black hat USA 2016

Captain Hook:

Pirating AVS to Bypass Exploit Mitigations

JULY 30 - AUGUST 4, 2016 / MANDALAY BAY / LAS VEGAS

WHO?

Udi Yavo

- CTO and Co-Founder, enSilo
- Former CTO, Rafael Cyber Security Division
- Researcher
- Author on <u>BreakingMalware</u>

Tomer Bitton

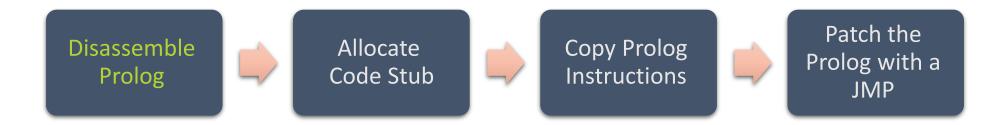
- VP Research and Co-Founder, enSilo
- Low Level Researcher, Rafael Advanced Defense Systems
- Malware Researcher
- Author on <u>BreakingMalware</u>

AGENDA

- Hooking In a Nutshell
- Scope of Research
- Inline Hooking Under the hood
 - 32-bit function hooking
 - 64-bit function hooking
- Hooking Engine Injection Techniques
- The 6 Security Issues of Hooking
- Demo Bypassing exploit mitigations
- 3rd Party Hooking Engines
- Affected Products
- Research Tools
- Summary

HOOKING IN A NUTSHELL

- Hooking is used to intercept function calls in order to alter or augment their behavior
- Used in most endpoint security products:
 - Anti-Exploitation EMET, Palo-Alto Traps, ...
 - Anti-Virus Almost all of them
 - Personal Firewalls Comodo, Zone-Alarm,...
 - ...
- Also used in non-security products for various purposes:
 - Application Performance Monitoring (APM)
 - Application Virtualization (Microsoft App-V)
- Used in Malware:
 - Man-In-The-Browser (MITB)


SCOPE OF RESEARCH

- Our research encompassed about a dozen security products
- Focused on user-mode inline hooks The most common hooking method in real-life products
- Hooks are commonly set by an injected DLL. We'll refer to this DLL as the "Hooking Engine"
- Kernel-To-User DLL injection techniques
 - Used by most vendors to inject their hooking engine
 - Complex and leads security issues

Inline Hooking

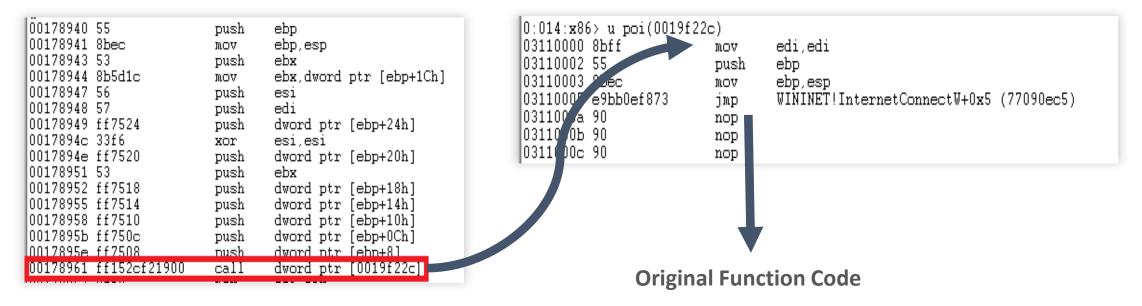
INLINE HOOKING – 32-BIT FUNCTION HOOKING

Straight forward most of the time:

INLINE HOOKING – 32-BIT FUNCTION HOOKING

InternetConnectW before the hook is set:

0:000:x86> u WININET!InternetConnectW WININET!InternetConnectW:								
77090ec0 8bff	mov	edi,edi						
77090ec2 55	push	ebp						
77090ec3 8bec	mov	ebp,esp						
77090ec5 83e418	and	esp,UFFFFFFF8h						
77090ec8 83ec7c	sub	esp,7Ch						
77090ecb 53	push	ebx						
77090ecc 56	push	esi						
77090ecd 57	push	edi						

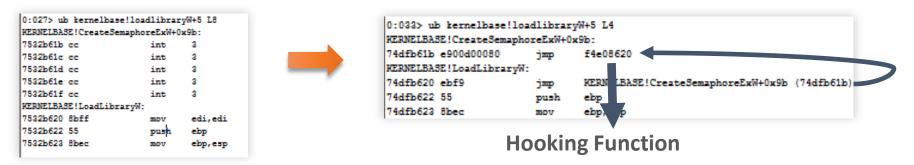

InternetConnectW After the hook is set:

0:014:x86> u WININET!InternetConnectW									
77090ec0	e97b7a0e89	jmp	00178940						
77090ec8 77090ec8 77090ecb 77090ecc 77090ecd	83ec7c 53 56	anu sub push push push	esp,orrrrrF8h esp,7Ch ebx esi edi						

INLINE HOOKING – 32-BIT FUNCTION HOOKING

The hooking function (0x178940)

