1
: ey A s
- el
= ~ e -
S R

black hat

LISA =

Cptam Hook

NI AR L

P ratlng AVS to Bypass Epr0|t Mltlgatlons

o
'
N\ pess N :
- \';.. \\
\ A}

< U LY 2 0 - AUGUS T 4, 2016 / ™MANDALAY

A

Y

¥ blackhat LS. =01

WHO?

Udi Yavo

CTO and Co-Founder, enSilo

Former CTO, Rafael Cyber Security Division
Researcher

Author on BreakingMalware

Tomer Bitton

VP Research and Co-Founder, enSilo

Low Level Researcher, Rafael Advanced Defense Systems
Malware Researcher

Author on BreakingMalware

http://www.breakingmalware.com/
http://www.breakingmalware.com/

AGENDA

Hooking In a Nutshell
Scope of Research

Inline Hooking — Under the hood
- 32-bit function hooking
- 64-bit function hooking

Hooking Engine Injection Techniques
The 6 Security Issues of Hooking
Demo — Bypassing exploit mitigations
3"d Party Hooking Engines

Affected Products

Research Tools

Summary

¥ blackhat LS. =01

HOOKING IN A NUTSHELL

= Hooking is used to intercept function calls in order to alter or
augment their behavior
= Used in most endpoint security products:
* Anti-Exploitation — EMET, Palo-Alto Traps, ...
e Anti-Virus — Almost all of them
* Personal Firewalls — Comodo, Zone-Alarm,...

= Also used in non-security products for various purposes:
* Application Performance Monitoring (APM)
* Application Virtualization (Microsoft App-V)

= Used in Malware:
* Man-In-The-Browser (MITB)

¥ blackhat LS. =01

SCOPE OF RESEARCH

» QOur research encompassed about a dozen security products

* Focused on user-mode inline hooks — The most common hooking
method in real-life products

= Hooks are commonly set by an injected DLL. We'll refer to this DLL
as the “Hooking Engine”
= Kernel-To-User DLL injection techniques
* Used by most vendors to inject their hooking engine
* Complex and leads security issues

¥ blackhat LS. =01

Inline Hooking

¥ blackhat LS. =01

INLINE HOOKING — 32-BIT FUNCTION HOOKING

Straight forward most of the time:

Disassemble Allocate Copy Prolog Patch the

Prolog Code Stub : Instructions

Prolog with a
JMP

¥ blackhat LS. =01

INLINE HOOKING — 32-BIT FUNCTION HOOKING

InternetConnectW before the hook is set:

0:000:=86% u WININET!InternetConhectW

77090ec? 55
??D?DE:E Ebe:

??D?DE:E EEE:?E =zub ESD:?Ch

77090echk 53 push ebx
77090ecc 56 pu=h ==y
77090ecd 57 push edl

77090ecs EEE:?: .
770%90ech 53 pus=sh ebx
77090ecc 56 pus=h 2=l
27090ecd 57 pu=h ed1

¥ blackhat LS. =01

INLINE HOOKING — 32-BIT FUNCTION HOOKING

The hooking function (0x178940) The Copied Instructions

00178940 55 push ehp 0:014: %86 w po1(0019£22c)

00178941 8bec nov ebp, e=p 03110000 8bif now edi, edi
00178343 53 push ebx 03110002 55 push ebp
00178944 3b5dlc mow Ehg,dwurd ptr [ebpt+lCh] 13110003 aff oy ehp, e=p
Doass oo o 031100Q/=9bb0s£873 jmp WININET!InternetComnecti+0x5 (77090=cS)
00178949 ££7524 ush dvord ptr [ebpt24h] 031107 50 nop

0017894 33f6 ¥or esi,esi 03110405 50 nop

0017894e ££7520 push dword ptr [ebp+20h] 03118010 90 nop

00178951 53 mush Ebx

00178952 f£7518 push dword ptr [ebpt+l8h]

00178955 f£7514 push dword ptr [ebpt+ldh]

00178958 rush dword ptr [ebp+llh]

0017895k push

Original Function Code

¥ blackhat LS. =01

INLINE HOOKING — 32-BIT FUNCTION HOOKING

= Other Techniques:
* One Byte Patching (Malware) - Patch with an illegal instruction and catch in
the exception handler

* Microsoft Hot Patching — Only 2 bytes function prolog overwrite

0:027> ub kernelbaze!loadlibraryiies LE 0:033> ubh kernelbase!loadlibraryW+s Lé

FERKRELEATE ! CreateSemaphore B+ lu b .

