
Adaptive	Kernel	Live	Patching:	
An	Open	Collaborative	Effort	to	

Ameliorate	Android	N-day	Root	Exploits

Yulong	Zhang	and	Lenx	(Tao)	Wei
Baidu	X-Lab
August	2016

Agenda
• The	Problem

• Android	Kernel	Vulnerability	Landscape
• Why	Are	They	Long-lasting?
• Case	Studies

• The	Solution
• AdaptKpatch:	Adaptive	Kernel	Live	Patching
• LuaKpatch:	More	Flexibility,	Yet	More	Constraint

• The	Future
• Establishing	the	Ecosystem

Unprivileged	
User Root

Code	Execution
Vulnerability

Info-leak
Vulnerability

User	Mode

Kernel	ModeInformation	Leakage Privilege	Escalation

Threats	of	Kernel	Vulnerabilities

Threats	of	Kernel	Vulnerabilities
• Most	security	mechanisms	relying	on	kernel	integrity/trustworthiness	
will	be	broken

• Access	control,	app/user	isolation
• Payment/fingerprint	security
• KeyStore
• Other	Android	user-land	security	mechanisms

• TrustZone	will	also	be	threatened
• Attack	surfaces	exposed
• Not	enough	input	validation

Kernel	Vulnerabilities	in	Android	Security	Bulletin

1 1 3 4 4 7
15 19

66

0

10

20

30

40

50

60

70

2015/09 2015/12 2016/01 2016/02 2016/03 2016/04 2016/05 2016/06 2016/07

Monthly	Disclosed	Number	of	Android	Kernel	
Vulnerabilities

Month Count

2015/09 1

... ...

2015/12 1

2016/01 3

2016/02 4

2016/03 4

2016/04 7

2016/05 15

2016/06 19

2016/07 66

• More	and	more	attentions	are	
drawn	to	secure	the	kernel

• More	and	more	vulnerabilities	
are	in	the	N-Day	exploit	arsenal	
for	the	underground	businesses

The	Growing	Trend	Indicates

Many	Vulnerabilities	Have	Exploit	PoC	Publicly	Disclosed
Vulnerability/Exploit	Name CVE	ID
mempodipper CVE-2012-0056
exynos-abuse/Framaroot CVE-2012-6422
diagexploit CVE-2012-4221
perf_event_exploit CVE-2013-2094
fb_mem_exploit CVE-2013-2596
msm_acdb_exploit CVE-2013-2597
msm_cameraconfig_exploit CVE-2013-6123
get/put_user_exploit CVE-2013-6282
futex_exploit/Towelroot CVE-2014-3153
msm_vfe_read_exploit CVE-2014-4321
pipe	exploit CVE-2015-1805
Ping	Pong Root CVE-2015-3636
f2fs_exploit CVE-2015-6619
prctl_vma_exploit CVE-2015-6640
keyring_exploit CVE-2016-0728
…...

KEMOGE

https://www.fireeye.com/blog/threat-research/2015/10/kemoge_another_mobi.html

GHOSTPUSH

http://www.cmcm.com/blog/en/security/2015-09-18/799.html

DOGSPECTUS

“...	the	payload	of	that	exploit,	a	Linux	ELF	executable	named	module.so,	
contains	the	code	for	the	futex or	Towelroot	exploit that	was	first	
disclosed	at	the	end	of	2014.”

https://www.bluecoat.com/security-blog/2016-04-25/android-exploit-delivers-dogspectus-ransomware

HUMMINGBAD

“All	combined,	the	campaign	includes	nearly	85	million	devices...	
HummingBad	attempts	to	gain	root	access	on	a	device	with	a	rootkit	that	
exploits	multiple	vulnerabilities...	It	tries	to	root thousands	of	devices	
every	day,	with	hundreds	of	these	attempts	successful.”

https://www.bluecoat.com/security-blog/2016-04-25/android-exploit-delivers-dogspectus-ransomware

iOS	More	Secure?

?

iOS	Version Release	Date Kernel	Vulnerability	# Android	#	In	This	Period

8.4.1 8/13/15 3 -

9 9/16/15 12 1

9.1 10/21/15 6 -

9.2 12/8/15 5 1

9.2.1 1/19/16 4 3

9.3 3/21/16 9 8

9.3.2 5/16/16 11 22

V.S.