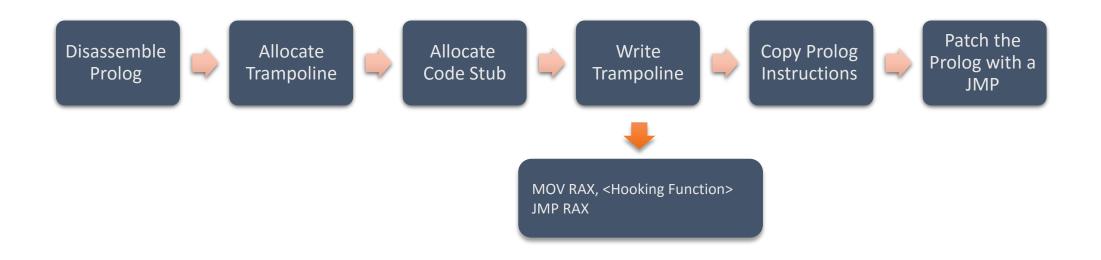
The Copied Instructions


INLINE HOOKING – 32-BIT FUNCTION HOOKING

Other Techniques:

۲

...


- One Byte Patching (Malware) Patch with an illegal instruction and catch in the exception handler
- Microsoft Hot Patching Only 2 bytes function prolog overwrite

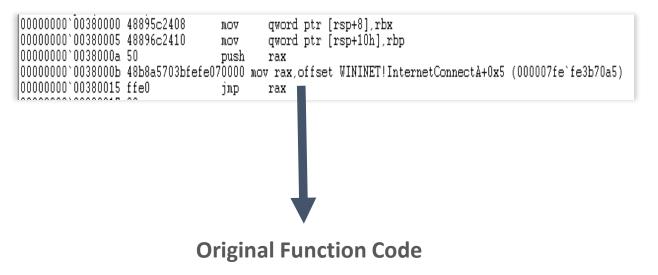
- Some Possible Complications:
 - Relative jmp/call in the prolog
 - Very short functions/short prolog
 - jmp/jxx to the middle of the prolog's instruction

INLINE HOOKING – 64-BIT FUNCTION HOOKING

- More complex
- 5 bytes jmp instruction might not be enough (limited to a 2GB range)

INLINE HOOKING – 64-BIT FUNCTION HOOKING

• InternetConnectA before the hook is set:

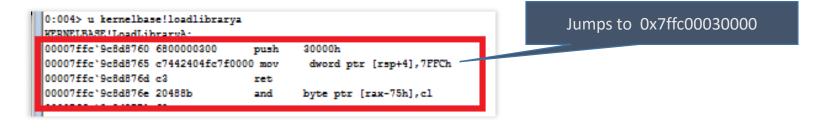

0:000> u WININET!InternetConnectA WININET!InternetConnectA:			
000007fe`fe3b70a0 48895c2408 000007fe`fe3b70a5 48896c2410 000007fe`fe3b70aa 4889742418	mov mov mov	qword ptr qword ptr	[rsp+8],rbx [rsp+10h],rbp [rsp+18h],rsi
000007fe`fe3b70af 57	push	rdi	

• InternetConnectA after the hook is set:

0:009> u WININET!In WININET!InternetCon							
000007fe`fe3b70a0 e	·····	000007fe`fe1ff000					
000007fe`fe3b70a5 5 000007fe`fe3b70a6 9	1 1	rax					
000007fe`fe3b70a7 9 000007fe`fe3b70a8 9	-						
000007fe`fe3b70a8 9 000007fe`fe3b70a9 9	1 -						
1000007ta takh/0aa /	889747418 10011	aword nto iren±1861 rei					
Trampoline code:							
0:009> u 00007fe`fe 000007fe`fe1ff000 4 000007fe`fe1ff00a f 000007fe`fe1ff00c 9 000007fe`fe1ff00c 9	8b8c094006800000000 fe0 jmp 0 nop	mov rax,00000000`680094c0 rax					

INLINE HOOKING – 64-BIT FUNCTION HOOKING

If we follow the hooking function we get:



INLINE HOOKING – 64-BIT FUNCTION HOOKING

- Other Techniques:
 - 6 Bytes patching (requires hooks' code stub to be in 32-bit address)

0:004> u kernelbas	se!loadlibrary	7 A		
RERNELBASE! LoadLi	oraryA:			
00007ffc`9c8d8760	6800000300	push	30000h	
00007ffc`9c8d8765	c3	ret		
UUUU/ffc'9c8d8/66	89792910	mov	dword ptr	[rsp+10h],esi
00007ffc`9c8d876a	57	push	rdi	

Double Push (Nikolay Igotti) – Preserves all registers

Possible Complications:

• ...

- Similar to 32-bit hooks
- More instruction pointer relative instructions:

MOV RAX, QWORD [RIP+0x15020]

INLINE HOOKING - RECAP

- Inline hooking is the most common hooking technique in real-life products
- Rather intrusive modifies the code of the of hooking function
- Used by most endpoint security products
- More on hooking:
 - Binary Hooking Problems By Gil Dabah
 - <u>Trampolines in X64</u> By Gil Dabah
 - <u>Powerful x86/x64 Mini Hook-Engine</u> Daniel Pistelli
 - Inline Hooking for Programmers Malware Tech

• ...

