, somewhere between 8 and 37 vulnerabili-
ties kept secret by the U.S. will be rediscovered by other parties.

Not every one of these vulnerabilities, in active use by law enforcement
and the intelligence community, may be rediscovered, or could be capably
employed, by potential adversaries. Making a conservative assumption,
that only 50% of these rediscovered flaws are both useful and in the hands
of malicious actors, a 15% rediscovery rate still leaves 4 to 18 high value
software flaws in the wild every year, and likely to be discovered by attack-
ers before software vendors, potentially a major source of new zero-days.
In 2016, Symantec reported that there had been 54 zero-day vulnerabilities

29 Assessing the entire chain of decision making in the mind of a notional attacker is impractical.
Rediscovery is a critical point in the event chain. Without knowledge of a vulnerability, none of
the other points about a potential attacker—motivation, skill, preferences—are relevant. In this
scenario, a U.S. government agency is aware of the vulnerability and potentially has it in active use,
leading to a decision not to disclose the information to the affected software’s vendor. While in use,
this vulnerability is then discovered by a malicious party. This rediscovery means the vulnerability
information is in several people’s hands and no longer exclusive to the U.S.

30 Healey, “The U.S. Government and Zero-Day Vulnerabilities: From Pre-Heartbleed to Shadow Bro-
kers.”

27Belfer Center for Science and International Affairs | Harvard Kennedy School

used in 2015.31 This means that the rediscovery of vulnerabilities kept
secret by the U.S. government for operational use could contribute any-
where from 7.5% to 33% of this 2015 zero-day population.

Without accounting for the unintentional proliferation of new vulnerabili-
ties from leaks like the Equation Group tools released by Shadow Brokers,
this proportion of zero-days potentially left unpatched and exploited
while their underlying vulnerabilities are in use by the U.S. government is
significant.32

These findings suggest that policymakers should reevaluate current prac-
tice in use and retention of vulnerabilities, that up to a 1/3 of all zero-days
in use by other states and criminal groups may come from U.S. failure
to disclose vulnerabilities to vendors changes the state of the debate.
These findings should also motivate critical discussion on the standards
of vulnerability disclosure review and prompt support for new research,
preferably unclassified, about how these rediscovery rates differ for
high-consequence software such as common cryptographic or common
software libraries for embedded systems.

Analysis in the Context of Recent Work

The RAND Corporation published a study on zero-day vulnerabilities a
few days after this paper began circulating for comment. Though dealing
with a larger range of issues in the development and use of vulnerabil-
ities, the RAND study also addressed bug collisions, a similar topic to
vulnerability rediscovery, which has led many to compare results from the
two.33 This paper finds that 15% to 20% of vulnerabilities are rediscovered
within a year, but the RAND study finds the rate to be about 6%. Though
the two papers are asking slightly different questions, as explained below,

31 Symantec, “Internet Security Threat Report,” ISTR (Symantec, April 2016), https://www.symantec.
com/content/dam/symantec/docs/reports/istr-21-2016-en.pdf.

32 Bruce Schneier, “Major NSA/Equation Group Leak - Schneier on Security,” Schneier on Secu-
rity, August 16, 2016, https://www.schneier.com/blog/archives/2016/08/major_nsaequati.
html.3,23]]}}}],”schema”:”https://github.com/citation-style-language/schema/raw/master/
csl-citation.json”} ; For more on intentional vs. unintentional proliferation, see Trey Herr, “Governing
Proliferation in Cybersecurity,” Global Summitry 2, no. 1 (June 2017).

33 Snowden, Edward. Twitter post. March 11th, 2017. https://twitter.com/Snowden/sta-
tus/840602409734922241 & Kim Zetter, “Malware Attacks Used by the U.S. Government Retain
Potency for Many Years, New Evidence Indicates,” The Intercept, March 10, 2017, https://theinter-
cept.com/2017/03/10/government-zero-days-7-years/.

