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ABSTRACT

Machine learning is a popular approach to signatureless mal-
ware detection because it can generalize to never-before-
seen malware families and polymorphic strains. This has
resulted in its practical use for either primary detection en-
gines or supplementary heuristic detections by anti-malware
vendors. Recent work in adversarial machine learning has
shown that models are susceptible to gradient-based and
other attacks. In this whitepaper, we summarize the various
attacks that have been proposed for machine learning mod-
els in information security, each which require the adversary
to have some degree of knowledge about the model under at-
tack. Importantly, even when applied to attacking machine
learning malware classifier based on static features for Win-
dows portable executable (PE) files, these attacks, previous
attack methodologies may break the format or functionality
of the malware. We investigate a more general framework
for attacking static PE anti-malware engines based on re-
inforcement learning, which models more realistic attacker
conditions, and subsequently has provides much more mod-
est evasion rates. A reinforcement learning (RL) agent is
equipped with a set of functionality-preserving operations
that it may perform on the PE file. It learns through a se-
ries of games played against the anti-malware engine which
sequence of operations is most likely to result in evasion for
a given malware sample. Given the general framework, it
is not surprising that the evasion rates are modest. How-
ever, the resulting RL agent can succinctly summarize blind
spots of the anti-malware model. Additionally, evasive vari-
ants generated by the agent may be used to harden machine
learning anti-malware engine via adversarial training.
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1. INTRODUCTION

Machine learning has been an attractive tool for anti-
malware vendors for either primary detection engines or
as supplementary detection heuristics. Properly regularized
machine learning models generalize to new samples whose
features and labels follow the same distribution as the train-
ing data set. Furthermore, supervised learning models auto-
matically summarize complex relationships among features
in the training dataset that are discriminating between ma-
licious and benign labels. This allows defenders to quickly
adapt to shifts in how malware is manifest in the wild.

Unfortunately, motivated and sophisticated adversaries
are intentionally seeking to evade anti-malware engines, be
they signature-based or otherwise. In the context of a ma-
chine learning model, an attacker’s aim is to discover a set
of features that the model deems discriminating, but may
not be a causal indicator of the desired malicious behavior.
Additionally, the attacker attempts to camouflage the mal-
ware in feature space by inducing a feature representation
that is highly correlated with, but not necessarily causal to
benign behavior.

Several recent studies have demonstrated how machine
learning systems can be evaded algorithmically or, ironically,
by other machine learning models. Some of this work has
been generally devoted to evading models that detect mal-
ware (Android, PDF malware, Windows PE) or malware be-
havior (detecting domain generation algorithms) [10, 1, 23,
11]. For each, the adversary has a greater or lesser degree of
knowledge about the machine learning model under attack.
Their applicability for evading Windows PE static malware
classifiers may not be straightforward because modifying the
binary PE file may destroy its format, or maim the malicious
behavior. We summarize these attacks in Section 2.

The goal of this whitepaper is to report on an ambitious
approach to evade static analysis anti-malware PE engine
under the following conditions:

1. The attacker has no knowledge of the features, struc-
ture or parameters (weights) of the static PE malware
classifier.

2. The attacker has the ability to retrieve a malicious/benign

label (or score, if reported) for an arbitrary PE file sub-
mitted to the anti-malware engine.

3. The attack aims to modify a malicious Windows PE so
that it is no longer flagged by the anti-malware engine.

Our intent is two-fold: provide an automated means to sum-
marize the weaknesses of an anti-malware engine, and to pro-
duce functioning evasive malware samples that can be used



to augment a machine learning model in adversarial train-
ing [9]. We focus on static Windows PE malware evasion,
which presents some unique challenges for realistic imple-
mentation. We also release open source code in the form
of an OpenAl gym [3], for researchers to improve upon this
generic approach!.

2. BACKGROUND

We begin with a summary of static malware detectors for
Windows PE files. We provide a summary of recent work in
attacking machine learning infosec models in Section .

2.1 Synopsis of static malware detection using
Machine Learning

Static malware detection and prevention is an important
protection layer in a security suite because when successful,
it allows malicious files to be detected prior to execution,
for example, when written to disk, when an existing file is
modified, or when execution is requested.