Kernel-To-User Code Injections

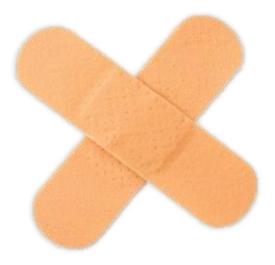
INTRODUCTION - KERNEL-TO-USER CODE INJECTIONS

- Mainly used for:
 - Injecting DLLs
 - Sandbox escapes After exploiting privilege escalation vulnerability
 - Injecting to protected processes
- Fewer techniques exist than user-mode
- Less documented than user-mode techniques
- Used by both Malware and Software/Security vendors

Summer States

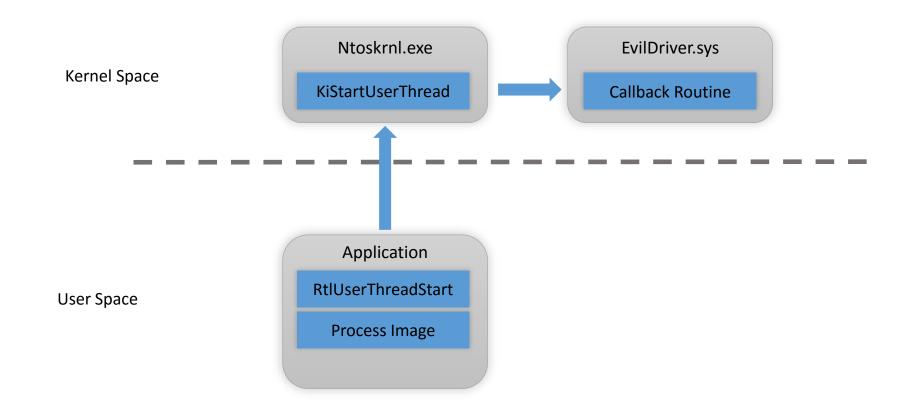
INJECTION METHODS – USER APC

- The most common Kernel-To-User injection method
- Used by lots of malwares:
 - TDL
 - ZERO ACCESS
 - Sandbox escape shellcodes
 - ...
- Also used by lots of security products:
 - AVG
 - Kaspersky Home Edition
 - Avecto
 - ...
- Documented:
 - Blackout: What Really Happened
 - Much more in forums and leaked source codes

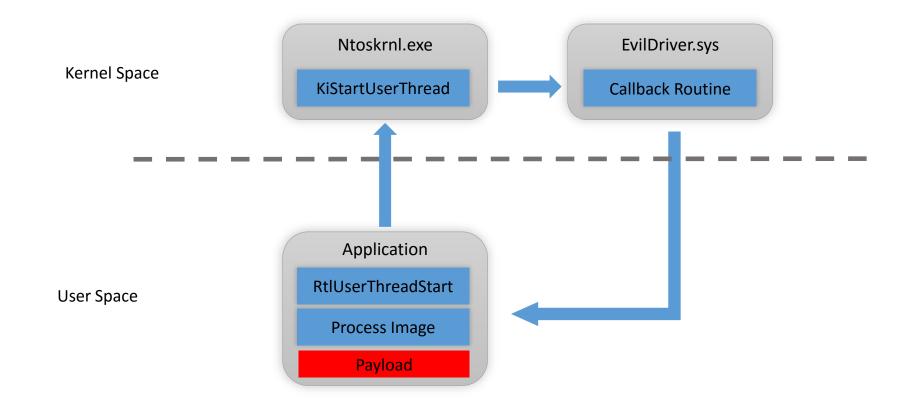

INJECTION METHODS – USER APC

Basic Steps (There are several variations):

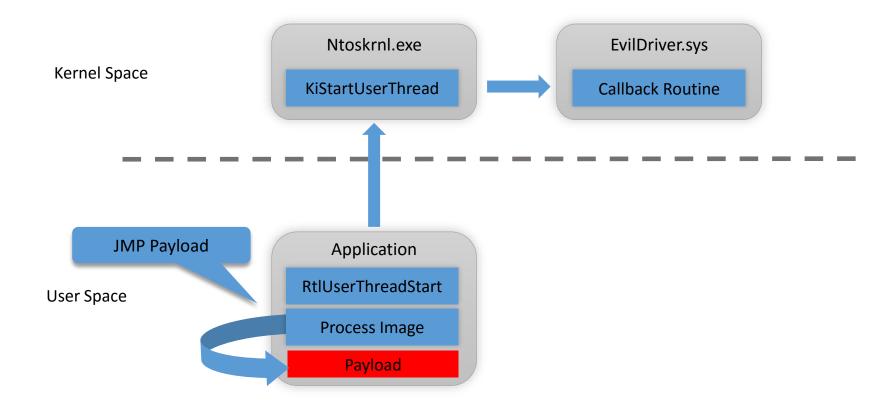
- 1. Register load image callback using PsSetLoadImageNotifyRoutine
- Write payload that injects a dll using LdrLoadDll (Other variations use LoadLibrary)
- 3. Insert User APC using KelnsertQueueApc


