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Abstract— A processor is not a trusted black box for running 

code; on the contrary, modern x86 chips are packed full of secret 

instructions and hardware bugs. In this paper, we demonstrate 

how page fault analysis and some creative processor fuzzing can 

be used to exhaustively search the x86 instruction set and 

uncover the secrets buried in a chipset. The approach has 

revealed critical x86 hardware glitches, previously unknown 

machine instructions, ubiquitous software bugs, and flaws in 

enterprise hypervisors. 

I. OVERVIEW 

ere, we introduce the first effective approach for fuzzing 

the x86 instruction set.  Using a page fault analysis, we've 

uncovered critical x86 hardware glitches, hidden processor 

instructions, ubiquitous software bugs, and flaws in enterprise 

hypervisors.  We explore these issues, as well as the larger 

implications and risks of running software on black-box 

hardware like the x86.  Our work is released as a new open 

source tool (sandsifter), allowing users to audit their 

processors for bugs, backdoors, and hidden functionality.  This 

provides the first major step towards introspecting the black 

box x86 processor. 

II. HISTORY 

We must face the unpleasant truth that our processors are 

treated as trusted black boxes on which to run our software.  

Yet in reality, x86's lesser known history is full of secrets and 

failures: hardware flaws, from the Pentium f00f to the Cyrix 

comma bugs; corporate secrets, from Intel's mysterious 

"Appendix H", to the undocumented ICE execution mode on 

earlier x86 designs; all the way to restricted backdoors, as with 

AMD and VIA's password protected registers.  This is the 

motivation behind our research - an approach to discovering 

the secrets and flaws built into the processors we blindly trust. 

III. APPROACH 

Our goal is to find a way to programmatically exhaustively 

search the x86 instruction set, in order to find hidden or 

undocumented instructions, as well as instruction-level flaws 

like the Pentium f00f bug.  To do this, we should generate a 

potential x86 instruction, execute it, and observe its results.  

The most significant challenge with this is in the complexity 

of the x86 instruction set: x86 instructions can be 15 bytes 

long - a simple iterative search is infeasible, and randomly 

selecting possible instructions will only cover a tiny fraction 

of the potential search space.  The search space can be reduced 

by only generating instructions that follow the formats 

described in x86 reference manuals, but this approach will fail 

to find undocumented instructions, and will miss hardware 

errors that are the result of invalid instructions.  To effectively 

reduce the instruction search space, we propose a search 

algorithm based on observing changes in instruction lengths. 

The instruction search process, which we call tunneling, 

runs as follows.  A 15 byte buffer is generated as a potential 

starting instruction; for example, for searching the complete 

instruction space, we use a buffer of 15 0 bytes as the starting 

candidate.  The instruction is executed, and its length (in 

bytes) is observed.  The byte at the end of the instruction is 

then incremented.  For example, in the case of the 15 byte zero 

buffer, the instruction will be observed to be two bytes long; 

thus, the second byte is incremented, so that the buffer is now 

{0x00, 0x01, 0x00, 0x00, 0x00, …}.  The process is then 

repeated with the new instruction.  If this incrementation 

results in an increase in the observed instruction length, the 

resulting instruction is incremented from its new end.  When 

the end of an instruction has been incremented 256 times 

(exhausting all possibilities for the last byte of that 

instruction), the increment process moves to the previous byte 

in the instruction.  This technique allows effectively exploring 

the meaningful search space of the x86 ISA.  The less 

significant portions of an instruction (such as immediate 

values and displacements) are quickly skipped in the search, 

since they do not change the instruction length.  This allows 

the fuzzing process to focus on only meaningful parts of the 

instruction, such as prefixes, opcodes, and operand selection 

bytes. 

However, the instruction tunneling approach only works if 

there is a reliable way to determine the length of an arbitrary 

(potentially undocumented) x86 instruction.  Since the 

instruction may be undocumented, disassembling the 

instruction is not an option.  An alternate naïve approach to 

determining instruction length is to set the x86 trap flag, 

execute the instruction, and observe the difference between the 

original and new instruction pointers.  However, this approach 

fails on instructions that throw faults – since a faulting 

instruction does not execute, there is no change in the 

instruction pointer when the instruction is stepped with the 

trap flag.  We wish to find all potentially undocumented or 

flawed instructions, so exploring even faulting instructions is 

critical to the approach.  Additionally, if, for practical reasons, 

the approach is run in one privilege ring, we may wish to 

explore instructions that can only execute in more privileged 

rings.  For example, an instruction such as “inc eax” can 

execute in ring 3 and below; an instruction such as “mov eax, 

cr0” can execute in ring 0 and below; and an instruction such 

as “rsm” can execute only in ring -2 (System Managemnet 

Mode).  For effective results, a fuzzer should be able to 

identify instructions in more privileged rings, even if it cannot 

actually execute those instructions. 
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To effectively determine the length of even faulting 

