O blackhat =, =201

Adaptive Kernel Live Patching:

An Open Collaborative Effort to
Ameliorate Android N-day Root Exploits

Yulong Zhang and Lenx (Tao) Wei
Baidu X-Lab
August 2016

O blackhat =, =201

Agenda

* The Problem
* Android Kernel Vulnerability Landscape

* Why Are They Long-lasting?
* Case Studies
* The Solution

* AdaptKpatch: Adaptive Kernel Live Patching
* LuaKpatch: More Flexibility, Yet More Constraint

* The Future
* Establishing the Ecosystem

¥ blackhat L=, =01

Ve b 4 /e
p " < .\/‘ ? R l
ST

Threats of Kernel Vulnerabilities

Unprivileged
P 5 Root
User
Information Leakage Privilege Escalation
Info-leak Code Execution

Vulnerability Vulnerability

O blackhat =, =201

Threats of Kernel Vulnerabilities

* Most security mechanisms relying on kernel integrity/trustworthiness
will be broken
 Access control, app/user isolation
* Payment/fingerprint security
* KeyStore
e Other Android user-land security mechanisms

* TrustZone will also be threatened
» Attack surfaces exposed
* Not enough input validation

¥ blackhat L= =201

Monthly Disclosed Number of Android Kernel

Vulnerabilities
70 66

60
50
40
30
20 15

7/
10 1 1 3 4 4

19

2015/09 2015/12 2016/01 2016/02 2016/03 2016/04 2016/05 2016/06 2016/07

O blackhat =, =201

The Growing Trend Indicates

2015/09 1
 More and more attentions are é

2015/12 1 drawn to secure the kernel
2016/01 3
2016/02 4 -
ST . Mor.e and more vulner.abllltles

are in the N-Day exploit arsenal
2UAE/0E | 7 for the underground businesses
2016/05 15
2016/06 19

2016/07 66

Vulnerability/Exploit Name

CVEID

mempodipper

CVE-2012-0056

exynos-abuse/Framaroot

CVE-2012-6422

diagexploit

CVE-2012-4221

perf _event_exploit

CVE-2013-2094

fb_mem_exploit

CVE-2013-2596

msm_acdb_exploit

CVE-2013-2597

msm_cameraconfig_exploit

CVE-2013-6123

get/put_user_exploit

CVE-2013-6282

futex_exploit/Towelroot

CVE-2014-3153

msm_vfe read_exploit

CVE-2014-4321

pipe exploit

CVE-2015-1805

Ping Pong Root

CVE-2015-3636

f2fs_exploit

CVE-2015-6619

prctl_vma_exploit

CVE-2015-6640

keyring_exploit

CVE-2016-0728

¥ blackhat L=, =01

KEMOGE

Infection Vectors Initial Behawviors Persistent Behaviors

A (g T g (NS i) ®

(7) loc nfo collection
Third Party —/ Aggressive ad serving Remote Contro
* Install any app

* Uninstall any app

! , \ , * Launch any app
. VY U

‘./3\ Drop 8 root exploits
. e’
wWeb/Ad Promoted 10 root the device

installation

GH O S TPU S H More than 30+ apps (WiFi

nhancer, Talking Tom 3 etc.)

infected by the virus

Some app stores (not
including Google Play)

This virus has

3.658 brands and

14,846 types of

phone have been
infected

become worldwide:

Root vour phone, and install
the virus to vour ROM

B Overe00,000 phones are
<3 being infected day
popular download S btttk
sites
Virus installs itself
deeply in the phone
b=

‘Ghost Push’ will consume
your cellular data by turning off
vour WiFi connection and then

downloading lots ads and

unwanted apps

!

Virus will autostart with the
phone and is hard to
remove

!

