
Pirating AVS to Bypass Exploit Mitigations

Captain Hook:

WHO?

Udi Yavo

 CTO and Co-Founder, enSilo
 Former CTO, Rafael Cyber Security Division
 Researcher
 Author on BreakingMalware

Tomer Bitton

 VP Research and Co-Founder, enSilo
 Low Level Researcher, Rafael Advanced Defense Systems
 Malware Researcher
 Author on BreakingMalware

http://www.breakingmalware.com/
http://www.breakingmalware.com/

 Hooking In a Nutshell

 Scope of Research

 Inline Hooking – Under the hood

- 32-bit function hooking

- 64-bit function hooking

 Hooking Engine Injection Techniques

 The 6 Security Issues of Hooking

 Demo – Bypassing exploit mitigations

 3rd Party Hooking Engines

 Affected Products

 Research Tools

 Summary

AGENDA

 Hooking is used to intercept function calls in order to alter or
augment their behavior

 Used in most endpoint security products:

• Anti-Exploitation – EMET, Palo-Alto Traps, …

• Anti-Virus – Almost all of them

• Personal Firewalls – Comodo, Zone-Alarm,…

• …

 Also used in non-security products for various purposes:

• Application Performance Monitoring (APM)

• Application Virtualization (Microsoft App-V)

 Used in Malware:

• Man-In-The-Browser (MITB)

HOOKING IN A NUTSHELL

 Our research encompassed about a dozen security products

 Focused on user-mode inline hooks – The most common hooking
method in real-life products

 Hooks are commonly set by an injected DLL. We’ll refer to this DLL
as the “Hooking Engine”

 Kernel-To-User DLL injection techniques

• Used by most vendors to inject their hooking engine

• Complex and leads security issues

SCOPE OF RESEARCH

Inline Hooking

Disassemble
Prolog

Allocate
Code Stub

Copy Prolog
Instructions

Patch the
Prolog with a

JMP

Straight forward most of the time:

INLINE HOOKING – 32-BIT FUNCTION HOOKING

INLINE HOOKING – 32-BIT FUNCTION HOOKING

InternetConnectW before the hook is set:

InternetConnectW After the hook is set:

The hooking function (0x178940) The Copied Instructions

Original Function Code

INLINE HOOKING – 32-BIT FUNCTION HOOKING

 Other Techniques:

• One Byte Patching (Malware) - Patch with an illegal instruction and catch in
the exception handler

• Microsoft Hot Patching – Only 2 bytes function prolog overwrite

 Some Possible Complications:

• Relative jmp/call in the prolog

• Very short functions/short prolog

• jmp/jxx to the middle of the prolog’s instruction

• …

Hooking Function

INLINE HOOKING – 32-BIT FUNCTION HOOKING

Disassemble
Prolog

Allocate
Trampoline

Allocate
Code Stub

Write
Trampoline

Copy Prolog
Instructions

Patch the
Prolog with a

JMP

MOV RAX, <Hooking Function>
JMP RAX

• More complex

• 5 bytes jmp instruction might not be enough (limited to a 2GB range)

INLINE HOOKING – 64-BIT FUNCTION HOOKING

• InternetConnectA before the hook is set:

• InternetConnectA after the hook is set:

• Trampoline code:

INLINE HOOKING – 64-BIT FUNCTION HOOKING

If we follow the hooking function we get:

Original Function Code

INLINE HOOKING – 64-BIT FUNCTION HOOKING

 Other Techniques:
 6 Bytes patching (requires hooks’ code stub to be in 32-bit address)

 Double Push (Nikolay Igotti) – Preserves all registers

 …

 Possible Complications:
 Similar to 32-bit hooks

 More instruction pointer relative instructions:

MOV RAX, QWORD [RIP+0x15020]

Jumps to 0x7ffc00030000

INLINE HOOKING – 64-BIT FUNCTION HOOKING

 Inline hooking is the most common hooking technique in real-life products

 Rather intrusive – modifies the code of the of hooking function

 Used by most endpoint security products

 More on hooking:

• Binary Hooking Problems - By Gil Dabah

• Trampolines in X64 - By Gil Dabah

• Powerful x86/x64 Mini Hook-Engine - Daniel Pistelli

• Inline Hooking for Programmers - Malware Tech

• …

INLINE HOOKING – RECAP

http://www.ragestorm.net/blogs/?p=348
http://www.ragestorm.net/blogs/?p=107
http://www.codeproject.com/Articles/21414/Powerful-x-x-Mini-Hook-Engine
http://www.malwaretech.com/2015/01/inline-hooking-for-programmers-part-1.html