Static PE malware detectors have been used since at least
2001 [20], and owing largely to the structured file format
and backwards compatibility requirements, many concepts
remain surpisingly the same in subsequent published studies
[12, 21, 18, 6, 19]. We provide a review in temporal order
of publication. (We exclude a large body of literature that
includes dynamic malware detection from time-dependent
sequences of system calls for analysis [6, 16, 2].)

In [20], authors assembled a dataset and generated la-
bels by running through a McAfee virus scanner. PE files
were represented by features that included imported func-
tions, strings and byte sequences. Various machine learning
models were trained and validated on a holdout set. Mod-
els included rules induced from RIPPER [5], naive Bayes
and an ensemble classifier. In 2004, authors in [12] included
byte-level N-grams, and employed techniques from natural
language process, including tf-idf weighting of strings. In
2009, authors in [21] proposed using just seven features from
the PE header, including DebugSize, user-definable ImageV-
ersion, ResourceSize, and virtual size of the second listed
section, motivated by the fact that malware samples typi-
cally exhibit those elements. Authors in [19] leveraged novel
two dimensional byte entropy histograms that is fed into a
multi-layer neural network for classification.

Notably, despite recent advances in deep learning that
have dramatically improved the state of the art especially in
object classification, machine translation and speech recog-
nition, hand-crafted features apparently still represent the
state of the art in published literature. Although the state
of the art may change to end-to-end deep learning in the en-
suing months or years, hand-crafted features derived from
parsing the PE file may continue to be relevant indefinitely
because of the structured format.

2.2 Related work: attacking machine learn-
ing infosec models

Several recent works have addressed attacking machine
learning models in information security. In this section, we’ll
categorize these methods into three coarse bins, which are
graphically portrayed in Figure 1.

1. Direct gradient-based attacks in which the model must
be fully differentiable and the structure and weights

Thttps://github.com/Endgamelnc/gym-malware

must be known by the attacker. Given this, the at-
tacker can essentially query the model directly to de-
termine how best to bypass it.

2. Attacks against models that report a score. The at-
tacker has no knowledge about the model structure,
but has unlimited access to probe the model and may
be able to learn how to decrease the score.

3. Binary black-box attacks. The attacker has no knowl-
edge about the model, but has unlimited access to
probe the model.

2.2.1 Direct gradient-based attacks

Gradient information about the model under attack pro-
vides extremely powerful clues to the attacker, which can be
used in one of at least two ways.

The first is a perturbing the sample x in the direction that
would most decrease the score J(x;0),

x" =x+ 0 (VxJ (x;0)) (1)

The vector function o(-) is a domain-specific mapping of the
input back to the range of acceptible objects. For example,
the fast gradient sign method uses o(§) = esgn(d) so that
the perturbation is imperceptible, maximally bounded by a
change of € to any one pixel [9].

In [10], the authors attack a deep learning Android mal-
ware model using gradient perturbation method. The fea-
ture vector x € {0, 1}545333 is a large sparse binary vector.
It is perturbed in a way that bounds the total number of
changes to a fixed number (via ¢; constraint). Furthermore,
o(+) is implemented as an index set that allows features to
be added (never removed), and only if they do not interfere
with other features that are already present in the applica-
tion. The authors report evasion efficacy from 50% to 84%,
depending on the model architecture. Since the work per-
forms the attack only in feature space, malicious files are
never generated during this process.

A second class of gradient-based attacks connects the model
under attack to a generator model in a generative adver-
sarial network (GAN) [8]. Unlike perturbation methods,
the generator learns to generate a completely novel sam-
ple from a random seed. Through a series of adversarial
rounds, the generator learns to produce samples that appear
to be drawn from the benign class-conditional distribution
p(x|y = benign) that has been estimated by the model under
attack (the discriminator in GAN literature).

Like the perturbation method, a mapping function is re-
quired to ensure that hallucinated samples constitute ac-
ceptable objects. For images, this step is often ignored. For
malware, the mapping onto legitimate PE files that perform
the desired malicious function has yet to studied in the gen-
eral case.

