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 We don’t trust software.

 We audit it

 We reverse it

 We break it

 We sandbox it

Trust.



 But the processor itself?

 We blindly trust

Trust.



 Why?

 Hardware has
all the same problems as software

 Secret functionality?
 Appendix H.

 Bugs?
 F00F, FDIV, TSX, Hyperthreading, Ryzen

 Vulnerabilities?
 SYSRET, cache poisoning, sinkhole

Trust.



 We should stop

blindly trusting our hardware.

Trust.



 What do we need to worry about?



 Historical examples

 ICEBP (f1)

 LOADALL (0f07)

 apicall (0ffff0)

Hidden instructions







So… what’s 

this??



 Find out what’s really there

Goal: Audit the Processor



 How to find hidden instructions?

The challenge



 Instructions can be one byte …

 inc eax

 40

 … or 15 bytes ...

 lock add qword cs:[eax + 4 * eax + 07e06df23h], 0efcdab89h

 2e 67 f0 48 818480 23df067e 89abcdef

 Somewhere on the order of

1,329,227,995,784,915,872,903,807,060,280,344,576

possible instructions

The challenge

https://code.google.com/archive/p/corkami/wikis/x86oddities.wiki



 The obvious approaches don’t work:

 Try them all?

 Only works for RISC

 Try random instructions?

 Exceptionally poor coverage

 Guided based on documentation?

 Documentation can’t be trusted (that’s the point)

 Poor coverage of gaps in the search space

The challenge



 Goal:

 Quickly skip over bytes that don’t matter

The challenge



 Observation:

 The meaningful bytes of 

an x86 instruction impact either

its length or its exception behavior

The challenge



 A depth-first-search algorithm

Tunneling



Guess an instruction:

Tunneling

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00



Execute the instruction:

Tunneling

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00   



Observe its length:

Tunneling

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00   



 Increment the last byte:

Tunneling

00 01 00 00 00 00 00 00 00 00 00 00 00 00 00   



Execute the instruction:

Tunneling

00 01 00 00 00 00 00 00 00 00 00 00 00 00 00   



Observe its length:

Tunneling

00 01 00 00 00 00 00 00 00 00 00 00 00 00 00  



 Increment the last byte:

Tunneling

00 02 00 00 00 00 00 00 00 00 00 00 00 00 00



Execute the instruction:

Tunneling

00 02 00 00 00 00 00 00 00 00 00 00 00 00 00   



Observe its length:

Tunneling

00 02 00 00 00 00 00 00 00 00 00 00 00 00 00  



 Increment the last byte:

Tunneling

00 03 00 00 00 00 00 00 00 00 00 00 00 00 00   



Execute the instruction:

Tunneling

00 03 00 00 00 00 00 00 00 00 00 00 00 00 00   



Observe its length:

Tunneling

00 03 00 00 00 00 00 00 00 00 00 00 00 00 00  



 Increment the last byte:

Tunneling

00 04 00 00 00 00 00 00 00 00 00 00 00 00 00   



Execute the instruction:

Tunneling

00 04 00 00 00 00 00 00 00 00 00 00 00 00 00   



Observe its length:

Tunneling

00 04 00 00 00 00 00 00 00 00 00 00 00 00 00  



 Increment the last byte:

Tunneling

00 04 01 00 00 00 00 00 00 00 00 00 00 00 00   



Execute the instruction:

Tunneling

00 04 01 00 00 00 00 00 00 00 00 00 00 00 00   



Observe its length:

Tunneling

00 04 01 00 00 00 00 00 00 00 00 00 00 00 00  



 Increment the last byte:

Tunneling

00 04 02 00 00 00 00 00 00 00 00 00 00 00 00   



000000000000000000000000000000

000100000000000000000000000000

000200000000000000000000000000

000300000000000000000000000000

000400000000000000000000000000

000401000000000000000000000000

000402000000000000000000000000

000403000000000000000000000000

000404000000000000000000000000

000405000000000000000000000000

000405000000010000000000000000

000405000000020000000000000000

000405000000030000000000000000

000405000000040000000000000000



When the last byte is FF…

Tunneling

C7 04 05 00 00 00 00 00 00 00 FF 00 00 00 00 



… roll over …

Tunneling

C7 04 05 00 00 00 00 00 00 00 00 00 00 00 00 



 ... and move to the previous byte

Tunneling

C7 04 05 00 00 00 00 00 00 00 00 00 00 00 00 



This byte becomes the marker

Tunneling

C7 04 05 00 00 00 00 00 00 00 00 00 00 00 00 



 Increment the marker

Tunneling

C7 04 05 00 00 00 00 00 00 01 00 00 00 00 00 



Execute the instruction

Tunneling

C7 04 05 00 00 00 00 00 00 01 00 00 00 00 00 



Observe its length

Tunneling

C7 04 05 00 00 00 00 00 00 01 00 00 00 00 00 



 If the length has not changed…

Tunneling

C7 04 05 00 00 00 00 00 00 01 00 00 00 00 00 



 Increment the marker

Tunneling

C7 04 05 00 00 00 00 00 00 02 00 00 00 00 00 



And repeat.

Tunneling

C7 04 05 00 00 00 00 00 00 02 00 00 00 00 00 



Continue the process…

Tunneling

C7 04 05 00 00 00 00 00 00 FF 00 00 00 00 00 



… moving back on each rollover

Tunneling

C7 04 05 00 00 00 00 00 00 00 00 00 00 00 00 



… moving back on each rollover

Tunneling

C7 04 05 00 00 00 00 00 FF 00 00 00 00 00 00 



… moving back on each rollover

Tunneling

C7 04 05 00 00 00 00 00 00 00 00 00 00 00 00 



…

Tunneling

C7 04 05 00 00 00 00 FF 00 00 00 00 00 00 00 



…

Tunneling

C7 04 05 00 00 00 00 00 00 00 00 00 00 00 00 



…

Tunneling

C7 04 05 00 00 00 FF 00 00 00 00 00 00 00 00 



…

Tunneling

C7 04 05 00 00 00 00 00 00 00 00 00 00 00 00 



…

Tunneling

C7 04 05 00 00 FF 00 00 00 00 00 00 00 00 00 



…

Tunneling

C7 04 05 00 00 00 00 00 00 00 00 00 00 00 00 



…

Tunneling

C7 04 05 00 FF 00 00 00 00 00 00 00 00 00 00 



…

Tunneling

C7 04 05 00 00 00 00 00 00 00 00 00 00 00 00 



…

Tunneling

C7 04 05 FF 00 00 00 00 00 00 00 00 00 00 00 



…

Tunneling

C7 04 05 00 00 00 00 00 00 00 00 00 00 00 00 



When you increment a marker…

Tunneling

C7 04 06 00 00 00 00 00 00 00 00 00 00 00 00 



… execute the instruction …

Tunneling

C7 04 06 00 00 00 00 00 00 00 00 00 00 00 00 



… and the length changes …

Tunneling

C7 04 06 00 00 00 00 00 00 00 00 00 00 00 00 



… move the marker to 

the end of the new instruction …

Tunneling

C7 04 06 00 00 00 00 00 00 00 00 00 00 00 00 



Tunneling

C7 04 06 00 00 00 01 00 00 00 00 00 00 00 00 

… and resume the process.



 Tunneling through the instruction space 

lets us quickly skip over the bytes

that don’t matter, 

and exhaustively search the bytes that do…

Tunneling



 … reducing the  search space 

from 1.3x1036 instructions 

to ~100,000,000

(one day of 

scanning)

Tunneling



 Catch: 

requires knowing the instruction length

Instruction lengths



 Simple approach: trap flag

 Fails to resolve the length of faulting instructions

 Necessary to search privileged instructions:

 ring 0 only: mov cr0, eax

 ring -1 only: vmenter

 ring -2 only: rsm

Instruction lengths



 Solution: page fault analysis

Instruction lengths



 Choose a candidate instruction

 (we don’t know how long this instruction is)

Page fault analysis

0F 6A 60 6A 79 6D C6 02 6E AA D2 39 0B B7 52



 Configure two consecutive pages in memory

 The first with read, write, and execute permissions

 The second with read, write permissions only

Page fault analysis



 Place the candidate instruction in memory

 Place the first byte at the end of the first page

 Place the remaining bytes at the start of the second

Page fault analysis

0F  6A 60 6A 79 6D C6 02 …



 Execute (jump to) the instruction.