- . FERKELBASE ! CreatefemaphoreEwid+0ush:

T5 oo imt 1

T54ThEL: o int g T4dfbElh eSild00nED Jup fielscz) e

753ZbEld oo int 3 FEBRELBASE | LoadLibrary: 7
T53ZbEle oo int 3 T4dfREZD sbEL Jup FERNM EASE | CreateSemaphorsEni+luth (74dfbElhL)
7TEIELELE 2= dms 3 T4dfREZE 55 push ebp

HEBNELEASE!LoadLibraryi: T44FbESY Bhec S sbp

75326620 BBEE mor 2di, adi - -

T53ZhEZE 55 push ebp . .

7537E6Z3 Bbec mov ebp,esp Hook|ng Function

= Some Possible Complications:

* Relative jmp/call in the prolog
* Very short functions/short prolog
* jmp/jxx to the middle of the prolog’s instruction

¥ blackhat LS. =01

INLINE HOOKING — 64-BIT FUNCTION HOOKING

* More complex

* 5 bytes jmp instruction might not be enough (limited to a 2GB range)

Patch the
Prolog with a
JMP

Disassemble Allocate Allocate Write Copy Prolog
Prolog @ Trampoline : Code Stub @ Trampoline @l Instructions

MOV RAX, <Hooking Function>
JMP RAX

¥ blackhat LS. =01

INLINE HOOKING — 64-BIT FUNCTION HOOKING

* |InternetConnectA before the hook is set:

0:000: w WININET! InternetConnectd

WININET | InternetConnecth:

000007 fe’ feldby0al 488952408 now qword ptr [rsp+8], rbx
000007te" tedb?0as 48896c2410 now qword ptr [r=sp+llh].rbp
000007te tedb?laa 4889742418 o gword ptr [rsp+ldh].r=1
000007fe’ feldbilaf &7 push rdi

* InternetConnectA after the hook is set:

0:009: u WIHIHET!InternetConnecti

000007fe" fe3b?0al e95b7iedif] goo007fe felff000
goo0007fe fe3b?0as 58
goo0007fe fe3b?0at 90
a00007fe" f=3b70a7 30
ao00n7fe” f=3b70a58 30
go00n7fe’ feibiial 30

==

TTT TR i g T - e

* Trampoline code:

0:009: uw 00007fe " felff000

000007fe felff000 48b3c094006200000000 mow rax, 000000007 62800940
goo0N?fe felifida ffel jmp rax

poo0007fe felff00c 90 nop

ooo0n?fe felffolod 30 nop

¥ blackhat LS. =01

INLINE HOOKING — 64-BIT FUNCTION HOOKING

If we follow the hooking function we get:

10000000° 00380000 4889522408 nov quord ptr [rsp+d],rhe
000000007 00380005 483%6c2410 nav qword ptr [rsptl0h],rhp

000000007 00380004 50 puzh rax
000000007 0038000b 48b8ab703bfefe0?0000 nov rax, offset WININET!InternetConnecti+0x5S (000007fe’ fedbi0ah)
00000000" 00380015 ffel np ray

nnnnnnnnnnnnnnnnnnn

Original Function Code

¥ blackhat LS. =01

INLINE HOOKING — 64-BIT FUNCTION HOOKING

= Other Techniques:
= 6 Bytes patching (requires hooks’ code stub to be in 32-bit address)

D:004% u bermelba=e!lpadlibrarya
HEHRE B E N Load braryi:
00007 Efc eBdBTED ERODOOOI00 puszh =TS
00007 Efc beBdBTES 2

T =Cid

! LeHdl B ptr [rep+llh] e=i
D000 TEEC BeBdBTEL 57 pu=zh rdi

= Double Push (Nikolay Igotti) — Preserves all registers

0:004> u kemelbase!loadlibrarya Jumps to 0x7ffc00030000

T REEF 1T mo e e

00007 EEct BeBdETED EROODOOOI0D puzh 0000k
00007 EEC* BeBdBTES 7442404 EcTE0000 mor dword ptr [z=pt+i].TEEChR
0007 EEc* BeBdBTEd =3 ret

0007 EEc* BeBdBT6e Z2048BL amdl byte ptr [raw-T5h].cl

= Possible Complications:
= Similar to 32-bit hooks
= More instruction pointer relative instructions:

MOV RAX, QWORD [RIP+0x15020]

¥ blackhat LS. =01

INLINE HOOKING — RECAP

Inline hooking is the most common hooking technique in real-life products

Rather intrusive — modifies the code of the of hooking function

Used by most endpoint security products

More on hooking:

e Binary Hooking Problems - By Gil Dabah
Trampolines in X64 - By Gil Dabah
Powerful x86/x64 Mini Hook-Engine - Daniel Pistelli
Inline Hooking for Programmers - Malware Tech

http://www.ragestorm.net/blogs/?p=348
http://www.ragestorm.net/blogs/?p=107
http://www.codeproject.com/Articles/21414/Powerful-x-x-Mini-Hook-Engine
http://www.malwaretech.com/2015/01/inline-hooking-for-programmers-part-1.html

¥ blackhat LS. =01

Kernel-To-User Code Injections

¥ blackhat LS. =01

INTRODUCTION - KERNEL-TO-USER CODE INJECTIONS

Mainly used for:
* |njecting DLLs

» Sandbox escapes — After exploiting privilege
escalation vulnerability

* |Injecting to protected processes

Fewer techniques exist than user-mode

Less documented than user-mode techniques

Used by both Malware and Software/Security vendors

¥ blackhat LS. =01

INJECTION METHODS — USER APC

The most common Kernel-To-User injection method

Used by lots of malwares:
* TDL
» ZERO ACCESS
* Sandbox escape shellcodes

Also used by lots of security products:
* AVG
* Kaspersky Home Edition
* Avecto

Documented:
e Blackout: What Really Happened
e Much more in forums and leaked source codes

https://www.blackhat.com/presentations/bh-usa-07/Butler_and_Kendall/Presentation/bh-usa-07-butler_and_kendall.pdf

¥ blackhat LS. =01

INJECTION METHODS — USER APC

Basic Steps (There are several variations):
1. Register load image callback using PsSetLoadlmageNotifyRoutine

2. Write payload that injects a dll using LdrLoadDl|

(Other variations use LoadLibrary)

3. Insert User APC using KelnsertQueueApc

¥ blackhat LS. =01

INJECTION METHODS — ENTRY POINT PATCHING

* Not really common but worth mentioning
e Used by Duqu

e Fully documented in:
http://binsec.gforge.inria.fr/pdf/Malware2013-Analysis-Diversion-Duqu-paper.pdf

¥ blackhat LS. =01

INJECTION METHODS — ENTRY POINT PATCHING

* Register load image callback using PsSetLoadlmageNotifyRoutine
and wait for main module to load

Ntoskrnl.exe EvilDriver.sys
Kernel Space
KiStartUserThread Callback Routine
Application

RtlUserThreadStart
User Space

Process Image

¥ blackhat LS. =01

INJECTION METHODS — ENTRY POINT PATCHING

* Write the payload to the process address space

Ntoskrnl.exe EvilDriver.sys
Kernel Space
KiStartUserThread Callback Routine
Application

RtlUserThreadStart
User Space

Process Image

¥ blackhat LS. =01

INJECTION METHODS — ENTRY POINT PATCHING

* Replace the image entry point with JMP to the new code

Ntoskrnl.exe EvilDriver.sys
Kernel Space
KiStartUserThread Callback Routine
JMP Payload Application

RtlUserThreadStart

’ Process Image

User Space

¥ blackhat LS. =01

INJECTION METHODS — ENTRY POINT PATCHING

* The payload executes, fixes the entry point and jumps to it

Ntoskrnl.exe EvilDriver.sys
Kernel Space
KiStartUserThread Callback Routine
JMP Payload Application

Jump to entry point
RtlUserThreadStart

’ Process Image

User Space

¥ blackhat LS. =01

INJECTION METHODS — ENTRY POINT PATCHING

* Internet Explorer patched entrypoint

1explore+0xlddd:

00=51ddd
00=z51dez
Nlz51de?
00=51de=8
00=51de9
00ch51ldea
00=51deb
00c=51dec

291es2b7f
=955 f9ffff
an

a0

a0

a0

a0

Bbf f

jnp
jmp
nop
nop
nop
nop
nop
Mo

00140000
1explore+0xl173c (00c=5173c)

edi.edl

0:000;:x86> uf 00140000

001dooon 55 push ebp
001d0o0ol & ROV ebp, esp
00140003 &3ecdd sub ezp, 48h
00140006 bS50 Imp 00140058