28 Taking Stock: Estimating Vulnerability Rediscovery

we disagree with their conclusion that the rediscovery rate is as low as 6%
over a year and especially that it remains below 1% within 90 days of initial
discovery. Figure 9 shows our data on the rediscovery rate over time for
both Android and Chrome, overlaid on each other. While the discovery
rate at a month or less hovers between 2% and 5%, the rate rises quickly
for both codebases—rising to just above 13% in Chrome and above 21% in
Android.34

Figure 9—Android and Chrome Rediscovery Rates over Time

The disagreement between these two studies largely stems from differ-
ences in their questions and methodology. The RAND team worked with
a vulnerability research group to construct a sample matching what might
be found in the intelligence or military community. From their study:
“We believe these data are relatively representative of what a sophisticated
nation-state might have in its arsenal...applying wide generalizations to
other datasets may be misleading, as generalizations to other data can
only be drawn if the data are similar in nature to ours.” 35 This issue in
data source is not an inconsiderable one; vulnerabilities discovered and
reported directly to a vendor (whether through a bounty or not) will cover
a wider array of bug types and severity than those selected strictly for oper-
ational use. It’s not clear to what extent this overlap is addressed by our
sample being constrained to high- and critical-severity vulnerabilities.

34 The Chrome data has been sorted in the same way as Android for purposes of comparison here.

35 Ibid., 61.

29Belfer Center for Science and International Affairs | Harvard Kennedy School

There are other differences, rooted in the data used by each study. RAND’s
total dataset constitutes only 207 vulnerabilities spanning 14 years, and
accurate information on dates such as vulnerability birth and maturity
were only available for 61% of these bugs, thus potentially reducing the
useful dataset size for this rediscovery question to approximately 127
vulnerabilities, or 9 per year.36 Our study includes 4,307 vulnerabilities,
spanning 8 years, from open source software, including Chrome and the
Android operating system. Every vulnerability record used in our analy-
sis, with a minimum of their corresponding CVE or bug number, severity
score, and dates for disclosure and duplicates are available in a GitHub
repository, along with all the scripts used to extract, clean, and organize
this data.37 While the RAND dataset hasn’t been made public, summary
statistics from the paper indicate approximately 60% of the vulnerabilities
affect closed source systems, predominantly Microsoft products, while
another 35% are open source and 5% of undeclared origin.38

In terms of the VEP, a key question is this: how often is a vulnerability
held in secret by the U.S. government going to be found by another party,
whether state or non-state? To answer this, the two studies end up asking
slightly different questions of their data. This paper looks at independent
rediscovery of vulnerabilities: instances where two independent parties
disclose the same vulnerability to a vendor. This data represents high and
critical vulnerabilities and measures the instance of independent discovery
of the same bug between two parties, without making any claim about their
capability to discover or use a vulnerability. RAND looked at the frequency
with which vulnerabilities in the public domain collided with previously
known vulnerabilities in a private dataset. Their key claim is that this data-
set more closely represents what an intelligence agency might use, thus
measuring the chance for two unequal parties to find the same vulnerabil-
ity: a government and researchers/criminals. Given the lack of a systematic
model for how the capability (and capacity) to discover vulnerabilities is
distributed across the malware markets, including state organizations and

36 Ibid., 15.

37 Christopher Morris, Trey Herr, and Amy Armbrust, “Vulnerability-Rediscovery,” GitHub, MASE,
(2017), https://github.com/mase-gh/Vulnerability-Rediscovery.

38 Ibid., 101.

30 Taking Stock: Estimating Vulnerability Rediscovery

companies, we should hesitate to make strong claims about how one group
might represent another. 39

It is difficult to say with precision what systematic differences exist between
vulnerabilities collected by the intelligence community and our dataset.
Estimating rediscovery matters for a range of topics, including the VEP,
research on the malware markets, and analyzing the efficacy of bug bounty
programs. In looking at VEP, there is reason to believe that vulnerabilities
collected and employed by the intelligence community are not a simple
cross-section of all vulnerabilities. Software flaws in use by the intelligence
community are likely to skew towards those most useful for gaining and
maintaining access to the computer systems of intelligence collection tar-
gets. They may also be influenced by the individuals and techniques used
in discovery vulnerabilities. A common refrain is that the National Security
Agency (NSA) places a significant emphasis on mathematical capabilities
in vulnerability discovery. This emphasis could result in NSA’s collection
of vulnerabilities containing far more cryptographic flaws than would
be found in a random sample of software vulnerabilities anywhere in the
public domain. The same is likely true to some degree of law enforcement
organizations.