instructions, we introduce a 'page fault analysis' technique, 

wherein instructions are incrementally moved across page 

boundaries to induce page faults.  A candidate instruction is 

generated (a 15 byte value, generated by the incrementation 

process described earlier), and place it in memory so that the 

first byte of the instruction is on the last byte of an executable 

page, and the rest of the instruction lies in a non-executable 

page.  The instruction is then executed.  If a general protection 

exception occurs during the instruction fetch, the processor 

triggers the #GP interrupt, and the address of the page 

boundary is reported as the exception argument.  This 

indicates to the fuzzing process that part of the instruction lies 

in the non-executable page; any other result indicates that the 

entire instruction was fetched from memory.  If the fuzzer 

determines that the instruction does not yet reside entirely in 

executable memory, the instruction is moved back a byte, so 

that the first two bytes are on an executable page, and the rest 

are on the non-executable page.  The process is repeated until 

no #GP fault occurs, or until a #GP fault is received with an 

address other than the page boundary.  At this point, the 

number of bytes lying in the executable page indicate the 

length of the instruction. 

The approach allows resolving the length even of illegal 

(non-existing) instructions.  For example, 9a13065b8000d7 is 

an illegal instruction, but its length is known to be 7 bytes, 

because this is when the processor stops decoding the 

instruction.  Analyzing illegal instructions opens the door to 

analyzing privileged instruction: whereas an illegal instruction 

will throw a #UD exception, a privileged instruction will 

throw a #GP exception.  By observing the type of exception 

thrown, the fuzzer can differentiate between instructions that 

don’t exist, versus those that exist but are restricted to more 

privileged rings.  Thus, even from ring 3, we can effectively 

explore the instruction space of ring 0 and ring -2. 

The tunneling algorithm combined with fault analysis to 

resolve instruction lengths brings us close to an effective x86 

instruction fuzzing approach, but other problems arise.  

Foremost, in fuzzing hardware instructions, it is important to 

avoid permanently corrupting the system or process state.  As 

a basic protection against this, we restrict the fuzzer to ring 3 – 

with this, we only have to worry about the process state being 

corrupted, rather than the entire system state.  Analyzing the 

fault type and operand still allows the fuzzer to explore 

instructions in more privileged rings. 

Although restricting the fuzzer to ring 3 prevents the fuzzer 

from crashing the system, it is still possible for the fuzzer to 

crash itself.  Specifically, the process state is corrupted if a 

generated instruction writes into the fuzzer’s address space.  

This is overcome by initializing all registers to 0 and mapping 

the NULL pointer into the fuzzing process’s memory.  This 

ensures that computed memory addresses such as [eax + 4 * 

ecx] resolve to 0, rather than an address within the process’s 

normal memory space.  Mapping the page at address 0 into 

memory as well allows more detailed instruction analysis for 

some types of instructions.  For example, without address 0 

mapped, “mov eax, [ecx + 8 * edx]” will generate a #GP 

exception, as will “mov cr0, eax”.  Since both instructions 

generate the same exceptions, the fuzzer cannot determine that 

one is privileged and one is not.  By mapping 0 into the 

process’s address space, the unprivileged instruction can 

successfully execute, allowing the fuzzer to differentiate it 

from the privileged instruction.  Memory accesses with a 

displacement may still cause a process state corruption; for 

example, “inc [0x0804a10c]” may hit the .data segment of a 

32 bit process, regardless of the register initialization values.  

However, as the tunneling approach for instruction searching 

only manipulates a single byte of the instruction at a time, it 

will explore “inc [0x0000000c]”, “inc [0x0000a100]”, “inc 

[0x00040000]”, and “inc [0x08000000]”, but will never search 

“inc [0x0804a10c]”.  In practice, this prevents the tunneling 

process from ever corrupting its own state.  We also provide 

an alternative fuzzing strategy via random instruction 

generation.  In this approach, it is possible for the fuzzing 

process to become corrupted, but we have observed that in 

practice, this is still extremely rare – a 32 bit process with 1 

KB of writable critical program data has only a one in four 

million chance of being corrupted by an arbitrary memory 

access, and even then only for instructions that allow a 4 byte 

displacement in the memory calculation. 

The last challenge in maintaining coherent execution state is 

resuming execution after an instruction is tested, and dealing 

with generated branch instructions.  Both issues are solved by 

setting the x86 trap flag immediately prior to instruction 

execution, and catching the single step interrupt.  This allows 

regaining control after both errant jump instructions and non-

branching instructions. 

With this, we are now able to effectively explore the x86 

instruction set, reducing 10^36 conceivable 15 byte 

combinations down to a few million candidate instructions.  