The hackers are looking to
make money from these ads
and apps

’

N blackhat _cA =01c e\ de o j V-
‘ wl/ R TR Pl

DOGSPECTUS L

-
v
o
L 1
: s
ATTENTION! YOUR DEVICE HAS BEEN LOCKED REASONS
INDICATED BELOW. '
]
Remaining time to pay a fine .
- -

= _ All actions are illegal, are fixed. g
i 2 9 3 4 History query stored in the
L . database of the U.S. Department of

Homeland Security

Otherwise the case file will be transferred to the

o

- “... the payload of that exploit, a Linux ELF executable named module.so,
contains the code for the futex or Towelroot exploit that was first |
- disclosed at the end of 2014 |

__

¥ blackhat L=, =01

HUMMINGBAD

08-01 ¥ 06-07

Figure 6: Cumulative Users Over Time

__

O blackhat =, =201

‘ ’ g, 4 nf R
B . N Y
¥/ 14 < I 4 'y
i SN

IOS More Secure?

?

O blackhat =, =201

3.4.1

9.1

9.2
9.2.1

9.3
9.3.2

8/13/15
9/16/15
10/21/15
12/8/15
1/19/16
3/21/16
5/16/16

11

V.S.

o W -

22

So the problem is:

Vulnerabilities remain UNFIXED over a long time

http://www.whisperingrandomness.com/wp-content/uploads/2014/03/i0S-security-black-hat-macworld-australia.jpg
http://images.pcworld.com/images/article/2011/11/androidsecurity-5241445.jpg

N blackhat =2 =015 2 %

Agenda
* The Problem

* Why Are They Long-lasting?

O blackhat =, =201

* If Apple wants to patch a vulnerability
* Apple controls the entire (mostly) supply chain
* Apple has the source code
* Apple refuses to sign old versions, forcing one-direction upgrade
* All the iOS devices will get update in a timely manner

* Android
* Many devices stay unpatched forever/for a long period...

O blackhat =, =201

Why Are Android Kernel Vulnerabilities Long Lasting?

* The long patching chain delays the patch effective date

* Fragmentation makes it challenging to adapt the patches to all
devices

e Capability mismatching between device vendors and security vendors

rd

2’ #
¥ AN
7 '//) &
) y A %

|/

¥ blackhat L=, =01 \

Cause A: The long patching chain

Hardware vendors/Google finalized the patch

Phone vendors tested and took the patch

Customer delays or unwilling to take the OTA

¥ blackhat L=, =01

— 1 C

JUrid urie vu iy
A (

Hardware vendors/Google finalized the patch

Phone vendors tested and took the patch

Customer delays or unwilling to take the OTA

There are exploits

appeared in public but

* Never got officially reported to
vendors

¥ blackhat L=, =01

Exploits made public but not reported

“... We are able to identify at least 10 device driver
exploits (from a famous root app) that are never reported
in the public...”

Android Root and its Providers: A Double-Edged Sword
H. Zhang, D. She, and Z. Qian, CCS 2015

Hardware vendors/Google finalized the patch

r —

Phone vendors tested and took the patch

Customer delays or unwilling to take the OTA

There are exploits

disclosed but

* Not getting timely patches

¥ blackhat L=, =01

Exploits disclosed but not timely patched

Note that this patch was not applied to all msm branches at the time of the
patch release (July 2015) and no security bulletin was issued, so the majority

of Android kernels based on 3.4 or 3.10 are still affected despite the patch
being available for (6 months.

https://bugs.chromium.org/p/project-zero/issues/detail?id=734&can=1&sort=-id

Hardware vendors/Google finalized the patch

Phone vendors tested and took the patch

There are exploits
patched but

* Delayed by the carriers

Customer delays or unwilling to take the OTA

¥ blackhat L=, =01

Exploits patched but delayed by carriers

“...It's each carrier’s job to test all the different updates
for all their different smartphones, and they may take
many months to do so. They may even decline to do the
work and never release the update...”

http://www.howtogeek.com/163958/why-do-carriers-delay-updates-for-android-but-not-iphone

Hardware vendors/Google finalized the patch

Phone vendors tested and took the patch

User delays the OTA due

Customer delays or unwilling to take the OTA to re booti ng

O blackhat =, =201

Why Are Android Kernel Vulnerabilities Long Lasting?

