
BROADPWN
Remotely Owning Android and iOS

Nitay Artenstein

• Twitter: @nitayart

• Reverse engineer and
vulnerability researcher

• Focusing on Android, WiFi
and basebands

whoami

• Are fully remote exploits still viable?

• How we found an attack surface suitable for
remote exploitation

• The story of a powerful WiFi bug, and how it
was leveraged into a fully remote exploit

AGENDA

“New secrets about torture in
government prisons”

“Facebook alerts that attempts have
been made to access your account”

REMOTE EXPLOIT != BROWSER EXPLOIT
If the victim has to click, it’s not a true remote

A REMOTE MAY NOT REQUIRE HUMAN INTERACTION
TO TRIGGER. LIMITED ATTACK SURFACE

A REMOTE MAY NOT REQUIRE COMPLEX
ASSUMPTIONS ABOUT THE SYSTEM’S STATE.
IMPOSSIBLE WITH ASLR

A REMOTE MUST LEAVE THE SYSTEM IN A STABLE
STATE. CRASHING == FAILURE

THE THREE LAWS OF REMOTE EXPLOITS

A REMOTE MAY NOT REQUIRE HUMAN INTERACTION
TO TRIGGER. LIMITED ATTACK SURFACE

A REMOTE MAY NOT REQUIRE COMPLEX
ASSUMPTIONS ABOUT THE SYSTEM’S STATE.
IMPOSSIBLE WITH ASLR

A REMOTE MUST LEAVE THE SYSTEM IN A STABLE
STATE. CRASHING == FAILURE

THE THREE LAWS OF REMOTE EXPLOITS

NOT AN EASY TASK

Application
Processor

ATTACKING ANDROID/IOS

DEP

ASLR

PXN/PAN

Application
Processor

ATTACKING ANDROID/IOS

WiFi Chip Baseband

BASEBANDS
iPhone

Samsung Galaxy and Note

Google Nexus

Some LGs and HTCs

WIFI CONTROLLERS
iPhone

Samsung Galaxy and Note

Google Nexus

Some LGs and HTCs

Broadcom chips have no DEP or ASLR, and all
memory is RWX!!!

WIFI BONUS

DIVING INTO THE WIFI SOC

• Gal Beniamini of P0, “Exploiting Broadcom’s Wi-Fi
Stack”

• The Nexmon project by SEEMOO Labs

• “Wardriving from your Pocket”, Recon 2013 (Omri
Ildis, Yuval Ofir and Ruby Feinstein)

• Andrés Blanco, “One Firmware to Monitor ‘em All”

PREVIOUS WORKS ABOUT BCM

THE BCM ARCHITECTURE

THE BCM ARCHITECTURE

BACKPLANE

RAM ROM
900K900K

ARM Cortex R4

PCIe SDIOD11 (PHY)

Main processor

• The firmware is loaded from the main OS, so it’s
stored in the filesystem (/etc/wifi/ on Samsungs)

• Chip runs a proprietary RTOS known as HNDRTE

• Fortunately, a large part of its source code
leaked online

REVERSING THE BCM FIRMWARE

github.com/elenril/VMG1312-B

FINDING THE RIGHT ATTACK SURFACE

Remember the First Law of Remotes?

A REMOTE MAY NOT REQUIRE
HUMAN INTERACTION TO TRIGGER

802.11: AN UNAUTHENTICATED ASSOCIATION PROCESS
Probe Request

Probe Response

Auth Open Seq (obsolete)

Association Request

Association Response

DATA - real auth (WPA2) comes here

802.11: AN UNAUTHENTICATED ASSOCIATION PROCESS
Probe Request

Probe Response

Auth Open Seq (obsolete)

Association Request

Association Response

DATA - real auth (WPA2) comes here

“Hey, are you
BOB_HOME?”

“Sure I
am!”

802.11 ASSOCIATION SEQUENCE PACKETS

Frame Type
2 Bytes

Duration ID
2 Bytes

Addresses
18 Bytes

Seq Cont.
2 Bytes

Addr. 4
6 Bytes

Basic Header

Basic Header Information Elements, variable length

802.11 INFORMATION ELEMENTS

Type
1 Byte

Length
1 Byte

Data
Variable length

TLV

802.11 Packet

Basic Header IE IE IE

FINDING THE CODE: FOLLOW THE MODULES

FINDING THE CODE: FOLLOW THE MODULES

void wlc_iem_add_parse_fn( 
 iem_info *iem,  
 uint32 subtype_bitfield,  
 uint32 iem_type,  
 callback_fn_t fn,  
 void *arg);

IE Type
Frame type

FINDING THE CODE: FOLLOW THE MODULES

THE BUG

• A Quality-of-Service extension to the 802.11
standard

• Enables an AP to prioritize traffic of video, VoIP,
etc.