In [1], the authors apply this GAN-based attack to a detec-
tor of domain generation algorithm (DGA) domains, which
attempts to distinguish human-crafted from algorithmically-
generated domain names. The only constraint on generated
domain names is that they contain valid characters, which
is trivially encoded into the alphabet of tokens in the neural
network. As such, the mapping into “legitimate” characters
is automatically encoded.

2.2.2  Attacks against models that report a score
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Figure 1: Attack categories, categorized into three coarse bins.

Attacks against black-box models represent a more generic
attack. If the black-box model produces a score for any
query, an attacker can directly measure (myopically) the
efficacy of any perturbation.

In [23], authors leverage this reduction in score reported
by PDF malware classifiers as a fitness function in a genetic
algorithm framework. To ensure that mutations preserve
the desired malicious behavior, an oracle is used to compare
the runtime behavior with that of the original seed. The
authors utilize the Cuckoo sandbox as an oracle, and note
how it is computationally expensive. After approximately
one week of execution, the genetic algorithm found nearly
17K evasive variants from 500 malicious seeds, and achieved
100% evasion rate of the PDFrate classifier. After two days
of compute time, the algorithm found nearly 3K evasive sam-
ples from 500 initial seeds, all bypassing the PDF malware
model.

2.2.3  Binary black-box attacks

Finally, in the most generic attack, the anti-malware en-
gine reports only malicious or benign for an input.

Recently, [11] introduced MalGAN to generate PE mal-
ware to bypass a black-box static PE malware engine. The
idea is simple: instead of attacking the black box directly,
the attacker creates a substitute model trained to reproduce
outputs observed by probing the target model with corre-
sponding inputs. Then, the substitute model is used for
gradient computation in a modified GAN to produce eva-
sive malware variants. The authors report 100% efficacy in
bypassing the target model, and furthermore, demonstrate
that retraining with the adversarial examples has limited
efficacy.

The approach is based on a similar idea for attacking black
box models, presented in [15] for computer-vision models.
But the latter work leverages a more straightforward gra-

dient perturbation method to generate samples adversarial
to the substitute model. These evaded the target models
with high probability. One could reasonably apply the same
approach to PE malware evasion.

A notable limitation of [11] is that the attacker must know
the complete feature space of the target model. The substi-
tute model is trained and GAN attack is carried out in this
feature space. The authors argue that the feature space may
be discovered by the attacker, and use only imported func-
tions in their evaluations. While this paper is among the first
to attempt attacking PE malware models, it is quite limited
in the fact that the attacker knows and shares the features
space: features are limited to only imported functions, which
is insufficient for a modern static malware model. Manipu-
lations are made in feature space, and a malicious binary file
is actually never created, instead only passed to the models
under attack as a feature vector. These issues make it an
unrealistic attack in practice.

2.2.4 How our approach differs

Our approach presents further limitations on the informa-
tion available to an attacker.

1. Output from the target classifier is strictly Boolean,
declaring only whether a sample is deemed benign or
malicious by the classifier.

2. The feature space and structure of the target classifier
are completely unknown.

3. There does not exist an external party (such as an
oracle) to guarantee that a sample is valid. Thus, there
is no mapping function to the space of legitimate PE
files.

These restrictions presents what we believe is the most
difficult black-box evasion scenario from an attacker’s per-



spective. As a result of the limited information available to
the attacker, evasion rates are significantly lower than those
of the approaches above.

2.3 Reinforcement learning

We implement our black-box attack using a reinforcement
learning approach [22]. A reinforcement learning model con-
sists of an agent and an environment. For each turn, an
agent may choose one from a set of actions A. The selected
action may emit a change in the environment described by
the state space S. A reward function produces a scalar
award for the new state. The reward and observed state
of the environment are fed back to the agent, which may de-
termine the estimated value each possible action. The agent
follows a policy based on these values to select it’s next ac-
tion. The agent learns incrementally through a tradeoff of
exploration and exploitation which actions to produce given
the environment’s state. The reward provides the key objec-
tive for learning, and notably, may be zero for many turns
until a target state is reached through a relatively long series
of actions/states. Early actions/states that produce no im-
mediate reward but are important to the final outcome are
promoted via a value function that predicts the long-term
reward for a given action/state (Q-learning).