INJECTION METHODS - ENTRY POINT PATCHING

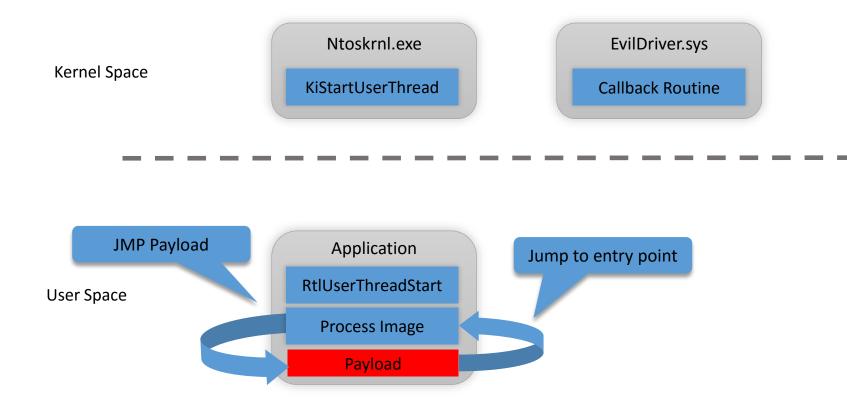
- Not really common but worth mentioning
- Used by Duqu
- Fully documented in: http://binsec.gforge.inria.fr/pdf/Malware2013-Analysis-Diversion-Duqu-paper.pdf


INJECTION METHODS - ENTRY POINT PATCHING

 Register load image callback using PsSetLoadImageNotifyRoutine and wait for main module to load


INJECTION METHODS - ENTRY POINT PATCHING

• Write the payload to the process address space


INJECTION METHODS - ENTRY POINT PATCHING

• Replace the image entry point with **JMP** to the new code

INJECTION METHODS - ENTRY POINT PATCHING

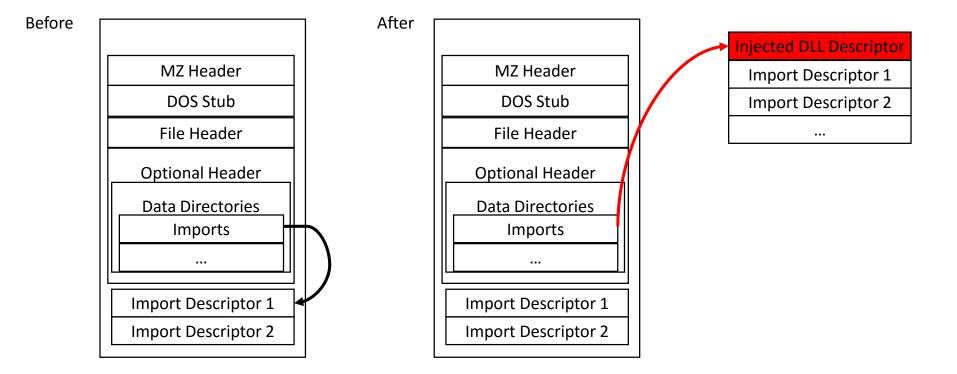
• The payload executes, fixes the entry point and jumps to it