So	the	problem	is:	Android	has	MORE vulnerabilities
Vulnerabilities	remain	UNFIXED over	a	long	time

http://www.whisperingrandomness.com/wp-content/uploads/2014/03/iOS-security-black-hat-macworld-australia.jpg
http://images.pcworld.com/images/article/2011/11/androidsecurity-5241445.jpg

Agenda
• The	Problem

• Android	Kernel	Vulnerability	Landscape
• Why	Are	They	Long-lasting?
• Case	Studies

• The	Solution
• AdaptKpatch:	Adaptive	Kernel	Live	Patching
• LuaKpatch:	More	Flexibility,	Yet	More	Constraint

• The	Future
• Establishing	the	Ecosystem

• If	Apple	wants	to	patch	a	vulnerability
• Apple	controls	the	entire	(mostly)	supply	chain
• Apple	has	the	source	code
• Apple	refuses	to	sign	old	versions,	forcing	one-direction	upgrade
• All	the	iOS	devices	will	get	update	in	a	timely	manner

• Android
• Many	devices	stay	unpatched	forever/for	a	long	period...

Why	Are	Android	Kernel	Vulnerabilities	Long	Lasting?

• The	long	patching	chain	delays	the	patch	effective	date
• Fragmentation	makes	it	challenging	to	adapt	the	patches	to	all	
devices

• Capability	mismatching	between	device	vendors	and	security	vendors

Cause	A:	The	long	patching	chain

There	are	exploits	
appeared	in	public	but
• Never	got	officially	reported	to	
vendors

Exploits	made	public	but	not	reported

Android	Root	and	its	Providers:	A	Double-Edged	Sword	
H.	Zhang,	D.	She,	and	Z.	Qian,	CCS	2015

There	are	exploits	
disclosed	but
• Not	getting	timely	patches

Exploits	disclosed	but	not	timely	patched

https://bugs.chromium.org/p/project-zero/issues/detail?id=734&can=1&sort=-id

There	are	exploits	
patched	but
• Delayed	by	the	carriers

Exploits	patched	but	delayed	by	carriers

http://www.howtogeek.com/163958/why-do-carriers-delay-updates-for-android-but-not-iphone

User	delays	the	OTA	due	
to	rebooting

Why	Are	Android	Kernel	Vulnerabilities	Long	Lasting?

• The	long	patching	chain	delays	the	patch	effective	date
• Fragmentation	makes	it	challenging	to	adapt	the	patches	to	all	
devices

• Capability	mismatching	between	device	vendors	and	security	vendors

http://opensignal.com/reports/2015/08/android-fragmentation

Cause	B:	Fragmentation

Google	Dashboard	(2016/07/21)
Version Codename API Distribution
2.2 Froyo 8 0.1%
2.3.x Gingerbread 10 1.9%

4.0.x Ice	Cream	
Sandwich 15 1.7%

4.1.x
Jelly	Bean

16 6.4%
4.2.x 17 8.8%
4.3 18 2.6%
4.4 KitKat 19 30.1%
5.0

Lollipop
21 14.3%

5.1 22 20.8%
6.0 Marshmallow 23 13.3%

Lollipop	was	released	in	November	12,	2014,	but	

51.6%	of	the	devices	are	still	older	than	that!
Google	stopped	patching	for	Android	older	than	4.4,	

but	21.5%	of	the	devices	are	still	older	than	that!

Chinese	Market	Is	Even	Worse	
(Stats	from	devices	with	Baidu	apps	installed,	July	2016)	

Lollipop	was	released	in	November	12,	2014,	but	

80% of	the	devices	are	still	older	than	that!

Version Codename Rate
2.3.x Gingerbread 3%
4.0.x Ice	Cream	Sandwich 3%
4.1.x

Jelly	Bean 36%4.2.x
4.3
4.4 KitKat 39%
5 Lollipop 19%
5.1

42% of	the	devices	are	<4.4!

3% 3%

36%

39%

19%

Gingerbread

Ice	Cream	Sandwich

Jelly	Bean

KitKat

Lollipop

Why	Are	Android	Kernel	Vulnerabilities	Long	Lasting?

• The	long	patching	chain	delays	the	patch	effective	date
• Fragmentation	makes	it	challenging	to	adapt	the	patches	to	all	
devices

• Capability	mismatching	between	device	vendors	and	security	vendors

Security	Vendors:
• Capable	to	discover	and	patch	vulnerabilities
• Not	privileged	enough
• Without	source	code,	difficult	to	adapt	the	patches

Phone	Vendors:
• Privileged	to	apply	the	patches
• With	source	code,	easy	to	adapt	the	patches
• Not	enough	resources	to	discover	and	patch	vulnerabilities

Agenda
• The	Problem

• Android	Kernel	Vulnerability	Landscape
• Why	Are	They	Long-lasting?
• Case	Studies

• The	Solution
• AdaptKpatch:	Adaptive	Kernel	Live	Patching
• LuaKpatch:	More	Flexibility,	Yet	More	Constraint

• The	Future
• Establishing	the	Ecosystem

CVE-2014-3153	(Towelroot)

• The	futex_requeue function	in	kernel/futex.c in	the	Linux	kernel	
through	3.14.5	does	not	ensure	that	calls	have	two	different	
futex addresses,	which	allows	local	users	to	gain	privileges.