These techniques form our "sandsifter" x86 fuzzing tool, 

which we release as open source.  The tool calculates and 

executes each candidate instruction, and compares its 

observed length and fault behavior to the expected values 

provided by a disassembler and architecture documentation.  

Any deviations from the expected behavior are logged for 

analysis. 

IV. RESULTS 

We ran the instruction fuzzer on dozens of x86 processors.  

The tool discovered undocumented instructions in all major 

processors, shared bugs in nearly every major assembler and 

disassembler, flaws in enterprise hypervisors, and critical x86 

hardware bugs. 

On an Intel Core i7 processor running in 64 bit mode, the 

following undocumented instructions were found.  0f0dxx: 

this is currently documented as prefetchw for /1 (ie reg field = 

1), other reg fields aren't documented, but still execute.  

0f18xx: until the -061 (June 2016) version of the reference 

manuals, about half of these instructions were undocumented, 

but would still run (the Device Under Test was released in 

2012); they're now documented as reserved nops (presumably 

in place of a future instruction).  0f{1a-1f}xx: similar to 

0f18xx, this doesn't appear until the -061 references, but 
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executed at least back to Ivy Bridge.  0fae{e9-ef, f1-f7, f9-ff}: 

these seem to have existed for a long time, but were 

undocumented until the -051 references (June 2014) (only the 

r/m field = 0 were documented).  dbe0, dbe1: these execute 

but do not appear in the opcode maps.  df{c0-c7}: these 

execute but do not appear in the opcode maps.  f1: this 

executes but does not appear in the opcode maps; there is a 

note in SDM vol. 3 that it and d6 will not produce a #UD 

(interestingly, d6 does produce a #UD, at least in Ivy Bridge).  

{c0-c1, d0-d1, d2-d3}{30-37, 70-77, b0-b7, f0-f7}: these 

execute, but are not in the opcode maps; we believe they are 

SAL aliases.  f6 /1, f7 /1: these execute, but aren't in the 

opcode maps; we suspect they are aliases for the /0 version. 

The tool discovered innumerable bugs in disassemblers, the 

most interesting of which is a bug shared by nearly all 

disassemblers.  Most disassemblers will parse certain jmp (e9) 

and call (e8) instructions incorrectly if they are prefixed with 

an operand size override prefix (66) in a 64 bit executable.  In 

particular, IDA, QEMU, gdb, objdump, valgrind, Visual 

Studio, and capstone were all observed to parse this 

instruction differently than it actually executes.  On Intel 

processors executing in 64 bit mode, the 66 override prefix 

appears to be ignored, and the instruction consumes a 4 byte 

operand, as it does without the prefix.  Most disassemblers 

misinterpret the instruction to consume only a 2 byte operand 

instead.  This difference in instruction lengths between the 

disassembled version and the version actually executed opens 

opportunities for malicious software.  By embedding an 

opcode for a long instruction in the last two bytes of the 

physical instruction, the physical instruction stream can hide 

malicious code in the following instruction.  Disassemblers 

and emulators, thrown off by the misparsing of the initial 

instruction, miss this malicious code in the following 

instructions.  As a demonstration, we created a program that 

executes a malicious function when run on baremetal, but runs 

as a benign process in QEMU.  The same program, analyzed 

in IDA, will appear to not execute any malicious code.  The 

confusion in these instructions is likely caused by differences 

in AMD and Intel processors; AMD processors obey the 

override prefix, only fetching a two byte operand.  However, 

due to AMD’s small market share, it appears tools would be 

better to follow Intel’s implementation. 

In terms of processor errata, the tool found issues on Intel, 

Transmeta, and XXXX [PENDING DISCLOSURE] 

processors.  On Intel, the tool successfully found the original 

Pentium f00f bug.  On Transmeta, errata were found on four 

byte versions of illegal instructions beginning with 0f71, 0f72, 

and 0f73.  When executing these instructions in combination 

with randomly generated instructions, the processor will 

sporadically fetch only three bytes of the four byte instructions 

before generating the #UD signal.  Lastly, ‘killer poke’ 

instructions were discovered on XXXX processors.  These 

instructions, executed from an unprivileged process, appear to 

lock the processor entirely.  The details of the instructions and 

the processors affected will be enumerated when responsible 

disclosure is complete, and an updated version of this 

whitepaper will be released. 

V. CONCLUSION 

Although we treat our processors as trusted black boxes, 

they are riddled with the same flaws and secrets we find in 

software.  With the release of the sandsifter x86 fuzzing tool 

[1], the reader is encouraged to audit their own processors for 

defects and hidden instructions.  This work provides a critical 

stepping stone towards introspecting x86 chips, and validating 

the processors we all blindly trust. 

 

[1] https://github.com/xoreaxeaxeax/sandsifter 


