
Cloak & Dagger
From Two Permissions to Complete

Control of the UI Feedback Loop

Yanick Fratantonio
joint work with

Chenxiong Qian, Simon Chung, Wenke Lee

Black Hat USA 2017
July 27th, 2017

Who am I?

- PhD candidate @ UC Santa Barbara
- Graduating in a week!
- Shellphish Hacker
- Soon Assistant Professor at Eurecom, France!

- Research focus on mobile security
- Program analysis, rowhammer attacks (Drammer),

ultrasound cross-device tracking, UI attacks

- When I don’t procrastinate, I’m on twitter @reyammer

https://twitter.com/reyammer

- A few tricks to attack Android UI

- Complete control over the UI feedback loop

- Bye bye to your device’s security

What is this work about?

UI Feedback Loop

Output channel

Input channel

Know what is currently
displayed to the user

Modify what the user sees

Know what the user is
clicking on

Inject user input

Cloak & Dagger
Attacks

Why should I care about UI bugs? ACADEMIC BS!

- Android features tons of low-level security mechanisms
- Sandboxing & permissions
- Exploit mitigation techniques
- Attack surface reduction

- Some UI bugs can bypass all low-level mechanisms
- If you can click like a user...confused deputy!
- “Dear Settings app, I hope this request finds you well.

Would you mind granting me all permissions? Thx <3”

BH USA 2017 talk
“Honey, I shrunk the attack surface –

Adventures in Android security hardening”
(by Nick Kralevich)

Good stuff!

Two Permissions

Run-time Granting Permissions

Apps targeting
Android SDK level

23 or higher

- Draw arbitrary windows/overlays on top of the screen
- Can be completely custom: shape, content, transparency
- Can be clickable xor passthrough

- This permission is used quite often
- 454 out of 4,455 top apps (10.2%)

- Used by Facebook, Skype, Uber, LastPass, ...

SYSTEM_ALERT_WINDOW (“draw on top”)

- Mechanism for apps to assist users with disabilities

- Many powerful capabilities
- It is notified for each UI event
- It can inject UI events (e.g., clicks)

- Several security mechanisms to avoid abuse

- Used by 24 top apps out of 4,455
- Password managers (LastPass), antivirus apps, app lockers, ...

BIND_ACCESSIBILITY_SERVICE (a11y)

These two permissions are enough to
completely compromise your device

- “The user needs to explicitly approve! Not stealthy!”

- “Draw on top” is automatically granted for Play Store apps!

- We developed a new practical clickjacking attack
- The user is lured to unknowingly enable the a11y!

Why would a user grant these permissions?

The list of permissions is not even shown!

- “The user needs to explicitly approve! Not stealthy!”

- “Draw on top” is automatically granted for Play Store apps!

- We developed a new practical clickjacking attack
- The user is lured to unknowingly enable the a11y!

Why would a user grant these permissions?

The list of permissions is not even shown!

Security Mechanisms

Security Mechanism #1

- For each click on an overlay, only one of these holds:
1) The click is “captured” by the overlay

- The overlay knows when/where the user clicked

2) The click goes “through” the overlay
- The click reaches what’s “behind” it
- The overlay does not know when/where the user clicked

- No “capture & propagate” click

- Why?

Security Mechanism #1

- One possible attack: FLAG_WATCH_OUTSIDE_TOUCH
- An overlay can receive events even for clicks that land outside itself

- The click coordinates are set to (0,0) if the click does not
reach the app that created the overlay

Security Mechanism #1

- Several steps are required to enable accessibility service

Security Mechanism #2

Security Mechanism #2

- Protection against clickjacking

Security Mechanism #3

Clickjacking 101

Click here

UI Redressing Attacks on
Android Devices Revisited

 Niemietz & Schwenk
BH ASIA 2014

- Protection against clickjacking

- Google introduced the “obscured” flag
- When the user clicks on a widget, FLAG_WINDOW_IS_OBSCURED is

set if “an overlay was covering the receiving widget”
- An app can decide to “not trust” the click

- Another option: setFilterTouchesWhenObscured()

Security Mechanism #3

Security Mechanism #3

Security Mechanism #3

“Because an app is obscuring a
permission request, Settings can’t verify

your response.”

- Accessibility service cannot read “sensitive information”
off the screen.