Id005E Eadl pu 40k
001d4005a EB0E0O0140OD PUS 1D0D0ER
0014005 Bd45bE lea eax. [ebp=-48h)
331333@3 EE 02380 —y ax i 113 77802340

1 63 402 7 ROoY eax, of fzat ntd 2 Imemcpy 2340}
00140068 ££dD call eax Load the
001d006a Bd45bE lea max, [abp-48h) . .
00140064 S0 push sax hooking engine
0014006 bLEBE 3487276 Wi eax.of fset kernelld?|Loadlibrary¥ (767248£3)
00140073 £Ed40D call A

140075 Gt RO ssn sho
001d007T 5d pop abp
00140078 55 puszh abp
00140079 Shes =0 abp, &=p
0014007 B3ecOd sub esp, 8
001d007e c74SEQ00000000 mow dwvord ptr [ebp-8].0
00140085 c745Ec02000000 mow dvord ptr [ebp-4].2
001d008c cT4568ddldc500 mow dvord ptr [ebp-8].cffiset iexplore+lxlddd (00cSlddd)
00140093 Bd45ic l=a eax. [ebp=4]
001d0o9s 50 push i
00140097 Gadd push 40k
0014009% e805000000 push)
0014009 Bb4dEs now ecx,dvord ptr [ebp-E]
001d00al 51 push (=4
001d00a2 LEB27437276 mow cax.of fset khernelld? ! VirtualProtect (7E724327)
001d00a7 §Ed0 call [F
01d00a% cE05000000 push 5
001id00as 68dE001d00 push 1DOODFh Restore the code of
001d400b3 68dd14=500 puszh affzat i1explore+lxlddd (00=51ddd)
001400bE bE4O2IE0T? 1= max, of f=at ntdll32 Inemcpy (T7802340) the entrypoint
LigEpEaiiiidase e 8 £u i) =EIT 234
001d00bE BdSSEc lea edx. [ebp=-4]
001di0c2 52 push edx
001d00c3 Bb45ic mow eax, dvord ptr [ebp=4]
001d00ce 50 push [
001d00=7 6805000000 push 5
001d0l0es Bb44EE 1= acy, deard ptr [ebp-8)
001d00cE 51 push [=i
00140040 bLEB27437276 Wi eax,of fset kernell? | VirtualProtect (7E724327)
00140045 £EdD call L

047 mow esp,

e aoas 2w - b —_s Jump back to the
001400ds a%felcadln 1mE imxploreslxlddd (00=S1ddd)

entrypoint

¥ blackhat LS. =01

INJECTION METHODS — IMPORT TABLE PATCHING

First published on Codeless-Code-Injections talk (to our knowledge) IMPORTED

Never been used by malware (to our knowledge)

Used by software and security vendors:
* Symantec
* Trusteer

* Microsoft App-V

Similar method could probably use TLS data directory

http://breakingmalware.com/injection-techniques/code-less-code-injections-and-0-day-techniques/

¥ blackhat LS. =01

INJECTION METHODS — IMPORT TABLE PATCHING

1. Register load image callback using 3. Point the import data directory to the new
PsSetLoadlmageNotifyRoutine and wait for main table
dule to load
moduie toloa 4. When the DLL is loaded the original PE
2. Allocate memory for the new import table and copy header is restored

old table with a new record for the injected DLL

Before After
MZ Header MZ Header Import Descriptor 1
DOS Stub DOS Stub Import Descriptor 2
File Header File Header /
Optional Header Optional Header
Data Directories Data Directories
Imports Imports
Import Descriptor 1 Import Descriptor 1
Import Descriptor 2 Import Descriptor 2

¥ blackhat LS. =01

INJECTION METHODS — IMPORT TABLE PATCHING

Internet Explorer patched import table

0:000> !dh iexplore

File Type: EXECUTABLE IMAGE
FILE HEADER VALUES
14C machine (1386)
S nunber of sections
S3F262AC time date stamp Mon Aug 18 23:31:40 2014

0.000.x86> dd scs sgogg 1 NE NEW rOw

0 file pointer to symbol table
0 nunber of symbols 00080000 ff7c009c ffffffff ffffffff ff7c00bd ff7c008c
E0 =size of optional header