Deep reinforcement learning was introduced as a frame-
work to play Atari games by reinforcement agents that of-
ten exceeed human performance [13, 14]. Among the key
contributions of the deep reinforcement learning framework
was its ability, as in deep learning, for the agent to learn
a value function in an end-to-end way: it takes raw pix-
els as input, and outputs predicted rewards for each action.
This learned value function is the basis for so-called deep
Q-learning, where the Q-function is learned and refined over
hundreds of games.

In the context of malware evasion, we apply deep Q-
learning in a reinforcement learning framework, as shown
in Fig. 2. In the Markov decision process shown, agent gets
an estimate of the environment’s state s € S, represented
by a feature vector s of the malware sample (which need not
correspond to any internal representation of the malware by
the anti-malware engine). The Q-function and action pol-
icy determine what action to take. In our framework, the
actions space A consists of a set of modifications to the PE
file that (a) don’t break the PE file format, and (b) don’t
alter the intended functionality of the malware sample. The
reward function is measured by the anti-malware engine,
which is converted to a reward: 0 if the modified malware
sample is judged to be benign, and 1 if it is deemed to be
malicious. The reward and state are then fed back into the
agent.

3. OUR APPROACH

With an aim to engage the broader community, we im-
plement our malware evasion environment as an extensible
OpenAl gym [4], which we release at https://github.com/
Endgamelnc/gym-malware. The gym framework has be-
come popular for training RL agents because it provides a
standardized environment to produce benchmarks (e.g. like
playing Atari games). We adopt some game-playing termi-
nology in some of our description below. In addition, we
release a default agent using keras-rl [17].

The environment consists of an initial malware sample
(1 malware sample per “game”), and a customizable anti-

environment

malware

anti-malware
sample

reward

\ state

action )

agent

Figure 2: Markov decision process formulation of
the malware evasion reinforcement learning prob-
lem.

malware engine (the attack target). Each step or turn pro-
vides the following feedback to the agent:

e reward (float): value of reward scored by the previous
action. 10.0 (pass), 0.0 (fail);

e observation space(object): feature vector summarizing
the composition of the malware sample;

e done(bool): Determines whether environment needs to
be reset; True means episode was successful;

e info(bool): Provides diagnostic information about the
environment for debugging purposes;

Based on this feedback, the agent chooses from a set of
mutations (actions) that preserve the format and function
of the PE file. We describe our initial implementation of
each of these components below. It may be helpful to refer
to Figure 2.

3.1 Environment state

The malware sample exists as raw bytes in the game en-
vironment. However, in order to more concisely represent
the current state of the malware sample, the environment
emits the state in the form of a feature vector. In our ex-
periments, the 2350-dimensional feature vector comprised of
the following general categories of features:

e PE header metadata

e Section metadata: section name, size and characteris-
tics

e Import & Export Table metadata

e Counts of human readable strings(e.g. file paths, URLs,
and registry key names)



e Byte histogram
e 2D byte-entropy histogram as reported in [19]

For feature sets which are countably infinite (section names,
imported function names, etc.), we use the hashing trick to
collapse into them into a vector of fixed size.

3.2 Action Space

As mentioned above, the file mutations represent the ac-
tions or moves available to the agent within the environ-
ment. There are a modest number of modifications that can
be made to a PE file that do not break the PE file format
and do not alter code execution. Some of these include:

e add a function to the import address table that is never
used (note, this is the sole manipulation explored in
(1]

e manipulate existing section names
e create a new (unused) sections
e append bytes to extra space at the end of sections

e create a new entry point which immediately jumps to
the original entry point

e manipulate (break) signature

e manipulate debug info

e pack or unpack the file

e modify (break) header checksum

e append bytes to the overlay (end of PE file)

Note that most of these functions are stochastic in nature.
For example, when renaming a section, a new section name
is drawn uniformly from a list of section names found in
benign files. When appending bytes to the end of a section
or file, the length and entropy of of the appended bytes can
be specified, but for simplicity, are chosen at random by the
agent. Likewise, the compression level used by the packer is
chosen at random.