* Fragmentation makes it challenging to adapt the patches to all
devices

gl
0
0
.
]
]
¥
<
X
0
v
2
C

10N

: Fragmentat

Cause B

http://opensignal.com/reports/2015/08/android-fragmentation

O blackhat =, =201

Version
2.2
2.3.X

4.0.x

4.1.x
4.2.x
4.3
4.4
5.0
5.1
6.0

Codename
Froyo
Gingerbread

Ice Cream
Sandwich

Jelly Bean

KitKat
Lollipop

Marshmallow

API
8
10

15

16
17
18
19
21
22
23

Distribution
0.1%
1.9%

1.7%

6.4%
8.8%
2.6%
30.1%
14.3%
20.8%
13.3%

Lollipop was released in November 12, 2014, but

51.6% of the devices are still older than that!

y /O

Google Dashboard (2016/07/21)

3 s 3 ,l .g 3 .‘/’ ‘_, i %
\ oo SRl

Google stopped patching for Android older than 4.4,
but 21.5% of the devices are still older than that!

O blackhat =, =201

Chinese Market Is Even Worse

(Stats from devices with Baidu apps installed, July 2016)

Version Codename Rate

2.3.x Gingerbread 3%

4.0.x lce Cream Sandwich 3% Gingerbread

4.1.x Ice Cream Sandwich
4.2.x Jelly Bean 36% Jelly Bean

4.3 KitKat

4.4 KitKat 39% m Lollipop

551 Lollipop 19%

Lollipop was released in November 12, 2014, but

o . |
80% of the devices are still older than that! 42% of the devices are <4.4!

O blackhat =, =201

Why Are Android Kernel Vulnerabilities Long Lasting?

e Capability mismatching between device vendors and security vendors

¥ blackhat L=, =01

Phone Vendors:

* Privileged to apply the patches

e With source code, easy to adapt the patches

* Not enough resources to discover and patch vulnerabilities

Security Vendors:

e Capable to discover and patch vulnerabilities

* Not privileged enough

e Without source code, difficult to adapt the patches

O blackhat =, =201

e The Problem

e Case Studies

O blackhat =, =201

CVE-2014-3153 (Towelroot)

* The futex_requeue function in kernel/futex.c in the Linux kernel
through 3.14.5 does not ensure that calls have two different
futex addresses, which allows local users to gain privileges.

* The ping_unhash function in net/ipv4/ping.c in the Linux kernel before 4.0.3
does not initialize a certain list data structure during an unhash operation,
which allows local users to gain privileges or cause a denial of service.

¥ blackhat L=, =01

CVE-2015-1805 (used in KingRoot)

* The pipe_read and pipe_write implementations in kernel before 3.16 allows
local users to cause a denial of service (system crash) or possibly gain
privileges via a crafted application.

* A known issue in the upstream Linux kernel that was fixed in April 2014 but
wasn’t called out as a security fix and assigned CVE-2015-1805 until
February 2, 2015.

¥ blackhat L=, =01

CVE-2014-3153
Towelroot

CVE-2015-3636
Ping Pong Root

CVE-2015-1805
Pipe Root

0 200 400 600 800 1000
Days since the advisory publication date

¥ blackhat L=, =01

100%

80%

60%

40%

20%

0%

CVE-2014-3153 CVE-2015-3636 CVE-2015-1805
Towelroot Ping Pong Root Pipe Root
H Vulnerable Not Vulnerable

Vulnerability statistics collected from Chinese Android device in July 2016

4

f !
N '_‘I

i A & . /
QY blackhat L=, =201s ‘ ey R ;,é;.é ——5\“‘,.73
\ f 1 ‘ F : ,§?{-ﬂz; y l,/" _ ///

How/Who to Secure Them???

L]
' PayPal | VISA piscover| ({ &

Y Google Wallet GIEa

SAMSUNG

N blackhat L=A =01 S Vs “

Agenda

* Android Kernel Vulnerability Landscape
* Why Are They Long-lasting?

* The Solution

* AdaptKpatch: Adaptive Kernel Live Patching

* LuaKpatch: More Flexibility, Yet More Constraint
* The Future

e Establishing the Ecosystem

O blackhat =, =201

Kernel Live Patching

e kpatch
* kGraft
* ksplice
* Linux upstream’s livepatch

USERSPACE

kernel_func

—

buggy. func()

-: kGraft as an example
buggy, func()

BOOM!