CVE-2015-3636 (PingPong Root)

• The	ping_unhash function	in	net/ipv4/ping.c in	the	Linux	kernel	before	4.0.3	
does	not	initialize	a	certain	list	data	structure	during	an	unhash operation,	
which	allows	local	users	to	gain	privileges	or	cause	a	denial	of	service.

CVE-2015-1805 (used in	KingRoot)

• The	pipe_read and	pipe_write implementations	in	kernel	before	3.16	allows	
local	users	to	cause	a	denial	of	service	(system	crash)	or	possibly	gain	
privileges	via	a	crafted	application.

• A	known issue in	the upstream Linux	kernel that was fixed in	April 2014	but
wasn’t called out	as	a	security fix and	assigned CVE-2015-1805 until
February 2,	2015.	

0 200 400 600 800 1000

CVE-2015-1805
Pipe	Root

CVE-2015-3636
Ping	Pong	Root

CVE-2014-3153
Towelroot

Days	since	the	advisory	publication	date

0%

20%

40%

60%

80%

100%

CVE-2014-3153
Towelroot

CVE-2015-3636
Ping	Pong	Root

CVE-2015-1805
Pipe	Root

Vulnerable Not	Vulnerable

Vulnerability	statistics	collected	from	Chinese	Android	device	in	July	2016

How/Who	to	Secure	Them???

Agenda
• The	Problem

• Android	Kernel	Vulnerability	Landscape
• Why	Are	They	Long-lasting?
• Case	Studies

• The	Solution
• AdaptKpatch:	Adaptive	Kernel	Live	Patching
• LuaKpatch:	More	Flexibility,	Yet	More	Constraint

• The	Future
• Establishing	the	Ecosystem

Kernel	Live	Patching

• kpatch
• kGraft
• ksplice
• Linux	upstream’s	livepatch
•

Kernel	Live	Patching

kGraft as	an	example

Kernel	Live	Patching

• Load	new	functions	into	memory
• Link	new	functions	into	kernel

• Allows	access	to	unexported kernel	symbols

• Activeness	safety	check
• Prevent	old	&	new	functions	from	running	at	same	time
• stop_machine()	+	stack	backtrace checks

• Patch	it!
• Uses	ftrace etc.

https://events.linuxfoundation.org/sites/events/files/slides/kpatch-linuxcon_3.pdf

Challenges	for	Third	Party

• Most	existing	work	requires	source	code.	Phone	vendor	
is	the	only	guy	that	can	generate	the	live	patches

• Unable	to	directly	apply	patches	to	other	kernel	builds

AdaptKpatch	- Adaptive	Live	Patching

Auto	patch	
adaption

• Kernel	info	gathering
• Data	structure	filling

Patching	
payload	
injection

• Choice	A:	Install	kernel	
module

• Choice	B:	Binary code
injection	via	mem	device

Patching	
payload	
execution

• Replace/hook	
vulnerable	
functions

Kernel	Info	Collection
• Kernel	version

• /proc/version
• vermagic

• Symbol	addresses/CRC
• /proc/kallsyms (/proc/sys/kernel/kptr_restrict)

• Other	kernel	modules
• Symbol	CRC/module	init offset

• Boot	image
• decompress	gzip/bzip/lzma/lzo/xz/lz4
• some	are	raw	code	or	even	ELF	file

Patch	Injection	Methods	Coverage

INSMOD	95%

(K)MEM	60%

0.6%

99.4%

Method	A:	Kernel	Module	Injection

Kernel	checks	that	need	to	be	resolved	for	adaption
§ vermagic	check
§ symbol	CRC	check
§module	structure	check
§ vendor’s	specific	check

vSamsung	lkmauth

Bypass	vermagic/symbol	CRC	

- Big	enough	vermagic	buffer
- Copy	kernel	vermagic	string	to	module
- Copy	kernel	symbol	CRCs	to	module

Bypass	Samsung	lkmauth

Method	B:	mem/kmem Injection

- Symbol	addresses
- vmalloc_exec
- module_alloc

- Structured	shellcode
- Allocate/reuse	memory
- Write	into	memory	
- Trigger	the	running