The stochastic nature of the manipulations was chosen
for simplicity and presents a learning challenge because the
actions are not exactly repeatable. Instead, actions modify
broad elements of a PE file that are generally used by static
machine learning malware models. An alternative is to un-
roll the limited number of actions into hundreds of specific
actions (e.g., rename section to .blah, instead of renaming
randomly). However, reinforcement learning with extremely
large action spaces is a subject of ongoing research in the re-
search community [7].

4. EXPERIMENTS

In our experiments, we attack a gradient boosted deci-
sion tree model trained on 100,000 malicious and benign
samples, and which achieves an area under the receiver op-
erating characteristic score (ROC AUC) of 0.96. This model
is included in the code that we release. Although not nec-
essary, for convenience, we train it on the features used to
represent the state of the environment. We expect this to
produce more generous results than can be expected in prac-
tice. However, as our intent is to release a toolkit for learning

Random mutations | 13%
Black box attack | 16%
Score-based attack | 14%

Table 1: Evasion rate on 200 holdout samples. Ran-
dom mutations were averaged over ten runs.

malware manipulating agents, this proof of concept suffices
for our purposes.

Our preliminary experiments involved our basic keras-rl
agents tested in our OpenAl gym. We examined two sce-
narios of information feedback from the target classifier: a
realistic black box (with only Boolean output) and a con-
tinuous score. Both agents utilize a Boltzman exploration /
exploitation strategy, in which mutations are drawn propor-
tionally to their expected Q-value. Both agents are allowed
to perform up to twenty mutations before declaring failure.
Rounds terminate early should the agent bypass the mal-
ware model prior to the twenty allotted rounds. We allow
for up to 100,000 rounds (unique malware seeds) to train
each model.

For the black box attack, rewards of 10.0 / 0.0 are pro-
vided for evasion / failed-evasion, respectively. We set a
threshold of 0.9 for the static malware model, which corre-
sponds to a conservative false positive rate.

For the attack with continuous score, an immediate re-
ward is given by initialscore — reportedscore, and provide a
reward of 10.0 if the agent successfully bypasses the model.
Note that this can result in negative rewards should the mu-
tations actually increase the original score.

For comparison, we also demonstrated an attack in the
same environment using randomized action with no RL agent.

S. RESULTS

Results were modest, and are summarized in Table 1.

Surprising to us is that the black box attack had a higher
evasion rate than the score-based attack (in which the ma-
chine learning model returns a score). We postulate that
this is because the small rewards provided by the continu-
ous rewards can cause the agent to become myopic, sacrific-
ing larger gains for short-term wins. However, since this is
merely a proof of concept, we leave this line of research to
future work.

We uploaded twenty samples produced by the reinforce-
ment learning agent to VirusTotal, and found that the me-
dian detection ratio was 18 / 63, down from 31 / 63. We
note that VirusTotal does not represent the full detection
platform for vendors in VirusTotal; nevertheless, this does
demonstrate that by bypassing a relatively simple machine
learning model, cross-evasion of commercial products may
be possible.

6. DISCUSSION

We believe that machine learning is a useful tool to gener-
alize to never-before-seen samples. We note that even after
100,000 rounds of being trained specifically to bypass it, our
agent can bypass a toy model with relatively small efficacy.
Although the reinforcement learning models and manipu-
lations are relatively rudimentary, the modest evasion rate
demonstrates that black box machine learning models for
malware detection can be evaded.



What can be done to prevent such an attack on infosec ma-
chine learning models? First, machine learning models can
be hardened by precisely the kind of techniques presented
here. By generating malicious samples that are known to
bypass your machine learning model, these samples can be
folded back into the training set to attempt to “patch” these
blind spots. Furthermore, the set of manipulations can be
inpsected to understand general tendancies of the machine
learning model, in order to inform data science teams and
engineers.
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