INJECTION METHODS - ENTRY POINT PATCHING

• Internet Explorer patched entrypoint

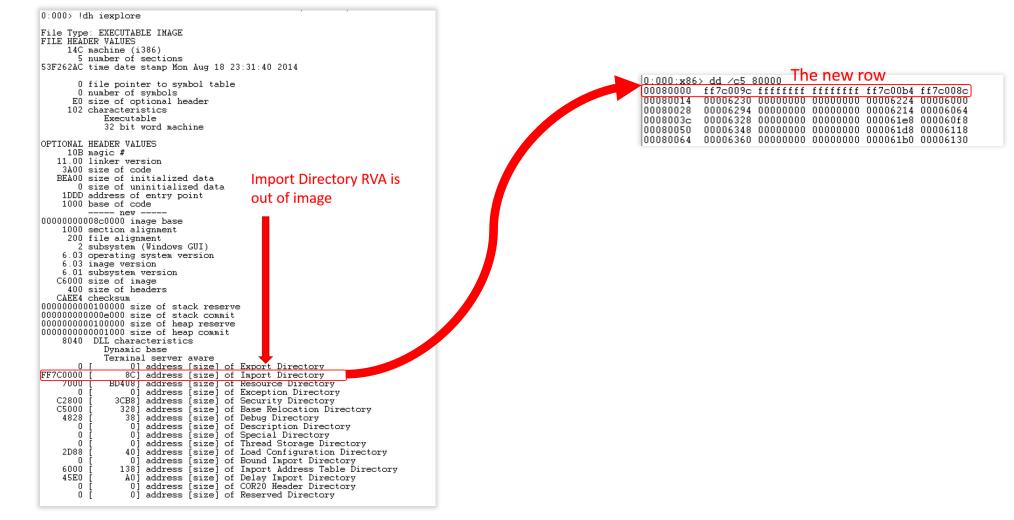
iexplore+0x1ddd: 00c51ddd e91ee257ff 00c51de2 e955f9ffff 00c51de7 90 00c51de8 90 00c51de9 90 00c51dea 90 00c51deb 90 00c51deb 90	jmp jmp nop nop nop nop nop mov	001d0000 iexplore+0x173c (00c5173c) edi,edi	001d0000 001d0001 001d0003 001d0006 001d0058 001d0058 001d0056 001d0062 001d0063 001d0068 001d0068	8bec 83ec48 eb50 6a40 6608001d00 8d45b8 50 b840238077 ffd0 8d45b8	push nov sub jmp push push lea push nov call lea	ebp ebp,esp esp,48h 001d0058 40h 1D0008h eax.[ebp-48h] eax eax.offset ntd1132!memcpy (77802340) eax eax.[ebp-48h]	Load the hooking engine
			00140073 00140077 00140077 00140079 00140079 00140079 00140085 00140085 00140096 00140096 00140099 00140099 00140099 00140099 00140040 00140040 00140040 00140040 00140040 00140040 00140040 00140040 00140045 001400	b%f3487276 ffd0 8he5 5d 55 8bec 83ec08 c745f800000000 c745fc0200000 c745fc0200000 c745f8d1dc500 8d45fc 50 6a40 6805000000 8b4df8 51 b%77437276 ffd0 8d45fc 52 8b45fc 50 6805000000 8b4df8 51 b%77437276 ffd0 8b45fc 52 8b45fc 50 6805000000 8b4df8 51 b%77437276 ffd0 8b45fc 52 8b45fc 50 6805000000 8b4df8 51 b%77437276 ffd0 8b45fc 50 8b5fc 50 8b45fc 50 8b45fc 50 8b45fc 50 8b45fc 50 8b45fc 50 8b45fc 50 8b45fc 50 8b45fc 50 8b45fc 50 8b45fc 50 8b45fc 50 8b45fc 50 8b45fc 50 8b45fc 50 8b45fc 51 8b57fc 5	push aov call aov pop pop posh aov aov aov push push push push push push push push	<pre>eax eax.offset kernel32!LoadLibraryW (767248f3) eax esp_ebp ebp ebp ebp.esp esp.8 dword ptr [ebp-8].0 dword ptr [ebp-4].2 dword ptr [ebp-8].offset iexplore+0x1ddd (00 eax.[ebp-4] eax.afset kernel32!VirtualProtect (76724327 eax.offset kernel32!VirtualProtect (76724327 eax.offset ntdl132!memcpy (77802340) eax.dfset ntdl132!memcpy (77802340) eax.dword ptr [ebp-4] eax.dword ptr [ebp-8] ecx.dword ptr [ebp-8] ecx.dword ptr [ebp-8] ecx.dword ptr [ebp-8] ecx.dword ptr [ebp-8] ecx.dword ptr [ebp-8] ecx.eax.offset kernel32!VirtualProtect (76724327 eax sp.ebp exp.ebp exp.ebp exp.ebp explore+0x1ddd (00c51ddd)</pre>	Restore the code of the entrypoint

INJECTION METHODS – IMPORT TABLE PATCHING

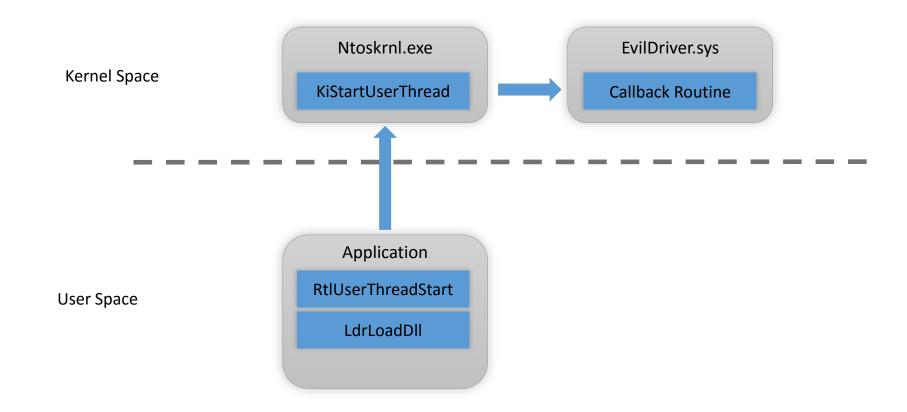

- First published on <u>Codeless-Code-Injections</u> talk (to our knowledge)
- IMPORTED

- Never been used by malware (to our knowledge)
- Used by software and security vendors:
 - Symantec
 - Trusteer
 - Microsoft App-V
- Similar method could probably use TLS data directory

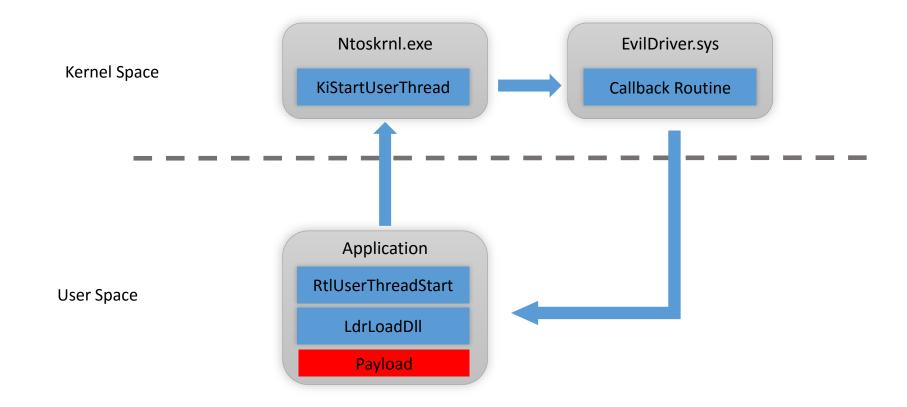
INJECTION METHODS – IMPORT TABLE PATCHING