102 characteristics poogsooz2s 00006294 00000000 OOODDOOOO 00006214 00006064
Executable 0008003z 00006328 00000000 OOODODOOOO 00006le8 OOOOGOEE
32 bit word machine 00080050 00006348 00000000 0QOOODOOOO 0O00061d8 0QOOOG118

00080064 00006360 00000000 OOODOOOO0O0 O0O0061bO 00006130

OPTIONAL HEADER VALUES
10B nagic #
11.00 linker version
3400 size of code

BEAOD size of initialized data Import Directory RVA is
0 size of uninitialized data
1DDD address of entry point H
1000 base of code out Of Image

1000 section alignment
200 file alignment
2 subsystem {(Windows GUI)
6.03 operating system version
6.03 image version
6.01 subsystem version
Ce000 size of inage
400 size of headers
CAEE4 checksun
0000000000100000 size of stack reserve
000000000000e000 size of stack commit
0000000000100000 size of heap reserve
0000000000001000 size of heap commit
8040 DLL characteristics
Dynamic base
Terminal server awvare

0 address [sizel of Export Directory
EF?CDUDG 8C] address [size] of Import Directory
7000 BDAUE] address [=1ze] of Resource Directory
a 0] address [size] of Exception Directory
C2800 3CB8] address [=ize] of Security Directory
csoo0 328] address [size] of Base Relocation Directory
4828 38] address [size] of Debug Directory
0 0] address [size] of Description Directory
1} 0] address [size] of Special Directory
1] 0] address [=si1ze] of Thread Storage Directory
2Dhasg 40] address [size] of Load Configuration Directory
0] address [size] of Bound Import Directory
6000 138] address [size] of Import Address Table Directory
45EQ0 A0] address [size] of Delay Import Directory
1] 0] address [=ize] of CORZ0 Header Directory
i} 0] address [size] of Reserved Directory

* Register load image callback using PsSetLoadlmageNotifyRoutine
and wait for ntdll.dll module to load

Ntoskrnl.exe EvilDriver.sys
Kernel Space
KiStartUserThread Callback Routine
Application

RtlUserThreadStart
User Space

LdrLoadDlI

¥ blackhat LS. =01

1'h 4 \

INJECTION METHODS — NTDLL.DLL/USER32.DLL PATCHING

* Write the payload to the process address space

Ntoskrnl.exe EvilDriver.sys
Kernel Space
KiStartUserThread Callback Routine
Application

RtlUserThreadStart
User Space

LdrLoadDlI

* Replace the LdrLoadLibrary prolog with JMP (or equivalent) to the payload

Ntoskrnl.exe EvilDriver.sys
Kernel Space
KiStartUserThread Callback Routine
JMP Payload Application

RtlUserThreadStart

’ LdrLoadDll

User Space

* The payload loads a dll, fixes LdrLoadDIll and jumps to it

Ntoskrnl.exe EvilDriver.sys
Kernel Space
KiStartUserThread Callback Routine
JMP Payload Application

Jump to LdrLoadDlI
RtlUserThreadStart

’ LdrLoadDll

User Space

¥ blackhat LS. =01

INJECTION METHODS — QUICK SUMMARY

* Kernel-To-User Injections are extensively used by both
malware and security/software products

e Kernel injections are mainly used to inject a DLL to
target processes

* In security products the injected DLL is commonly the
hooking engine

* Prone to mistakes — due to its relative complexity

¥ blackhat LS. =01

The 6 security issues of hooking

¥ blackhat LS. =01

#1 — UNSAFE INJECTION

Severity: Very High
Affected Systems: All Windows Versions

Occurs due to bad DLL injection implementation

= We found 2 types of unsafe injections:

* LoadLibrary from a relative path — vulnerable
to DLL Hijacking

* Unprotected injected DLL file — placed in
%appdata%\Local\Vendor
Can easily be replaced by the attacker

¥ blackhat LS. =01

#2 — PREDICTABLE RWX CODE STUBS

Severity: Very High
Affected Systems: All Windows Versions

The Kernel-To-User DLL injection allocates RWX code in a
predictable location

0:036> dds 410 19 0:036> laddress [Je10 -

00000000° 0 77adcddd ntdll 77a50000!LdrLoadDll Tsage - cunclas=ifieds

aooooooo 14 00DOOODO 4llocation Base: gooooooa” nooo

gggggggg 18 ””U””gge Base Address: 00000000- 0ooo

00000000 2'3 gggggmg End Address: gooooooo: 1000

0000000" 54 n000n0no Regicn Size: 000000007 00001000

00000000 28 77adcddd ntdll_772a00001LdrloadDll Type: 0oozo000 MEM PRIVATE

ooonoooon: 2 00000000 State: goooioo0o0 HEM COMMIT

gooooaoo” 30 77acefl3 ntdll 772a0000!Rt1EquallnicodeString Protect: oooooo4o PAGE EXECUTE EEADWEITE
Functions pointers in constant addresses RWX Permissions