- Example: password fields

Security Mechanism #4

“Since an event contains the text of its source privacy can be
compromised by leaking sensitive information such as

passwords. To address this issue any event fired in
response to manipulation of a PASSWORD field does NOT

CONTAIN the text of the password.”

Unleashing Mayhem

Attack: Context-aware Clickjacking

- Multi-stage clickjacking are challenging
- When to transition to the next stage?
- What if the user clicks “somewhere else”?

- Security mechanisms
- The malicious app is not notified about the clicks
- If the FLAG_WATCH_OUTSIDE_TOUCH is used, the click’s coordinates

are set to (0,0) if click lands on another app: where did the user clicked?

- What if there is only “one way” for a click to not reach the
malicious app?

Attack: Context-aware Clickjacking

Target ButtonTarget Button

Clicks do NOT go through

Clicks go through

(100,100)

(200,300)

(0,0)

- We know the user clicked
on the “target” button

- We know we need to
transition to the next step

- The “obscured” flag is helpful to detect that
“another overlay is on top”

- Who says that you need to cover the “target” widget?

Obscured Flag Bypass

Obscured Flag Bypass

Capture?

Context-Hiding
Attack

Attack: Context Hiding

- Design shortcoming: Apps do not have access to enough
context information to take informed decisions

- The “obscured flag” is conceptually broken

- Difficult to fix:
- If the full context is exposed, an attacker could (ab)use this

information as side channel to mount phishing attacks

- These two attacks are enough to lure the user to enable
the accessibility service!

- We just need to hijacking three clicks
- No guessing is involved
- The clicks do not need to be consecutive

Context-aware clickjacking + Context hiding

- Not only it is not useful…

- ...but #1: misleading documentation

Back to the “obscured flag”...

FLAG_WINDOW_IS_OBSCURED docs

“This flag indicates that the window that received this motion
event is partly or wholly obscured by another visible window

above it.”

FLAG_WINDOW_IS_OBSCURED docs

/**
 * This flag indicates that the window that received this motion event is partly
 * or wholly obscured by another visible window above it. This flag is set to true
 * even if the event did not directly pass through the obscured area.
 * A security sensitive application can check this flag to identify situations in which
 * a malicious application may have covered up part of its content for the purpose
 * of misleading the user or hijacking touches. An appropriate response might be
 * to drop the suspect touches or to take additional precautions to confirm the user's
 * actual intent.
 *
 * Unlike FLAG_WINDOW_IS_OBSCURED, this is actually true.
 * @hide
 */
public static final int FLAG_WINDOW_IS_PARTIALLY_OBSCURED = 0x2;

FLAG_WINDOW_IS_OBSCURED docs

/**
 * This flag indicates that the window that received this motion event is partly
 * or wholly obscured by another visible window above it. This flag is set to true
 * even if the event did not directly pass through the obscured area.
 * A security sensitive application can check this flag to identify situations in which
 * a malicious application may have covered up part of its content for the purpose
 * of misleading the user or hijacking touches. An appropriate response might be
 * to drop the suspect touches or to take additional precautions to confirm the user's
 * actual intent.
 *
 * Unlike FLAG_WINDOW_IS_OBSCURED, this is actually true.
 * @hide
 */
public static final int FLAG_WINDOW_IS_PARTIALLY_OBSCURED = 0x2;

Same as FLAG_WINDOW_IS_OBSCURED

“Unlike FLAG_WINDOW_IS_OBSCURED,
this is actually true.

- Not only it is not useful…

- ...but #1: misleading documentation

- ...but #2: it can be abused to mount even worse attacks!

Back to the “obscured flag”...

- This attack can record all “keystrokes”
- It only relies on the “draw on top” permission

- It abuses the “obscured flag” security mechanism

Attack: Invisible Grid Attack

MotionEvent

Attack: Invisible Grid Attack

1
2

3
4

Overlays are drawn
- Invisible
- Clicks passthrough
- FLAG_WATCH_OUTSIDE_TOUCH

1

2

3

4

Overlay #

MotionEvent

MotionEvent

MotionEvent

The “obscured” flag is set accordingly!

Where did the user click?