- Register load image callback using PsSetLoadImageNotifyRoutine and wait for main module to load
- 2. Allocate memory for the new import table and copy old table with a new record for the injected DLL

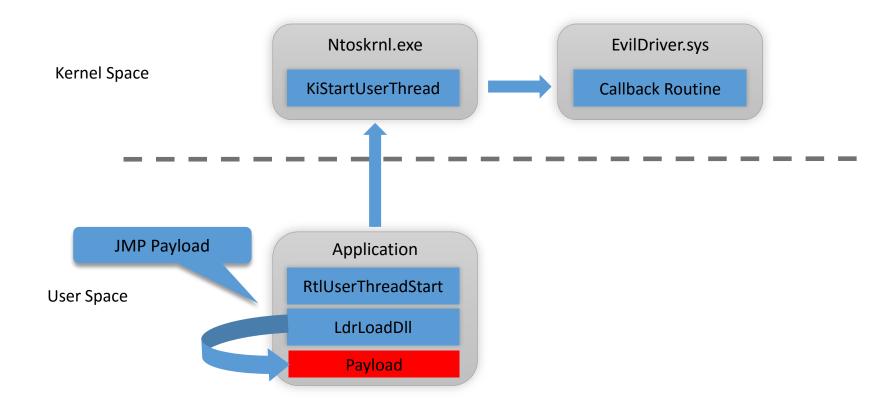
- 3. Point the import data directory to the new table
- 4. When the DLL is loaded the original PE header is restored


INJECTION METHODS - IMPORT TABLE PATCHING

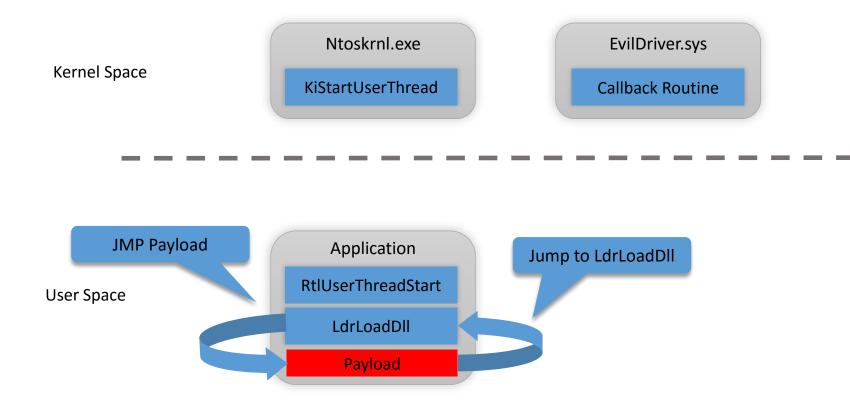
Internet Explorer patched import table


INJECTION METHODS – NTDLL.DLL/USER32.DLL PATCHING

 Register load image callback using PsSetLoadImageNotifyRoutine and wait for ntdll.dll module to load


INJECTION METHODS – NTDLL.DLL/USER32.DLL PATCHING

• Write the payload to the process address space


INJECTION METHODS – NTDLL.DLL/USER32.DLL PATCHING

• Replace the LdrLoadLibrary prolog with JMP (or equivalent) to the payload

INJECTION METHODS – NTDLL.DLL/USER32.DLL PATCHING

• The payload loads a dll, fixes LdrLoadDll and jumps to it

INJECTION METHODS – QUICK SUMMARY

- Kernel-To-User Injections are extensively used by both malware and security/software products
- Kernel injections are mainly used to inject a DLL to target processes
- In security products the injected DLL is commonly the hooking engine
- Prone to mistakes due to its relative complexity

The 6 security issues of hooking

#1 – UNSAFE INJECTION

Severity: Very High Affected Systems: All Windows Versions

Occurs due to bad DLL injection implementation

- We found 2 types of unsafe injections:
 - LoadLibrary from a relative path vulnerable to DLL Hijacking
 - Unprotected injected DLL file placed in %appdata%\Local\Vendor
 Can easily be replaced by the attacker

#2 – PREDICTABLE RWX CODE STUBS

Severity: Very High Affected Systems: All Windows Versions

The Kernel-To-User DLL injection allocates RWX code in a predictable location

Functions pointers in constant addresses

RWX Permissions

- Implications:
 - ASLR Bypass The code stubs normally contains addresses of critical OS functions
 - Great for shellcode Allows writing malicious code to the allocated code-stub

#3 – PREDICTABLE R-X CODE STUBS

Severity: Very High Affected Systems: All Windows Versions

The Kernel-To-User DLL injection or hooking engine allocates R-X code in a predictable location

Implications:

- ASLR Bypass The code stubs contain the addresses of critical OS functions
- Hooks Bypass Calling the hook code stub effectively bypasses the hook
- Code Reuse The code can also be useful for ROP

0 0 0 0 0	0000000` 01fd 0000000` 0202	8bff 55 8bec cc	nov push nov jnp int	edi,edi rbp ebp.esp SHELL32!ShellExecuteExV+0x5 3	(0000000°754b1e0b)
Ų	0000000 0203	CC	int	3	