* Implications:

* ASLR Bypass — The code stubs normally contains
addresses of critical OS functions

* Great for shellcode — Allows writing malicious code
to the allocated code-stub

¥ blackhat LS. =01

#3 — PREDICTABLE R-X CODE STUBS

Severity: Very High
Affected Systems: All Windows Versions

The Kernel-To-User DLL injection or hooking engine
allocates R-X code in a predictable location
Implications:

* ASLR Bypass — The code stubs contain the addresses
of critical OS functions

* Hooks Bypass — Calling the hook code stub
effectively bypasses the hook

 Code Reuse — The code can also be useful for ROP

nov edi, edi
push rbp
nov ebp.esp

mp SHELL32 1Shel | ExecuteExU+0x5 (00000000° 754blelb)
int 3

¥ blackhat LS. =01

#4 — PREDICTABLE RWX CODE STUBS 2

Severity: High
Affected Systems: Windows 7 and Below

The Kernel-To-User DLL injection allocates RWX code
without specifying exact address

Implications:
* Similar to the first predictable RWX Code issue

¥ blackhat LS. =01

#5 —RWX CODE STUBS

Severity: Medium
Affected Systems: All Windows Versions

The most common issue: most hooking engines leave their
hook code stubs as RWX

The implication - possible CFG bypass:
* Get arbitrary read/write in the target process
* Find the hook’s stub (R)
e Overwrite it (W)
* Trigger the execution of the hooked function (X)

* Note: Attacker with arbitrary read/write will probably succeed anyway

¥ blackhat LS. =01

#6 —RWX HOOKED MODULES

Severity: Medium
Affected Systems: All Windows Versions

Some hooking engines leave the code of the hooked
modules as RWX

The implication - possible CFG bypass

U=zages: Inage

Allocation Base: 77bs00o0
0:000% u ntdll!ldrloaddll Base Address: 77he2000
PR B R FEE TS vk End_Addrgss: 77be3000
77be2C76 6813040178 push 780104130 Region Size: ooooiloon
77be257h =3 ret Type: niloooooon MEM_ THAGE
77bes87c oo int 3 State: goooio0o I e LTl

aC7d 9] = Frotect : nooooodn PAGE_EXECUTE_READWRITE I

77be2C7e 48 dec =ax Hore info: Imy m ntdlP =
77be?57f 78bd i= ntdll IEtllengthRequiredSid+0=l6 {77be253s) Hore info: 1lmi ntdll
77be2BB1 7753 ja ntdll 1 TdrTloadbll+0x60 (77b=2E6d6) Hore info: ln 0x77be2076
77be2b83 L6 push es1

LdrLoadDIl Hook o
RWX Permissions

¥ blackhat LS. =01

SECURITY ISSUES OF HOOKING - RECAP

1 Unsafe injection Very high All windows versions
2 Predictable RWX code stubs Very high All windows versions
3 Predictable RX code stubs High All windows versions
4 Predictable RWX code stubs High Windows 7 and below
5 RWX hook code stubs Medium All windows versions

6 RWX hooked modules Medium All windows versions

¥ blackhat LS. =01

Demo

Bypassing Exploit Mitigations

¥ blackhat LS. =01

3" Party Hooking Engines

¥ blackhat LS. =01

3RD PARTY HOOKING ENGINES

= Developing a hooking engine is not an easy task

= Using open-source® or commercial hooking engines has many advantages:
* Easy API to work with
e Supports many platforms
e Saves development effort
* Saves testing effort

3" party hooking engines are also integrated into non-security products

= A security issue in a hooking engine results in many patches...