• Protocol information is parsed from Information
Elements in Probe Request, Probe Response
and Association Response packets

WIRELESS MEDIA EXTENSIONS (WME)

WLC_BSS_PARSE_WME_IE
if (frame_type == FC_ASSOC_RESP) {
 ...
 if (wlc->pub->_wme)
 {
 cfg->flags |= 0x100u;
 memcpy(current_wmm_ie, ie->data, ie->len);

DO WE HAVE AN OVERFLOW? CHECK THE ALLOC FUNC

wlc_bsscfg *wlc_bsscfg_malloc(wlc_info *wlc)
{
 ...
 pm = wlc_calloc(0x78);
 wlc->pm = pm;
 current_wmm_ie = wlc_calloc(0x2C);
 wlc->current_wmm_ie = current_wmm_ie;

Max IE length: 255 bytes
Overflow: 211 bytes

IS THIS BUG REMOTELY EXPLOITABLE?

Remember the Second Law of Remotes?

A REMOTE MAY NOT REQUIRE
COMPLEX ASSUMPTIONS ABOUT

THE SYSTEM’S STATE

• What we don’t want: An overflow into dynamic
memory regions (we’ll need to make
assumptions about the program’s state)

• What we do want: To overwrite a pointer in static
memory consistently and deterministically

• And, the program needs to do something useful
with the pointer we overwrite

AN EXPLOITABLE REMOTE

THE OVERFLOW: MEMORY LAYOUT

current_wmm_ie

Allocated at startup (deterministic address)

ps ssid

Overflow

THE OVERFLOWED STRUCT
typedef struct wlc_pm_st {
 uint8 PM;
 ..
 struct wl_timer *pspoll_timer;
 struct wl_timer *apsd_trigger_timer;
 ..
 bool send_pspoll_after_tx;
 wlc_hwtimer_to_t *pm2_rcv_timer;
 wlc_hwtimer_to_t *pm2_ret_timer;
} wlc_pm_st_t;

Timers allocated at startup with deterministic addresses

USING THE TIMER FOR A WRITE PRIMITIVE
int timer_func(struct wl_timer *t)
{
 ...
 v7 = t->field_18;
 ...
 v9 = t->field_1c;
 v7->field_14 = v9;
 ...
 j_restore_cpsr(prev_cpsr);

Full write-what-where

WHERE SHALL WE WRITE?

PROBLEM: WHERE DO WE PUT OUR PAYLOAD?

current_wmm_ie

Only 24 bytes available for shellcode

ps ssid

Overflow

THE PACKET RING BUFFER

packet packet packet packet packet packet

Spray with beacon probes - packets are RWX!!

24 BYTES - JUST ENOUGH FOR AN EGGHUNT!
void egghunt(uint arg) {
 uint *p = (uint *) RING_BUFFER_START;
 void (*f)(uint);
loop:
 p++;
 if (*p != 0xc0deba5e)
 goto loop;
 f = (void (*)(uint))(((uchar *) p) + 5);
 f(arg);
 return;
}

EXPLOIT BUFFER - FINAL STRUCTURE

DON’T FORGET TO CLEAN UP

Remember the Third Law of Remotes?

A REMOTE MUST LEAVE THE
SYSTEM IN A STABLE STATE

THE NEXT STAGE: THE FIRST WIFI WORM

• Hook the function which handles incoming
packets

• Whenever a probe request comes in, start a fake
association process

• Reach the association request phase, then
deliver the exploit (might need several attempts
to match the target firmware)

BUILDING A WORM

DEMO

• This project does not include running code in the main
kernel

• However, research by Project Zero shows that it is
possible to directly write to kernel memory using PCIe

• Also possible to intercept traffic from the chip, then
redirect the user to a malicious link (requires browser
exploit chain)

 A NOTE ABOUT PRIVILEGE ESCALATION

QUESTIONS?