MotionEvent

Attack: Invisible Grid Attack

1
2

3
4

Overlays are drawn
- Invisible
- Clicks passthrough
- FLAG_WATCH_OUTSIDE_TOUCH

1

2

3

4

Overlay #

MotionEvent

MotionEvent

MotionEvent

The “obscured” flag is set accordingly!

Not obscured

Not obscured

Not obscured

Not obscured

Where did the user click?

MotionEvent

Attack: Invisible Grid Attack

1
2

3
4

Overlays are drawn
- Invisible
- Clicks passthrough
- FLAG_WATCH_OUTSIDE_TOUCH

1

2

3

4

Overlay #

MotionEvent

MotionEvent

MotionEvent

The “obscured” flag is set accordingly!

Obscured

Not obscured

Not obscured

Not obscured

Where did the user click?

MotionEvent

Attack: Invisible Grid Attack

1
2

3
4

Overlays are drawn
- Invisible
- Clicks passthrough
- FLAG_WATCH_OUTSIDE_TOUCH

1

2

3

4

Overlay #

MotionEvent

MotionEvent

MotionEvent

The “obscured” flag is set accordingly!

Obscured

Not obscured

Not obscured

Obscured

Where did the user click?

MotionEvent

Attack: Invisible Grid Attack

1
2

3
4

Overlays are drawn
- Invisible
- Clicks passthrough
- FLAG_WATCH_OUTSIDE_TOUCH

1

2

3

4

Overlay #

MotionEvent

MotionEvent

MotionEvent

The “obscured” flag is set accordingly!

Obscured

Not obscured

Obscured

Obscured

Where did the user click?

Attack: Invisible Grid Attack

1
2

3
4

Security mechanism used
as side-channel!

The attacker can use
these patterns to infer

where the user clicked!

Attack: Invisible Grid Attack

These overlays are drawn
invisible during a real

attack

- The inherent complexity of the Android “WindowManager”
leads to the creation of unexpected side channels

- UI security as an afterthought

- Violation of the principle of least privilege
- Why can an app create invisible overlays? Passthrough overlays?
- Overlays are completely customizable!

Design Shortcomings

Attack: a11y on steroids

- Yet another design shortcoming:
- By default, UI objects are all considered

non-security sensitive
- Security should be the rule, not the exception!

Attack: a11y on steroids

1) Steal PIN

2) Inject PIN and
unlock the phone!

Bonus point: phone
unlock while keeping

the screen off!

- You can mount even nastier attacks by combining
the two permissions!

Cloak & Dagger attacks

Traditional Phishing

<username>

<password>

Login

<username>

<password>

Login

Traditional Phishing

<username>

<password>

Login

<username>

<password>

Login

Didn’t I click
login???JohnDoe

L33tP4ss

Login

Attack: Stealthy Phishing

<username>

<password><password>

<username>

LoginLogin

JohnDoe

L33tP4ss

<username>

<password>

JohnDoe

L33tP4ss

Login

Filled
by a11y

Clicked by
a11y

Welcome,
John! Great!

UI-in-the-middle
Attack

- We show a video to the user...

- ...and, behind the scene, we do nasty things via a11y

- The grand plan
- Silent installation of super-malicious app
- Enable all its permissions
- Clean up steps

Attack: Silent God-mode App Installation

- Ransomware!
- Block device by changing the PIN to an attacker-controlled one

- Covering and clicking around on Chrome
- Taking over victim’s Google account
- Steal saved passwords, etc

- Note: even if Google fixes its apps, third-party apps will
remain vulnerable to these attacks

Additional Attack Scenarios

Clickjacking ~> a11y & Silent God-mode App Install

http://www.youtube.com/watch?v=RYQ1i03OVpI

Ransomware Example

https://docs.google.com/file/d/0BzrafQLNbOdaNVhkRTZEUWcwNEU/preview

Are these attacks actually practical?

- 20 human subjects (all from Georgia Tech)

- Attacks we tested
- Clickjacking to enable a11y
- Silent God-mode App Installation
- Stealthy Phishing

User Study

- Clickjacking to enable a11y
- None of the subject understood what happened

- Silent God-mode App Installation
- None of the subject understood what happened

- Stealthy Phishing
- 18 out of 20 did not detect any difference
- The remaining two triggered a bug in our prototype, and they reported

“graphical glitches” (but they did not understand they were attacked)

Results

- Do users know about these two permissions?