O blackhat =, =201

Kernel Live Patching

* Load new functions into memory

* Link new functions into kernel
* Allows access to unexported kernel symbols

* Activeness safety check
* Prevent old & new functions from running at same time
e stop_machine() + stack backtrace checks

e Patch it!
* Uses ftrace etc.

https.//events.linuxfoundation.org/sites/events/files/slides/kpatch-linuxcon_3.pdf

O blackhat =, =201

Challenges for Third Party

* Most existing work requires source code. Phone vendor
is the only guy that can generate the live patches

* Unable to directly apply patches to other kernel builds

O blackhat =, =201

‘ ') [,
*i P .lyﬁ’f 1(‘ y %

AdaptKpatch - Adaptlve Live Patchmg

Auto patch = ® Kernel info gathering
adaption e Data structure filling

e Choice A: Install kernel

Patching module
.pz.;\ylo.ad e Choice B: Binary code
Injection

injection via mem device

| o Replace/hook

 Patching
payload vulnerable
execution functions

O blackhat =, =201

Kernel Info Collection

Kernel version
* /proc/version
* vermagic

Symbol addresses/CRC
» /proc/kallsyms (/proc/sys/kernel/kptr_restrict)

Other kernel modules
* Symbol CRC/module init offset

Boot image
» decompress gzip/bzip/lzma/lzo/xz/1z4
* some are raw code or even ELF file

Oblackhat sazoe (A Rt 7 g
N —

Patch Injection Methods Coverage

| |

99.4% D

0.6%

O blackhat =, =201

Method A: Kernel Module Injection

Kernel checks that need to be resolved for adaption
" vermagic check

= symbol CRC check

" module structure check

= vendor’s specific check
s*Samsung lkmauth

¥ blackhat L=, =01

Bypass vermagic/symbol CRC

- Big enough vermagic buffer
- Copy kernel vermagic string to module
- Copy kernel symbol CRCs to module

include/linux/vermagic.h

VERMAGIC_STRING
UTS_RELEASE " "
MODULE_VERMAGIC_ SMP MODULE_VERMAGIC PREEMPT
MODULE_VERMAGIC_MODULE_UNLOAD MODULE_VERMAGIC_MODVERSIONS
MODULE_ARCH_VERMAGIC

VERMAGIC_STRING "
AAA=YAY ! "

¥ blackhat L=, =01

-~

el

Bypass Samsung l[kmauth

:COC7718
:CoC7718
:COBC771C
:COC7720
:CPaC7724
:COBC7728
:COC772C
:COC7730
:COBC7734
:COC7738
:COBC773C
:CoeC7740
:C0aC7744
:COC7748
:COBC774C
:COC7750
:COC7754

:COC7874
:COC7878
:COBC787C
:COOC7880
:COC7884
:CPOC7888

EXPORT lkmauth
LDR
STMFD
SuB
LDR
MOV
MOV
LDR
LDR
STR
BL
MOV
LDR
BL
ADD
LDR
BL

= stack chk guard
SP!, {R4-R11,LR}
SP, SP, #0x54
R4, =0xC1254B04
R10, R1
R9, RO
RO, =lkmauth mutex
R3, [R3]
R3, [SP,#0x78+var_2C]
mutex_ lock
R1, R10
RO, =0xCOCCOSD3
printk
RO, SP, #0x78+var_4C
R1, =aTima_lkm ; "tima_lkm"
strcpy

R1, [R8,#0x144]

R1, #0

lkmauth_failed // BNE => NOP
RO, =0xCOCCOCOB

printk

lkmauth_pass

-4

) blackhat L=~ =201 s\ Koy SR e —

Method B: mem/kmem Injection

struct shell_code_binary {

SymbOI addresses unsigned long magic;

unsigned long version;

_ unsigned Long header_size;
VmaIIOC—exec unsigned lLong shellcode_size;
- module_alloc

unsigned Long shellcode_entry;
unsigned Long lookup name_offset;
unsigned Long mmap_ram_start_offset;
unsigned Long mmap_ram_end_offset;
StrUCtured She”COde unsigned Llong vuln_count_offset;
unsigned long vuln_ids offset;
A||ocate/reu5e memory unsigned Long current_pid_offset;
unsigned Long kmem_write_count;