Page fault analysis

0F  6A 60 6A 79 6D C6 02 …



 The processor’s instruction decoder checks 

the first byte of the instruction.

Page fault analysis

0F  6A 60 6A 79 6D C6 02 …



 If the decoder determines that another byte is 

necessary, it attempts to fetch it.

Page fault analysis

0F  6A 60 6A 79 6D C6 02 …



 This byte is on a non-executable page,

so the processor generates a page fault.

Page fault analysis

0F 6A 60 6A 79 6D C6 02 …



 The #PF exception provides 

a fault address in the CR2 register.

Page fault analysis

0F 6A 60 6A 79 6D C6 02 …



 If we receive a #PF, with CR2 set

to the address of the second page,

we know the instruction continues.  

Page fault analysis

0F 6A 60 6A 79 6D C6 02 …



 Move the instruction back one byte.

Page fault analysis

0F 6A  60 6A 79 6D C6 02 …



 Execute the instruction.

Page fault analysis

0F 6A  60 6A 79 6D C6 02 …



 The processor’s instruction decoder checks 

the first byte of the instruction.

Page fault analysis

0F 6A  60 6A 79 6D C6 02 …



 If the decoder determines that another byte is 

necessary, it attempts to fetch it.

Page fault analysis

0F 6A 60 6A 79 6D C6 02 …



 Since this byte is in an executable page, 

decoding continues.

Page fault analysis

0F 6A 60 6A 79 6D C6 02 …



 If the decoder determines that another byte is 

necessary, it attempts to fetch it.

Page fault analysis

0F 6A 60 6A 79 6D C6 02 …



 This byte is on a non-executable page,

so the processor generates a page fault.

Page fault analysis

0F 6A 60 6A 79 6D C6 02 …



 Move the instruction back one byte.

Page fault analysis

0F 6A 60  6A 79 6D C6 02 …



 Execute the instruction.

Page fault analysis

0F 6A 60  6A 79 6D C6 02 …



 Continue the process while

we receive #PF exceptions 

with CR2 = second page address

Page fault analysis

0F 6A 60  6A 79 6D C6 02 …



 Move the instruction back one byte.

Page fault analysis

0F 6A 60 6A  79 6D C6 02 …



 Execute.

Page fault analysis

0F 6A 60 6A  79 6D C6 02 …



 Eventually, the entire instruction 

will reside in the executable page.

Page fault analysis

0F 6A 60 6A  79 6D C6 02 …



 The instruction could run.

 The instruction could throw a different fault.

 The instruction could throw a #PF,
but with a different CR2.

Page fault analysis

0F 6A 60 6A  79 6D C6 02 …



 In all cases, we know the instruction has been 

successfully decoded, so must reside entirely 

in the executable page.

Page fault analysis

0F 6A 60 6A  79 6D C6 02 …



 With this, we know the instruction’s length.

Page fault analysis

0F 6A 60 6A 79 6D C6 02 …



 We now know how many bytes the 

instruction decoder consumed

 But just because the bytes were decoded
does not mean the instruction exists

 If the instruction does not exist,

the processor generates the #UD exception 

after the instruction decode

(invalid opcode exception)

Page fault analysis



 If we don’t receive a #UD, the instruction exists.

Page fault analysis



 Resolves lengths for:

 Successfully executing instructions

 Faulting instructions

 Privileged instructions:

 ring 0 only: mov cr0, eax

 ring -1 only: vmenter

 ring -2 only: rsm

Page fault analysis



 The “injector” process performs 

the page fault analysis and 

tunneling instruction generation

The Injector



 We’re fuzzing the same

device that we’re running on

 How do we make sure we don’t crash?