Patching	Payload	Execution

• Overwrite	the	function	pointer

• Overwrite	with	patch	code	directly

• Inline	hook

Same	with	other	
live	patching	methods

Adaption	Challenges	Solved
•Patch	automatic	adaption

Patch

Device	
kernel	info

Auto	adaption

Adapted	patch

Challenges	Solved
üMost	existing	work	requires	source	code.	Phone	vendor	
is	the	only	guy	that	can	generate	the	live	patches

üUnable	to	directly	apply	patches	to	other	kernel	
builds

Vulnerable Immutable Vulnerable Immutable

Successfully	Evaluated	CVEs
• mmap	CVEs è Framaroot
• CVE-2014-3153 è Towelroot
• CVE-2015-0569
• CVE-2015-1805 è Pipe	Root
• CVE-2015-3636 è Ping	Pong	Root
• CVE-2015-6640
• CVE-2016-0728
• CVE-2016-0805
• CVE-2016-0819
• CVE-2016-0844
• …...

Successfully	Evaluated	on	Most	Popular	Phones

GT-I8552 GT-S7572 S4 A7 SM-G5308W Grand	2 Note	4

C8813 P6-U06 Hornor U8825D

Successfully	Evaluated	on	Most	Popular	Phones

M7 M8Sw S720e T528d

Successfully	Evaluated	on	Most	Popular	Phones

A630t A788t A938t K30-T

Successfully	Evaluated	on	Most	Popular	Phones

Successfully	Evaluated	on	Most	Popular	Phones

Demo
Before	Patch:	Ping	Pong Root succeed

After	Patch:	Ping	Pong Root fail	

Recall	the	Two	Problems

• The	long	patching	chain
• Solved	by	adaptive	live	patching

• Capability	mismatching
• To	be	solved	by	a	joint-effort

Exploit	existing	
vulnerabilities	to	gain	root

Vendor	cooperation	&	pre-
embedded	kernel	agent

Multi-stage	Vetting	Mechanism

Vendor	qualification

Patch	security	vetting

Reputation	ranking

Agenda
• The	Problem

• Android	Kernel	Vulnerability	Landscape
• Why	Are	They	Long-lasting?
• Case	Studies

• The	Solution
• AdaptKpatch:	Adaptive	Kernel	Live	Patching
• LuaKpatch:	More	Flexibility,	Yet	More	Constraint

• The	Future
• Establishing	the	Ecosystem

We	need	a	patching	mechanism

• powerful	enough	to	block	most	threats;
• agile	enough	for	quick	patch	generation;
• yet	restrictive	enough	to	confine	possible	damages	caused	
by	the	patches.	

Our	Solution	-- LuaKpatch

Inserting	a	type-safe	dynamic	language	engine (Lua)	
into	the	kernel	to	execute	patches	

• Easy	to	update
• Naturally	jailed	in	the	language	VM
• No	need	to	worry	about	memory	overflow	etc.	of	the	patches

Arguments

External
Inputs

Arguments

External
Inputs

pwned
normal
control
flow

malicious	input

Arguments

External
Inputs

normal
control
flow

malicious	input

By	hooking	the	data	input	entries	and	validating	the	input,	
we	can	block	most	of	the	kernel	exploits.

So	we	have	the	following	restrictions
1) The	patch	can	hook	a	target	function’s	entry;
2) In	combination	with	1),	within	the	target	function,	the	patch	can	

hook	the	invoking	point	or	returning	point	of	functions	that	return	a	
status	code	(e.g.,	copy_from_user);

3) The	patch	can	read	anything	that	can	be	read	(registers,	stacks,	
heaps,	code,	etc.,	as	long	as	it	does	not	trigger	faults),	but	cannot	
modify	original	kernel	memory	(no	write,	and	no	data	can	be	sent	
out);

4) After	judging	whether	the	input	is	malicious	or	not,	the	patch	can	
return	specific	error	codes.

1: fun(...) {
2: // entry of A can be hooked
3: bool result;
4: struct *s;
5:
6: // foo is allowed to be hooked
7: result = foo(...);
8: if (result == E_INVALID)
9: return;
10:
11: // bar cannot be hooked
12: s = bar(...);
13: if (s)
14: s->fun();
15: }

A	running	example	to	illustrate	which	functions	can	be	hooked	and	which	cannot	

Implementation	of	LuaKpatch

• Many	practices	followed	from	the	lunatik-ng project.
• Line-of-Code	(LoC)	is	~11K.	600	LoC	are	the	core	patching	logic.
• Compiled	as	a	800KB	kernel	module.
• Capability	interfaces:

o Symbol	searching
oHooking
o Typed	reading
o Thread	info	fetching

Sample	Lua	patch	to	fix	one	of	the	vulnerable	conditions	of	CVE-2014-3153,	known	as	“Towelroot”	