. . unsigned long patch_count;
erte Into memory unsigned lLong* write_offset_array;
unsigned Long* patch_ids_array;
unsigned long* patch_offset_array;

Trlgger the rU n n i ng unsigned char¥* shellcode_body;l

O blackhat =, =201

Patching Payload Execution

* Overwrite the function pointer

Same with other

* Overwrite with patch code directly live patching methods

* Inline hook

¥ blackhat L=, =01

Adaption Challenges Solved

* Patch automatic adaption

Auto adaption

SN

()

0101

111
1100110
1101101
1100001

kernel info

Adapted patch

¥ blackhat L=, =01

Challenges Solved

v'Most existing work requires source code. Phone vendor
is the only guy that can generate the live patches

v'Unable to directly apply patches to other kernel
builds

B \/ulnerable ® I[mmutable B \ulnerable ® |[mmutable

O blackhat =, =201

Successfully Evaluated CVEs

mmap CVEs =» Framaroot

* CVE-2014-3153 =» Towelroot

* CVE-2015-0569

e CVE-2015-1805 =» Pipe Root

e CVE-2015-3636 =» Ping Pong Root
* CVE-2015-6640

* CVE-2016-0728

* CVE-2016-0805

* CVE-2016-0819

* CVE-2016-0844

¥ A /
|

N blackhat =2 =015 ‘ Ve B WY~ \\g‘_.‘;_,}rl ‘
-/ N ioy S

Successfully Evaluated on Most Popular Phones

GT-18552 GT-S7572

SM-G5308W Grand 2 Note 4

A

P6-UO6 Hornor U8825D

V2 Huawel

4

VA / '
§ v /J ' | !
;’ i 5 ™ Lt N
4 N
4 o Q" e 3 e

N blackhat L=~ 201 ‘ 50 i o —— \,.71
‘ het 57~ iy Sl S e

Successfully Evaluated on Most Popular Phones

K30-T

lenovo

4

’J ﬂa 4 . '{..‘/ ‘) / ™ ‘.ol
N blackhat =2 =015 ‘ Ve \ I WY 1. B~ S -‘;_,7«1 ;

Successfully Evaluated on Most Popular Phones

'7 P
Punmsuncg W2 Huawe GiONEEEII

£ m & iI X F

Coolpadix .
padeRr o WNEIZL i m

SMARTPHONE

w I\ ONEPLUS .

XIaomi.com Vivo ZTEE s
SONY Smart Phone ’enovo

O blackhat =, =201

Demo

Before Patch: Ping Pong Root succeed

After Patch: Ping Pong Root fail

¥ blackhat L=, =01

Recall the Two Problems

* The long patching chain
* Solved by adaptive live patching

e Capability mismatching
* To be solved by a joint-effort

W
%"

~

O blackhat =, =201

Exploit existing
vulnerabilities to gain root

Vendor cooperation & pre-
embedded kernel agent

Cloud

Phone

I 1
Patches ‘ \

Lists of
vulnerabilities
for devices

ﬂ SSL
v

User-space Agent

User Space

WSELinux Enforcement

................
..........

i« Display the list of
vulnerabilities and interact
............................... : With the user
............................... ; ® Patch management

{

Kernel-space

Patching Module

Kernel Space

..................

............................... i e Patch verification
................................ . * Patch adaption
. Patch execution & undo

i+ Status monitoring

¥ blackhat L=, =01

Multi-stage Vetting Mechanism

Vendor qualification

Patch security vetting

Reputation ranking

M blackhat U= =015 2 Q

Agenda

* Android Kernel Vulnerability Landscape
* Why Are They Long-lasting?

* LuaKpatch: More Flexibility, Yet More Constraint

* The Future
e Establishing the Ecosystem

O blackhat =, =201

We need a patching mechanism

e powerful enough to block most threats;
* agile enough for quick patch generation;

* yet restrictive enough to confine possible damages caused
by the patches.