Surviving



 Step 1:

 Limit ourselves to ring 3

 We can still resolve instructions 

living in deeper rings

 This prevents accidental total system failure

(except in the case of serious processor bugs)

Surviving



 Step 2:

 Hook all exceptions the instruction might generate

 In Linux:

 SIGSEGV

 SIGILL

 SIGFPE

 SIGBUS

 SIGTRAP

 Process will clean up after itself when possible

Surviving



 Step 3:

 Initialize general purpose registers to 0

 Arbitrary memory write instructions like

add [eax + 4 * ecx], 0x9102

will not hit the injecting process’s address space

Surviving



 Step 3 (continued):

 Memory calculations using an offset:

add [eax + 4 * ecx + 0xf98102cd6], 0x9102

would still result in non-zero accesses

 Could lead to process corruption 

if the offset falls into the injector’s address space

Surviving



 Step 3 (continued):

 The tunneling approach ensures

offsets are constrained

 0x0000002F

 0x0000A900

 0x00420000

 0x1E000000

 The tunneled offsets will not fall into 

the injector’s address space

 They will seg fault, but seg faults are caught

 The process still won’t corrupt itself

Surviving



 We’ve handled faulting instructions

 What about non-faulting instructions?

 The analysis needs to continue 

after an instruction executes

Surviving



 Set the trap flag prior to 

executing the candidate instruction

 On trap, reload the registers to a known state

Surviving



 With these…

 Ring 3

 Exception handling

 Register initialization

 Register maintenance

 Execution trapping

 … the injector survives.

Surviving



 So we now have a way to search the 

instructions space.

 How do we make sense
of the instructions we execute?

Analysis



 The “sifter” process parses 

the executions from the injector, 

and pulls out the anomalies

The Sifter



 We need a “ground truth”

 Use a disassembler

 It was written based on the documentation

 Capstone

Sifting



 Undocumented instruction:

 Disassembler doesn’t recognize byte sequence and …

 Instruction generates anything but a #UD

 Software bug:

 Disassembler recognizes instruction but …

 Processor says the length is different

 Hardware bug:

 ???

 No consistent heuristic, investigate when something fails

Sifting



sandsifter - demo



(sandsifter)



(summarizer)



 We now have a way to

systematically scan our processor 

for secrets and bugs

Scanning



 I scanned eight systems in my test library.

Scanning



 Hidden instructions

 Ubiquitous software bugs

 Hypervisor flaws

 Hardware bugs

Results



Hidden instructions



 Scanned: Intel Core i7-4650U CPU

Intel hidden instructions



 0f0dxx

 Undocumented for non-/1 reg fields

 0f18xx, 0f{1a-1f}xx

 Undocumented until December 2016

 0fae{e9-ef, f1-f7, f9-ff}

 Undocumented for non-0 r/m fields until June 2014

Intel hidden instructions



 dbe0, dbe1

 df{c0-c7}

 f1

 {c0-c1}{30-37, 70-77, b0-b7, f0-f7}

 {d0-d1}{30-37, 70-77, b0-b7, f0-f7}

 {d2-d3}{30-37, 70-77, b0-b7, f0-f7}

 f6 /1, f7 /1

Intel hidden instructions



 Scanned: AMD Athlon (Geode NX1500)

AMD hidden instructions



 0f0f{40-7f}{80-ff}{xx}

 Undocumented for range of xx

 dbe0, dbe1

 df{c0-c7}

AMD hidden instructions



 Scanned: VIA Nano U3500, VIA C7-M

VIA hidden instructions



 0f0dxx

 Undocumented by Intel for non-/1 reg fields

 0f18xx, 0f{1a-1f}xx

 Undocumented  by Intel until December 2016

 0fa7{c1-c7}

 0fae{e9-ef, f1-f7, f9-ff}

 Undocumented by Intel for non-0 r/m fields until June 2014

 dbe0, dbe1

 df{c0-c7}

VIA hidden instructions



 What do these do?

 Some have been reverse engineered

 Some have no record at all.

Hidden instructions



Software bugs



 Issue:

 The sifter is forced to use a disassembler 

as its “ground truth”

 Every disassembler we tried as the 

“ground truth” was littered with bugs.