The vulnerabilities examined in this paper are from open source software,
including Chromium and the Android operating system, which means
they represent only a portion of the total population of software. Vul-
nerabilities in both systems would be useful to gain access to protected
information such as in Chrome, where our sample includes several sand-
box escapes.40 Our analysis does not presume that we know either party
involved in rediscovery other than that they are working independently.
Because of this, we cannot characterize that rediscovery is more or less
likely to impact the vulnerabilities held by an intelligence or law enforce-
ment organization.

39 Jaziar Radianti and Jose J. Gonzalez, “Dynamic Modeling of the Cyber Security Threat Problem:
The Black Market for Vulnerabilities,” Cyber-Security and Global Information Assurance: Threat
Analysis And Response Solutions, 2009, http://www.igi-global.com/chapter/dynamic-modeling-cy-
ber-security-threat/7408; Jaziar Radianti, “Eliciting Information on the Vulnerability Black Market
from Interviews” (Fourth International Conference on Emerging Security Information, Systems and
Technologies, IEEE, 2010), 93–96, doi:10.1109/SECURWARE.2010.23; Mingyi Zhao, Jens Grossk-
lags, and Peng Liu, “An Empirical Study of Web Vulnerability Discovery Ecosystems,” in Proceedings
of the 22nd ACM SIGSAC Conference on Computer and Communications Security (ACM, 2015),
1105–1117, http://dl.acm.org/citation.cfm?id=2813704.

40 Includes CVE-2016-1706 and 2014-5332

31Belfer Center for Science and International Affairs | Harvard Kennedy School

There is very little data on vulnerability rediscovery or collision, however
framed, and so we must be careful about data and our methodologies. The
RAND team sourced its data from a private organization, and some of the
vulnerabilities in the dataset may have been in use or for sale, but the study
disclosed little more than summary statistics about their data. The small
size of the dataset as well as its continued secrecy makes effective peer-re-
view or replication very difficult. That said, the RAND paper is additive,
including substantial material on the life and times of zero-day vulnerabili-
ties, which will benefit policymakers and scholars alike.

7 Conclusions

This paper provides the first empirical study of vulnerability rediscovery
in multiple types of software and across different vendors, considering the
rate of discovery, the impact of time, the length of lag between original
and duplicate discoveries, and the variation of each of these factors across
different vendors. Where previous work has estimated rediscovery rates
for software between 5% and 9% largely unbounded by time, this paper
demonstrates that rates for high- and critical-severity bugs are higher, as
much as 23% within a year for Android. Table 2 summarizes annual redis-
covery rates for Chrome, Firefox, and Android.

Table 2—Rediscovery Rates by Codebase

Chrome Firefox Android

2009 2%

2010 9.1%

2011 11%

2012 10.7% 14.6%

2013 10.8% 14.3%

2014 16.5% 19%

2015 17.6% 18.9% 15.4%

2016 19.1% 17.4% 23.3%

32 Taking Stock: Estimating Vulnerability Rediscovery

The fact that these rediscovery rates are trending higher and, in some
cases, are two to three times previous estimates, is important. The impact
of rediscovery scales with the number of vulnerabilities in a codebase.
Looking at Chrome, for example, in 2014 there were 600 recorded high-
and critical-severity vulnerabilities. At a rediscovery rate of 6%, closer to
Ozment’s original estimates, Google should expect that at least 36 vulnera-
bilities known to them in 2014 will have been discovered by another party,
potentially before being disclosed. Using the rate we found above, 16.5%,
that number jumps to 99 vulnerabilities.

This means more than 60 additional software vulnerabilities are discov-
ered each year above previous estimates, many of which could be used by
criminal groups or states before the developer patches them. The presence
of these vulnerabilities in the malware markets means they may also be
integrated into other malicious tools and see their lifespans extended even
further. For the scholarly community, the current state of practice in track-
ing vulnerability disclosures and rediscovery is poor. This undermines
the community’s ability to track the longer-term efficacy of investment in
secure development practices and bug bounty programs.41 It bears on the
discussion as well that even when there is a patch available, many vulnera-
bilities don’t immediately become useless, as users and organizations often
delay applying patching for months or longer.42 Thus, a patched vulnerabil-
ity still can still have operational utility.