O blackhat =, =201

Our Solution -- LuaKpatch

Inserting a type-safe dynamic language engine (Lua)
into the kernel to execute patches

* Easy to update
* Naturally jailed in the language VM
* No need to worry about memory overflow etc. of the patches

¥ blackhat L=, =01

malicious input malicious input
N
Arguments Arguments Arguments
N
External External External
Inputs Inputs Inputs
pwned
normal normal
control control
flow flow

By hooking the data input entries and validating the input,
we can block most of the kernel exploits.

O blackhat =, =201

So we have the following restrictions

1) The patch can hook a target function’s entry;

2) In combination with 1), within the target function, the patch can
hook the invoking point or returning point of functions that return a
status code (e.g., copy_from user);

3) The patch can read anything that can be read (registers, stacks,
heaps, code, etc., as long as it does not trigger faults), but cannot
modify original kernel memory (no write, and no data can be sent
out);

4) After judging whether the input is malicious or not, the patch can
return specific error codes.

¥ blackhat L=, =01

1: fun(...) {

2 // entry of A can be hooked
3: bool result;

4 struct *s;

5:

6: // foo is allowed to be hooked
7 result = foo(...);

8: if (result == E_INVALID)

9: return;

10:

11: // bar cannot be hooked

12 s = bar(...);

13: if (s)

14 : s=>fun () ;

15: 1}

A running example to illustrate which functions can be hooked and which cannot

O blackhat =, =201

Implementation of LuaKpatch

* Many practices followed from the lunatik-ng project.
* Line-of-Code (LoC) is ~11K. 600 LoC are the core patching logic.
* Compiled as a 800KB kernel module.

e Capability interfaces:
o Symbol searching
o Hooking
o Typed reading
o Thread info fetching

O blackhat =, =201

1 function kpatcher(patchID, sp, cpsr, r@, rl, r2, r3, r4, r5, r6, r7, r8, r9, ri1o, rill, ri2, rid4)
2 if patchID == 1 then

3 uaddrl = ro

4 uaddr2 = r2

5

6 if uaddrl == uaddr2 then
7 return ERROR

8 else

9 return 0

10 end

11 end

12 end

13

14 fun = kpatch.search_symbol('futex_requeue')
15 kpatch.hook(1, fun)

Sample Lua patch to fix one of the vulnerable conditions of CVE-2014-3153, known as “Towelroot”

O blackhat =, =201

Efficacy Evaluation

CVE-2012-4220
CVE-2012-4221
CVE-2012-4222
CVE-2013-1763
CVE-2013-2094
CVE-2013-2596

CVE-2013-6282

CVE-2014-4321
CVE-2014-4322
CVE-2015-0569
CVE-2015-1805

CVE-2015-3636
CVE-2015-6619

CVE-2016-0728
CVE-2016-0774

CVE-2016-2468

CVEs verified to be protectable by LuaKpatch.

Most are Type | vulnerabilities (those that can be patched by simply hooking the entry of the
vulnerable functions), but the highlighted/colored ones are Type Il vulnerabilities (those that
also need to hook the invocations that return status code).

¥ blackhat L=, =01

Efficacy Evaluation

All 21 CVEs can be patched by LuaKpatch. 16 are Type |, and 5 are Type |l.
So 76% of them can be easily fixed by hooking and checking input at the function entry.

¥ blackhat L=, =01

Example | (CVE-2013-1763)

diff --git a/net/core/sock_diag.c b/net/core/sock_diag.c
index 602cd63..750£f44f 100644
--- a/net/core/sock_diag.c
+++ b/net/core/sock_diag.c
ee -121,6 +121,9 @@ static int _ sock diag rcv _msg(struct sk buff *skb, struct nlmsghdr *nlh)
if (nlmsg len(nlh) < sizeof(*req))
return -EINVAL;

+ if (reg->sdiag family >= AF MAX)
+ return -EINVAL;

+

hndl = sock diag lock handler(reg->sdiag family);
if (hndl == NULL)
err = -ENOENT;

LuaKpatch can patch it by hooking the entry of the sock diag rcv msg function, getting the
nlh argument, obtaining req from nlh, and then checking whether the condition reg-

>sdiag family >= AF MAXis satisfied. If this is true, it is an exploit condition and the patch
should return an error.