- Results are worrisome
- Only 2 out of 20 knew about the “draw on top” permission
- Only 5 out of 20 knew about a11y
- No subject knew about both!

- ...why should they look for them?

Overall Awareness

How can we fix this?

- “Simple bugs” via AOSP reports (August 22nd, 2016)
- Invisible Grid Attack ~> Moderate severity (not fixed yet)

- A11y on steroids ~> ???

Responsible Disclosure

- Bug marked as “Won’t fix, work as intended” (September 30th)

- Bug marked as “High severity” (October 18th)

Disclosure of “a11y on steroids” (August 22nd)

- Downgraded to “Won’t fix” because “limiting those services would
render the device unusable” (November 28th)

- “We will update the documentation” (May 4th)

- AND THEY DID!!!11!1!

- AccessibilityEvent’s “security note” is silently removed
- June 6th version vs current version

- “Patch the documentation, not the code”

- 0day in the documentation! Where is my CVE?! :-)

a11y documentation “patch”

https://web.archive.org/web/20170606195630/https://developer.android.com/reference/android/view/accessibility/AccessibilityEvent.html
https://developer.android.com/reference/android/view/accessibility/AccessibilityEvent.html

- “Simple bugs” via AOSP reports (August 22nd, 2016)
- Invisible Grid Attack ~> Moderate severity
- A11y on steroids ~> ???
- New clickjacking technique

Responsible Disclosure

- “Simple bugs” via AOSP reports (August 22nd, 2016)
- Invisible Grid Attack ~> Moderate severity
- A11y on steroids ~> ???
- New clickjacking technique

Few classes of vulnerabilities will generally not qualify
for a reward:
- Tap-jacking and UI-redressing attacks that involve

tricking the user into tapping a UI element

Responsible Disclosure
Android Rewards

Qualifying Vulnerabilities

- “Simple bugs” via AOSP reports (August 22nd, 2016)
- Invisible Grid Attack ~> Moderate severity
- A11y on steroids ~> ???
- New clickjacking technique ~> :-(

- Shared the paper draft with Adrian Ludwig, head of
Android security (December 19th)

Responsible Disclosure

- “Simple bugs” via AOSP reports (August 22nd, 2016)
- Invisible Grid Attack ~> Moderate severity
- A11y on steroids ~> ???
- New clickjacking technique ~> :-(

- Shared the paper draft with Adrian Ludwig, head of
Android security (December 19th)

Responsible Disclosure

All attacks are still working!
(Even on Android 7.1.2, with July’s updates)

How is the Android security team reacting?

- UI security is not considered a “big deal”

- Check Nick Kralevich’s talk at Android Security
Symposium, March 2017 (https://youtu.be/ITL6VHOFQj8?t=57m40s)

- First question during the Q&A...

“I’m not alone”

https://youtu.be/ITL6VHOFQj8?t=57m40s

- UI security is not considered a “big deal”

- While watching Nick Kralevich talk at Android Security
Symposium, March 2017 (https://youtu.be/ITL6VHOFQj8?t=57m40s)

- First question during the Q&A...

“I’m not alone”

“There are also plain boring bugs, for example in the UI [...],
personally I don’t report them anymore because you just don’t
care. My bugs are hanging with the ‘new’ status for years then

they are just auto-closed.”

https://youtu.be/ITL6VHOFQj8?t=57m40s

- UI security is not considered a “big deal”

- While watching Nick Kralevich talk at Android Security
Symposium, March 2017 (https://youtu.be/ITL6VHOFQj8?t=57m40s)

- First question during the Q&A...

“I’m not alone”

“There are also plain boring bugs, for example in the UI [...],
personally I don’t report them anymore because you just don’t
care. My bugs are hanging with the ‘new’ status for years then

they are just auto-closed.”

https://youtu.be/ITL6VHOFQj8?t=57m40s

- Introduce the concept of “Secure Apps & Widgets”
- Defined through a flag that is propagated across the view tree

- OS-enforced guarantee
- No overlay will be shown on top of any secure app/widget

- System popups
- Inspired by web popups

Securing Android UI

- Introduce the concept of “Secure Apps & Widgets”
- Defined through a flag that is propagated across the view tree

- OS-enforced guarantee
- No overlay will be shown on top of any secure app/widget

- System popups
- Inspired by web popups

Securing Android UI

- Work presented at IEEE Security & Privacy 2017
- Distinguished Practical Paper award!