Efficacy	Evaluation

CVE-2012-4220 CVE-2013-6123 CVE-2015-3636
CVE-2012-4221 CVE-2013-6282 CVE-2015-6619
CVE-2012-4222 CVE-2014-3153 CVE-2015-6640
CVE-2013-1763 CVE-2014-4321 CVE-2016-0728
CVE-2013-2094 CVE-2014-4322 CVE-2016-0774
CVE-2013-2596 CVE-2015-0569 CVE-2016-0802
CVE-2013-2597 CVE-2015-1805 CVE-2016-2468

CVEs	verified	to	be	protectable	by	LuaKpatch.	
Most	are	Type	I	vulnerabilities	(those	that	can	be	patched	by	simply	hooking	the	entry	of	the	
vulnerable	functions),	but	the	highlighted/colored	ones	are	Type	II	vulnerabilities	(those	that	
also	need	to	hook	the	invocations	that	return	status	code).	

Efficacy	Evaluation

All	21	CVEs	can	be	patched	by	LuaKpatch.	16	are	Type	I,	and	5	are	Type	II.	
So	76%	of	them	can	be	easily	fixed	by	hooking	and	checking	input	at	the	function	entry.	

Type	I
16

Type	II
5

Example	I	(CVE-2013-1763)

LuaKpatch	can	patch	it	by	hooking	the	entry	of	the	__sock_diag_rcv_msg function,	getting	the	
nlh argument,	obtaining	req from	nlh,	and	then	checking	whether	the	condition	req-
>sdiag_family >= AF_MAX is	satisfied.	If	this	is	true,	it	is	an	exploit	condition	and	the	patch	
should	return	an	error.

Example	II	(CVE-2013-6123)

LuaKpatch	can	patch	it	by	hooking	the	returning	point	of	the	copy_from_user invoked	by	
msm_ioctl_server to	check	the	exploit	condition.

Demo

Before	Patch:	Vulnerable	to	Towelroot and	Ping	Pong Root

After	Patch:	Immune	to	Towelroot and	Ping	Pong Root

Performance	Evaluation

17473.25 17551.75 17521.4 17482

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000

Normal Patched	(Towelroot) Patched	(Ping	Pong	
Root)

Patched	(both	
vulnerabilities)

CF-Bench	Performance	Score

0

20

40

60

80

100

120

No	patch Patched	with	a	
direct	return

Patched	with	a	
conditional	
comparison

Patched	with	a	
memory	read

Patched	with	mixed	
operations

Execution	Time	of	chmod	(Microseconds)

100.7µs	 +0.42µs	 +0.98µs	 +0.82µs	 +3.74µs	

LuaKpatch	validation	check	adds	an	overhead	under	4	microseconds,	
only	4%	of	a	chmod	system	call.

Because	system	calls	are	not	invoked	all	the	time,	the	impact	to	the	
overall	system	performance	should	be	even	less.	
• When	a	user	normally	browses	Internet	using	Chrome	on	Nexus	5	+	
Android	4.4,	gettimeofday was	the	mostly-called	system	call,	
triggered	for	~110,000	times.	The	overall	performance	overhead	can	
be	estimated	as	5µs*110,000/1min	» 0.9%,	which	is	quite	small.	

As an ongoing work, we are migrating LuaKpatch to LuaJIT, which
should further improve the performance.

Agenda
• The	Problem

• Android	Kernel	Vulnerability	Landscape
• Why	Are	They	Long-lasting?
• Case	Studies

• The	Solution
• AdaptKpatch:	Adaptive	Kernel	Live	Patching
• LuaKpatch:	More	Flexibility,	Yet	More	Constraint

• The	Future
• Establishing	the	Ecosystem

The	patching	circle	in	the	open	collaborative	patching	ecosystem

Let’s	fight	the	bad	together!
• The	number	and	the	complexity	of	kernel	vulnerabilities	keep	
increasing,	so	more	joint	effort	makes	it	easier	to	battle	against	them.

• In	the	AdaptKpatch	scheme,	patches	can	be	vetted	and	cross-
validated	by	qualified	alliance	members.

• Last	but	most	importantly,	all	vendors	can	join	together	to	develop	a	
patching	standard	instead	of	implementing	different	variants.	If	
different	hot	patching	mechanisms	exist,	it	introduces	another	layer	
of	fragmentation.	

Thanks!
Yulong	Zhang,	Yue	Chen,	Chenfu	Bao,	Liangzhao	Xia,	

Longri	Zheng,	Yongqiang	Lu,	Lenx	Wei
Baidu	X-Lab
August	2016