¥ blackhat L=, =01

Example Il (CVE-2013-6123)

diff --git a/drivers/media/video/msm/server/msm_cam_server.c b/drivers/media/video/
index 5fc8e83..6e49082 100644

return rc;

by

[e = = e e o e o o e e e e e e == 1 --- a/drivers/media/video/msm/server/msm_cam_server.c
Iif (copy_from user(&u_isp event, | +++ b/drivers/media/video/m§m/server/msm_cam_server.c ‘ ' '
I (void _ user *)ioctl ptr->ioctl ptr, L @@ -1390,6 +1390,15 @@ static long msm_ioctl_server(struct file *file, void *fh,
I sizeof (struct msm isp event ctrl))) ({ I e = ¥
pr err("%s Copy from user failed for cmd %d", N
| - fune cmd) ; | \‘\mutex_lock(&g_server_dev.server_queue_lock);
| ~ i S I | + S
| rc = -EINVAL; | + if(u_isp_event.isp_data.ctrl.queue_idx < © ||
0 return rc; 0 + u_isp_event.isp_data.ctrl.queue_idx >= MAX_NUM_ACTIVE_CAMERA) {
I} 3 - pr_err("%s: Invalid index %d\n", __ func__,
________________________ + u_isp_event.isp_data.ctrl.queue_idx);
- rc = -EINVAL;
+
+
+

if (!g_server_dev.server_queue
[u_isp_event.isp_data.ctrl.queue_idx].queue_active) {
pr_err("%s: Invalid queue\n", __func__);

LuaKpatch can patch it by hooking the returning point of the copy from user invoked by
msm ioctl server to check the exploit condition.

O blackhat =, =201

Demo

Before Patch: Vulnerable to Towelroot and Ping Pong Root

After Patch: Immune to Towelroot and Ping Pong Root

Voot 4 oy
L. p . y/ //; P
7 A N W w _

y

/ i,
g }
f|

¥ blackhat L=, =01 ‘ |

Performance Evaluation

CF-Bench Performance Score

20000
18000
16000
14000
12000
10000
8000
6000
4000
2000

17473.25 17551.75 17521.4 17482

Normal Patched (Towelroot) Patched (Ping Pong Patched (both
Root) vulnerabilities)

./ //; §

: ?,A

Y

N blackhat L=~ =015 e e WP
\ g \ A:‘,, f gﬁ ’ /4

Execution Time of chmod (Microseconds)

120
100.7ps +0.42us +0.98us +0.82us +3.74us

100
80
60
40
20
0

No patch Patched with a Patched with a Patched witha Patched with mixed

direct return conditional memory read operations

comparison

O blackhat =, =201

LuaKpatch validation check adds an overhead under 4 microseconds,
only 4% of a chmod system call.

Because system calls are not invoked all the time, the impact to the
overall system performance should be even less.

* When a user normally browses Internet using Chrome on Nexus 5 +
Android 4.4, gettimeofday was the mostly-called system call,
triggered for ~110,000 times. The overall performance overhead can

be estimated as 5u1s*110,000/1min ~ 0.9%, which is quite small.

¥ blackhat L=, =01

As an ongoing work, we are migrating LuaKpatch to LuaJIlT, which
should further improve the performance.

N blackhat =2 =015 14 s ‘

Agenda

* Android Kernel Vulnerability Landscape
* Why Are They Long-lasting?

* The Future
* Establishing the Ecosystem

¥ blackhat L=, =01

AdaptKpatch . Cold Patching

(months)

WEES

The patching circle in the open collaborative patching ecosystem

O blackhat =, =201

Let’s fight the bad together!

* The number and the complexity of kernel vulnerabilities keep
increasing, so more joint effort makes it easier to battle against them.

* In the AdaptKpatch scheme, patches can be vetted and cross-
validated by qualified alliance members.

* Last but most importantly, all vendors can join together to develop a
patching standard instead of implementing different variants. If
different hot patching mechanisms exist, it introduces another layer

of fragmentation.

O blackhat =, =201

Thanks!

Yulong Zhang, Yue Chen, Chenfu Bao, Liangzhao Xia,
Longri Zheng, Yonggiang Lu, Lenx Wei
Baidu X-Lab
August 2016