#4 – PREDICTABLE RWX CODE STUBS 2

Severity: High Affected Systems: Windows 7 and Below

The Kernel-To-User DLL injection allocates RWX code without specifying exact address

Implications:

• Similar to the first predictable RWX Code issue

#5 – RWX CODE STUBS

Severity: Medium Affected Systems: All Windows Versions

The most common issue: most hooking engines leave their hook code stubs as RWX

The implication - possible CFG bypass:

- Get arbitrary read/write in the target process
- Find the hook's stub (R)
- Overwrite it (W)
- Trigger the execution of the hooked function (X)

* Note: Attacker with arbitrary read/write will probably succeed anyway

#6-RWX HOOKED MODULES

Severity: Medium Affected Systems: All Windows Versions

Some hooking engines leave the code of the hooked modules as RWX

The implication - possible CFG bypass

0:000> u ntdll!ldrload	d11		_
77be2576 6813040178 77be257b c3 77be257c cc 77be257d 90	push ret int nop	78010413h 3	
77be257e 48 77be257f 78bd 77be2581 7753 77be2583 56	dec js ja push		ngthRequiredSid+0x16 (77be253e) adD11+0x60 (77be25d6)

LdrLoadDll Hook

RWX Permissions

SECURITY ISSUES OF HOOKING - RECAP

lssu	e	Severity	Affected underlying systems
1	Unsafe injection	Very high	All windows versions
2	Predictable RWX code stubs	Very high	All windows versions
3	Predictable RX code stubs	High	All windows versions
4	Predictable RWX code stubs	High	Windows 7 and below
5	RWX hook code stubs	Medium	All windows versions
6	RWX hooked modules	Medium	All windows versions

Demo

Bypassing Exploit Mitigations

3rd Party Hooking Engines

3RD PARTY HOOKING ENGINES

- Developing a hooking engine is not an easy task
- Using open-source* or commercial hooking engines has many advantages:
 - Easy API to work with
 - Supports many platforms
 - Saves development effort
 - Saves testing effort
- 3rd party hooking engines are also integrated into non-security products
- A security issue in a hooking engine results in many patches...

EASYHOOK – OPEN-SOURCE HOOKING ENGINE

- Used by many open-source projects
- Also used by a few security vendors. For example, Vera

Features:

- Kernel Hooking support
- Thread Deadlock Barrier
- RIP-relative address relocation for 64-bit
- •

Security Issues:

- RWX Hook Code Stubs
- RWX Hooked Modules

Bad Practice:

Uses Non-Executable heap and changes parts of it to code

DEVIARE2 - OPEN-SOURCE HOOKING ENGINE

- Dual License Commercial or GPL for open-source
- Fixed the issues quickly
- From their web site:

"Several Fortune 500 companies are using Deviare technology for application virtualization, packaging, and troubleshooting, and for computer security."

Features:

- Defer Hook –Set a hook only when and if a module is loaded
- .NET Function hooking
- Interface for many languages: (C++, VB, Python, C#,...)

• ...

Security Issues:

RWX Hook Code Stubs

MADCODEHOOK – POWERFUL COMMERCIAL HOOKING

- Used by a lot for security vendors (75% of its users)
- Used by emsisoft
- Fixed the issues quickly

Features:

- Injection Driver Used to perform kernel-injection into processes
- IPC API –Used to easily communicate with some main process
- IAT Hooking
- ...

Security Issues:

RWX Hook Code Stubs

MICROSOFT DETOURS

- The most popular hooking engine in the world
- Microsoft's App-V uses Detours which is integrated into Office
- We were surprised to find out that it has problems too...

Features:

ARM support

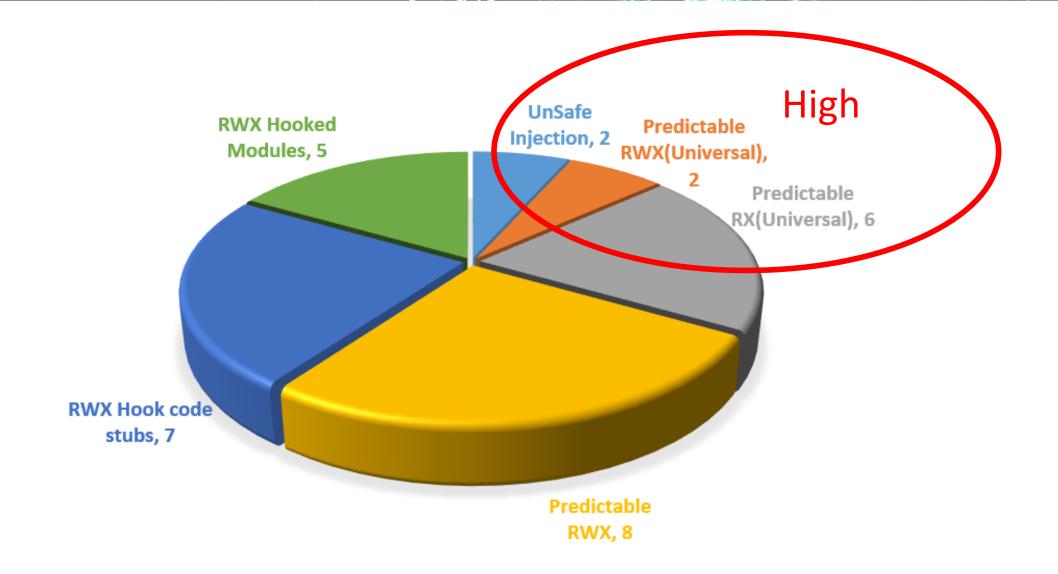
•

Security Issues:

• Predictable RX (Universal).