- We setup a website and tweeted about it

- Crazy amount of press coverage…

What happened next...

“[...] We have updated Google Play Protect — our security
services on all Android devices with Google Play — to detect
and prevent the installation of these apps. Prior to this report,
we had already built new security protections into Android O
that will further strengthen our protection from these issues
moving forward.”

Google’s official answer

- What would I do?
- Detect apps that combine these two permissions

- Does the attacker really need both permissions?

- Eh eh...

Detect Cloak & Dagger

Bootstrap the attacks from one permission

- Start with an app that only requires
“SYSTEM_ALERT_WINDOW”

- Install a secondary malicious app that only requires a11y!

- How?

Clickjacking Everywhere!

- ...do we actually need the SYSTEM_ALERT_WINDOW?

Let’s go one step further...

- SYSTEM_ALERT WINDOW permission is needed to
create windows of “TYPE_ALERT_SYSTEM”

- Realization: the attacker just needs to create windows on
top of all apps’ activities

- She does not need to go over “system” windows
(e.g., status bar, navigation bar)

- Any overlay’s “type” that goes on top of activities is enough

Let’s go one step further...

 FTW!

- Toasts are usually created with this API:
- makeText(Context context, int resId, int duration)
- Duration: either 2 seconds or 3.5 seconds
- Limited customization capabilities

 FTW!

- Toasts are usually created with this API:
- makeText(Context context, int resId, int duration)
- Duration: either 2 seconds or 3.5 seconds
- Limited customization capabilities

 FTW!

- Toasts are usually created with this API:
- makeText(Context context, int resId, int duration)
- Duration: either 2 seconds or 3.5 seconds
- Limited customization capabilities

- It is possible to create arbitrarily custom “Toasts”
- TYPE_SYSTEM_ALERT ~> TYPE_TOAST
- “Pretty simple” to port all the attacks

 FTW!

- Toasts are usually created with this API:
- makeText(Context context, int resId, int duration)
- Duration: either 2 seconds or 3.5 seconds
- Limited customization capabilities

- It is possible to create arbitrarily custom “Toasts”
- TYPE_SYSTEM_ALERT ~> TYPE_TOAST
- “Pretty simple” to port all the attacks

sed -i “s/TYPE_SYSTEM_ALERT/TYPE_TOAST/” *

- Android 6.0.1
- You can bootstrap Cloak & Dagger attacks with zero permissions
- Caveat: you need to hijack two more clicks to install the app with a11y

- Android 7.1.2
- Several mechanisms against Toast abuse

- The SYSTEM_ALERT_WINDOW permission is required

- You can bootstrap Cloak & Dagger attacks with one permissions
- Same caveat as above

Impact & Caveats

- Invisible Grid Attack is fixed! YEAH!

- Clickjacking: currently more vulnerable than before
- The final “OK” button to enable a11y is NOT protected

by the obscured flag :-(

- “A11y on steroids” attacks “work as intended” ;-)

Android O (Preview 3 developer version)

- Invisible Grid Attack is fixed! YEAH!

- Clickjacking: currently more vulnerable than before
- The final “OK” button to enable a11y is NOT protected

by the obscured flag :-(

- “A11y on steroids” attacks “work as intended” ;-)

Android O (Preview 3 developer version)

Clickjacking ~> a11y
seems fixed in Android O

Preview 4!!
(released few days ago :-))

Fixing clickjacking might be trickier than expected...

Fixing clickjacking might be trickier than expected...

An Android 6.0-only bug prevents granting permissions
when Twilight is on (fixed in Android 7+)

Current state of Android security updates

Stuck with
Android 6.0.1

Current state of Android security updates

$649
$769

- “Cloak & Dagger” attacks
- UI attacks are still a thing
- Many low-level security mechanisms are bypassed

- UI security bugs matter
- They are the low-hanging fruits for the attackers

- More info: cloak-and-dagger.org

Takeaways Yanick Fratantonio
@reyammer

https://cs.ucsb.edu/~yanick
yanick@cs.ucsb.edu

http://cloak-and-dagger.org/
https://twitter.com/reyammer
https://cs.ucsb.edu/~yanick