41 Chad Heitzenrater, Rainer Böhme, and Andrew Simpson, “The Days before Zero Day: Investment
Models for Secure Software Engineering,” in Proceedings of the 15th Workshop on the Economics
of Information Security (WEIS), 2016, http://weis2016.econinfosec.org/wp-content/uploads/
sites/2/2016/05/WEIS_2016_paper_21-2.pdf; Pontus Johnson et al., “Time between Vulnerabil-
ity Disclosures: A Measure of Software Product Vulnerability,” Computers & Security 62 (2016):
278–295.

42 Terry Ramos, “The Laws of Vulnerabilities,” in RSA Conference, 2006, http://www.qualys.de/docs/
Laws-Presentation.pdf; Sandy Clark et al., “Moving Targets: Security and Rapid-Release in Firefox,”
in Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security
(ACM, 2014), 1256–1266, http://dl.acm.org/citation.cfm?id=2660320; Zakir Durumeric et al., “The
Matter of Heartbleed,” in Proceedings of the 2014 Conference on Internet Measurement Conference,
IMC ’14 (New York, NY, USA: ACM, 2014), 475–488, http://dl.acm.org/citation.cfm?id=2663755;
Antonio Nappa et al., “The Attack of the Clones: A Study of the Impact of Shared Code on Vulner-
ability Patching,” in Security and Privacy (SP), 2015 IEEE Symposium on (IEEE, 2015), 692–708,
http://ieeexplore.ieee.org/abstract/document/7163055/; Armin Sarabi et al., “Patch Me If You
Can: A Study on the Effects of Individual User Behavior on the End-Host Vulnerability State,” in
International Conference on Passive and Active Network Measurement (Springer, 2017), 113–125,
http://link.springer.com/chapter/10.1007/978-3-319-54328-4_9.\\uc0\\u8220{}The Matter of
Heartbleed,\\uc0\\u8221{} in {\\i{}Proceedings of the 2014 Conference on Internet Measurement
Conference}, IMC \\uc0\\u8217{}14 (New York, NY, USA: ACM, 2014

33Belfer Center for Science and International Affairs | Harvard Kennedy School

The relatively long lag time between original disclosure and rediscovery,
more than two months on average across data from Android and the
Chrome browser, suggests that many rediscoveries are truly independent.
When the rediscovery window is short or nearly zero, it suggests that dis-
coverers communicated about, or were aware of, each other’s efforts. This
would inflate the rediscovery rate but hide the fact that many were work-
ing from the same information. Because the time lag is so long, it suggests
many of these rediscoveries are truly independent and thus a more accu-
rate model of the behavior of malicious third parties.

These findings do not consider classified data. It is possible that the intel-
ligence, defense, or law enforcement communities have conducted studies
of rediscovery and reached different conclusions; however, there is no
evidence of this in the public domain. Our estimates are based on data
available to all researchers and evaluate software in common use by U.S.
citizens and many government employees. While secret studies may exist,
the data in this paper includes software that would have to be part of any
such study. Thus, while we can only claim that our estimates are higher
than previously reported in scholarship available to the public, these find-
ings should also speak directly to the policy community, regardless of
classification.

There are many reasons to believe that the rediscovery rates presented in
this paper are an underestimate of the true rate of rediscovery. Records
from Bugcrowd discussed previously indicate that low- and medium-se-
verity vulnerabilities are rediscovered more frequently than the high- and
critical-severity bugs to which this study is constrained. As it is, the 15%
to 20% estimate is substantially higher than previously seen. This is a first
effort, but one which attempts to bring some empirical work to bear on an
issue of interest to both the research and policy communities.

The Cyber Security Project

Belfer Center for Science and International Affairs

Harvard Kennedy School

79 John F. Kennedy Street

Cambridge, MA 02138

www.belfercenter.org/Cyber

Copyright 2017, President and Fellows of Harvard College

Printed in the United States of America