Software bugs



 Most bugs only appear in a few tools, 

and are not especially interesting

 Some bugs appeared in all tools

 These can be used to an attacker’s advantage.

Software bugs



 66e9xxxxxxxx (jmp)

 66e8xxxxxxxx (call)

Software bugs



 66e9xxxxxxxx (jmp)

 66e8xxxxxxxx (call)

 In x86_64

 Theoretically, a jmp (e9) or call (e8),

with a data size override prefix (66)

 Changes operand size from default of 32

 Does that mean 16 bit or 64 bit?

 Neither.  66 is ignored by the processor here.

Software bugs



 Everyone parses this wrong.

Software bugs



Software bugs (IDA)



Software bugs (VS)



 An attacker can use this to

mask malicious behavior

 Throw off disassembly and jump targets

to cause analysis tools to miss the real behavior

Software bugs



Software bugs (objdump)



Software bugs (QEMU)



 66 jmp

 Why does everyone get this wrong?

 AMD: override changes operand to 16 bits, 

instruction pointer truncated

 Intel: override ignored.

Software bugs



 Issues when we can’t agree on a standard

 sysret bugs

 Either Intel or AMD is going to be 

vulnerable when there is a difference

 Impractically complex architecture

 Tools cannot parse a jump instruction

Software bugs



Hypervisor bugs



 In an Azure instance, 

the trap flag is missed 

on the cpuid instruction
 (cpuid causes a vmexit, 

and the hypervisor forgets 

to emulate the trap)

Azure hypervisor bugs



Azure hypervisor bugs



Hardware bugs



 Hardware bugs are troubling

 A bug in hardware means 

you now have the same bug 

in all of your software.

 Difficult to find

 Difficult to fix

Hardware bugs



 Scanned:

 Quark, Pentium, Core i7

Intel hardware bugs



 f00f bug on Pentium (anti-climactic)

Intel hardware bugs



 Scanned:

 Geode NX1500, C-50

AMD hardware bugs



 On several systems,

receive a #UD exception 

prior to complete instruction fetch

 Per AMD specifications, this is incorrect.

 #PF during instruction fetch takes priority

 … until …

AMD hardware bugs





 Scanned:

 TM5700

Transmeta hardware bugs



 Instructions: 0f{71,72,73}xxxx

 Can receive #MF exception during fetch

 Example:

 Pending x87 FPU exception

 psrad mm4, -0x50 (0f72e4b0)                                  

 #MF received after 0f72e4 fetched

 Correct behavior: #PF on fetch, 

last byte is still on invalid page

Transmeta hardware bugs



 Found on one processor...

 An apparent “halt and catch fire” instruction
 Single malformed instruction in ring 3

locks the processor

 Tested on 2 Windows kernels, 3 Linux kernels

 Kernel debugging, serial I/O,
interrupt analysis seem to confirm

 Unfortunately, 
not finished with responsible disclosure

 No details available 
on chip, vendor, or instructions

(redacted) hardware bugs
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 First such attack found in 20 years

(since Pentium f00f)

(redacted) hardware bugs



 Significant security concern:

processor DoS from unprivileged user

(redacted) hardware bugs



 Details (hopefully) released within the next month

(stay tuned)

(redacted) hardware bugs



 Open sourced:

 The sandsifter scanning tool

 github.com/xoreaxeaxeax/sandsifter

 Audit your processor,

break disassemblers/emulators/hypervisors, 

halt and catch fire, etc.

Conclusions



 I’ve only scanned a few systems

 This is a fraction of what I found on mine

 Who knows what exists on yours

Conclusions



 Check your system

 Send us results if you can

Conclusions



 Don’t blindly trust the specifications.

Conclusions



 Sandsifter lets us introspect 

the black box at the heart of our systems.

Conclusions



github.com/xoreaxeaxeax

sandsifter

 M/o/Vfuscator

 REpsych

 x86 0-day PoC

 Etc.

Feedback?  Ideas?

domas

@xoreaxeaxeax

xoreaxeaxeax@gmail.com