* We really like Gil Dabah’s distormx

https://github.com/gdabah/distormx

¥ blackhat LS. =01

EASYHOOK — OPEN-SOURCE HOOKING ENGINE

= Used by many open-source projects
= Also used by a few security vendors. For example, Vera

Features:
= Kernel Hooking support
= Thread Deadlock Barrier
= RIP-relative address relocation for 64-bit

Security Issues:
= RWX Hook Code Stubs
= RWX Hooked Modules

Bad Practice:
= Uses Non-Executable heap and changes parts of it to code

¥ blackhat LS. =01

DEVIARE2 - OPEN-SOURCE HOOKING ENGINE

= Dual License — Commercial or GPL for open-source
= Fixed the issues quickly

» From their web site:

Features:

= Defer Hook —Set a hook only when and if a module is loaded
= NET Function hooking

= |nterface for many languages: (C++, VB, Python, C#,...)
Security Issues:

= RWX Hook Code Stubs

¥ blackhat LS. =01

MADCODEHOOK — POWERFUL COMMERCIAL HOOKING

= Used by a lot for security vendors (75% of its users)
= Used by emsisoft

= Fixed the issues quickly

Features:

= |njection Driver — Used to perform kernel-injection into processes
= |PC API —Used to easily communicate with some main process

= |AT Hooking

Security Issues:
= RWX Hook Code Stubs

¥ blackhat LS. =01

MICROSOFT DETOURS

®= The most popular hooking engine in the world

= Microsoft’s App-V uses Detours which is integrated into Office
= We were surprised to find out that it has problems too...
Features:

= ARM support

Security Issues:
* Predictable RX (Universal).

* Details won’t be revealed until the patch is released (September)

¥ blackhat LS. =01

MICROSOFT DETOURS VULNERABILITY - IMPLICATIONS

= Microsoft’s hooking engine Detours — via Microsoft.com:

“Under commercial release for over 10 years, Detours is licensed by over 100 ISVs and used
within nearly every product team at Microsoft.”

= Could potentially affect millions of users

= Also used in security products

Hard to patch - In most cases fixing this issue requires recompilation of
each product individually which makes patching cumbersome

¥ blackhat LS. =01

Affected Products

¥ blackhat LS. =01

AFFECTED PRODUCTS

Products/Vendors

TOTALS

UnSafe
Injection

Predictable
RWX(Universal)

X(64-bit)

| A
v /4

Predictable
RX(Universal)

X (Initial Fix)

X

Predictable
RWX

X

X

RWX Hook
code stubs

RWX Hooked
Modules

Time To Fix (Days)

90
90
210
90
30
30
29
30
90
90
180
30
?
?
?

Fixed Independently

79.9

Patch wasn’t released yet

*

) blackhat LS. =01

UnSafe
Injection, 2

RWX Hooked

[
Predictable g
Modules, 5

RWX(Universal),

RWX Hook code
stubs, 7

¥ blackhat LS. =01

Research Tools

¥ blackhat LS. =01

RESEARCH TOOLS — AVULNERABILITY

* Tool to detect predictable RWX code regions
e Can be found at https://github.com/BreakingMalware/AVulnerabilityChecker

* Compares memory maps of processes

% C:\Users\Lab\Desktop\AVulnerabilityChecker.exe = Re @

Please make sure at least two browser tabs are open before running the tool. B
Press any key to continue . . .

canning...

lose all browsers and open at least two new tabs.

Press any key to continue . . .

IScanning to determine results...

Your computer is likely to be vulnerable to exploitable constant
Read-Write-Execute (RUX) addresses.

Details:

Base Address: Bx . Size: Bx18868 Memory Region
Affected Processes:
Affected Process chrome .exe<2640, 2312, 2896, 2816, 1512, 60884) Affected Process IDs

For further details, see: http://blog.ensilo.com/topic/research

Press any key to continue . . .

https://github.com/BreakingMalware/AVulnerabilityChecker

¥ blackhat LS. =01

RESEARCH TOOLS — HOOKS SCAN

* Tool for scanning hooks and checking their code permissions
* Compares code “On-Disk” with the code “In-Memory”

e Does best-effort to track hooks code stubs

BB C:\Windows\system32\cmd.exe |i”ﬂl@

¥ blackhat LS. =01

SUMMARY

Code hooking is an important capability for security/software vendors

Similar to other intrusive operations it has security implications

Almost all the vendors we tested were vulnherable to at least one issue

We worked closely with affected vendors to address all these issues —
most are already patched

O blackhat =, =201

Contact Us:

Udi, udi@ensilo.com

Tomer, tomer@ensilo.com

mailto:udi@ensilo.com
mailto:tomer@ensilo.com