^{*} Details won't be revealed until the patch is released (September)

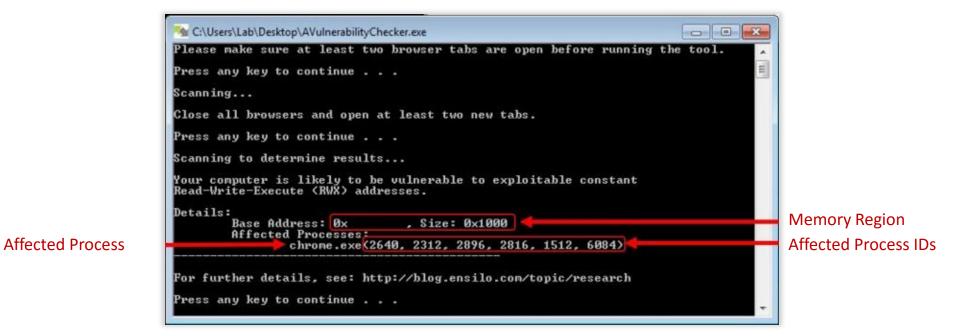
MICROSOFT DETOURS VULNERABILITY - IMPLICATIONS


Microsoft's hooking engine Detours – via Microsoft.com:

"Under commercial release for over 10 years, Detours is licensed by over 100 ISVs and used within nearly every product team at Microsoft."

- Could potentially affect millions of users
- Also used in security products
- Hard to patch In most cases fixing this issue requires recompilation of each product individually which makes patching cumbersome

Affected Products


Products/Vendors	UnSafe Injection	Predictable RWX(Universal)	Predictable RX(Universal)	Predictable RWX	RWX Hook code stubs	RWX Hooked Modules	Time To Fix (Days)
Symantec				Х			90
McAfee				Х	Х		90
Trend Micro		Х	X (Initial Fix)		Х		210
Kaspersky			Х	Х			90
AVG				Х			30
BitDefender					Х	Х	30
WebRoot			Х			Х	29
AVAST			Х		Х		30
Emsisoft					Х		90
Citrix - Xen Desktop					Х	Х	90
Microsoft Office*			Х				180
WebSense	х			Х		Х	30
Vera	х			Х			?
Invincea		X(64-bit)			Х	Х	?
Anti-Exploitation*				Х			?
BeyondTrust			Х	Х			Fixed Independently
TOTALS	2	2	6	8	7	5	79.9

Research Tools

RESEARCH TOOLS – AVULNERABILITY

- Tool to detect predictable RWX code regions
- Can be found at <u>https://github.com/BreakingMalware/AVulnerabilityChecker</u>
- Compares memory maps of processes

RESEARCH TOOLS – HOOKS SCAN

- Tool for scanning hooks and checking their code permissions
- Compares code "On-Disk" with the code "In-Memory"
- Does best-effort to track hooks code stubs

Export	Module	Source	Target	RWX	Signed	Unsafe
user32.AllowForegroundActivation	+	+=====================================	+=====================================	+===== ¦ V	-+ X	-+ ¦ U
user32.CascadeChildWindows	user32.d11	+ 0x74bd9979	Not Hook	+ ; U	- 	: U
user32.CloseWindow	user32.d11	+	Not Hook	: V	: X	: U
user32.CreateDesktopA	user32.dl1	0x74bd9783	Not Hook	U U	-+	: U
user32.CreateDesktopExA	user32.dl1	0x74bd9691	Not Hook	U U	Т.Х	i U
user32.CreateDesktopExW	user32.dll	0x74bd97ac	Not Hook	V	X	U
user32.CreateDesktopW	user32.dll	0x74bd97fc	Not Hook	V	X	U
user32.DisableProcessWindowsGhosting	user32.dll	0x74bd9e75	Not Hook	V	X	U
user32.GetClipboardData	user32.dll	0x74bd9f1d	Not Hook	U	X	U
user32.GetInputDesktop	user32.dll	0x74bd99e5	Not Hook	V	X	U
user32.GetKBCodePage	user32.dll	0x74bd9eb8	Not Hook	V	X	U
user32.GetKeyboardType	user32.dll	0x74bd9ac4	0x7ef80000	V	X	U
	Runtime Code	0x7ef80000	0x72721000	i V	X	i U
	.d11	0×72721189	0x7ef80005	X		: X
	Runtime Code	+	Øx74bd9ac9	: U	-+	-+ ! U

SUMMARY

- Code hooking is an important capability for security/software vendors
- Similar to other intrusive operations it has security implications
- Almost all the vendors we tested were vulnerable to at least one issue
- We worked closely with affected vendors to address all these issues most are already patched

Thank You!

Contact Us: Udi, <u>udi@ensilo.com</u> Tomer, <u>tomer@ensilo.com</u>