Kernel-To-User Code Injections

INTRODUCTION - KERNEL-TO-USER CODE INJECTIONS

 Mainly used for:

• Injecting DLLs

• Sandbox escapes – After exploiting privilege

escalation vulnerability

• Injecting to protected processes

 Fewer techniques exist than user-mode

 Less documented than user-mode techniques

 Used by both Malware and Software/Security vendors

 The most common Kernel-To-User injection method

 Used by lots of malwares:
• TDL
• ZERO ACCESS
• Sandbox escape shellcodes
• …

 Also used by lots of security products:
• AVG
• Kaspersky Home Edition
• Avecto
• …

 Documented:
• Blackout: What Really Happened
• Much more in forums and leaked source codes

INJECTION METHODS – USER APC

https://www.blackhat.com/presentations/bh-usa-07/Butler_and_Kendall/Presentation/bh-usa-07-butler_and_kendall.pdf

Basic Steps (There are several variations):

1. Register load image callback using PsSetLoadImageNotifyRoutine

2. Write payload that injects a dll using LdrLoadDll

(Other variations use LoadLibrary)

3. Insert User APC using KeInsertQueueApc

INJECTION METHODS – USER APC

• Not really common but worth mentioning

• Used by Duqu

• Fully documented in:
http://binsec.gforge.inria.fr/pdf/Malware2013-Analysis-Diversion-Duqu-paper.pdf

INJECTION METHODS – ENTRY POINT PATCHING

Kernel Space

User Space
RtlUserThreadStart

KiStartUserThread Callback Routine

Process Image

• Register load image callback using PsSetLoadImageNotifyRoutine
and wait for main module to load

INJECTION METHODS – ENTRY POINT PATCHING

Application

Ntoskrnl.exe EvilDriver.sys

Kernel Space

User Space
RtlUserThreadStart

KiStartUserThread Callback Routine

Process Image

• Write the payload to the process address space

INJECTION METHODS – ENTRY POINT PATCHING

Application

Ntoskrnl.exe EvilDriver.sys

Payload

Kernel Space

User Space
RtlUserThreadStart

KiStartUserThread Callback Routine

• Replace the image entry point with JMP to the new code

INJECTION METHODS – ENTRY POINT PATCHING

Application

Ntoskrnl.exe EvilDriver.sys

Payload

JMP Payload

Process Image

Kernel Space

User Space
RtlUserThreadStart

KiStartUserThread Callback Routine

• The payload executes, fixes the entry point and jumps to it

INJECTION METHODS – ENTRY POINT PATCHING

Application

Ntoskrnl.exe EvilDriver.sys

Payload

JMP Payload

Process Image

Jump to entry point

• Internet Explorer patched entrypoint

INJECTION METHODS – ENTRY POINT PATCHING

 First published on Codeless-Code-Injections talk (to our knowledge)

 Never been used by malware (to our knowledge)

 Used by software and security vendors:

• Symantec

• Trusteer

• Microsoft App-V

 Similar method could probably use TLS data directory

INJECTION METHODS – IMPORT TABLE PATCHING

http://breakingmalware.com/injection-techniques/code-less-code-injections-and-0-day-techniques/

PE HeaderMZ Header

DOS Stub

File Header

Optional Header

Data Directories

Imports

…

Import Descriptor 1

Import Descriptor 2

Before

PE HeaderMZ Header

DOS Stub

File Header

Optional Header

Data Directories

Imports

…

Import Descriptor 1

Import Descriptor 2

After

Import Descriptor 1

Import Descriptor 2

Injected DLL Descriptor

…

1. Register load image callback using
PsSetLoadImageNotifyRoutine and wait for main
module to load

2. Allocate memory for the new import table and copy
old table with a new record for the injected DLL

INJECTION METHODS – IMPORT TABLE PATCHING

3. Point the import data directory to the new
table

4. When the DLL is loaded the original PE
header is restored

INJECTION METHODS – IMPORT TABLE PATCHING

Internet Explorer patched import table

Kernel Space

User Space
RtlUserThreadStart

KiStartUserThread Callback Routine

LdrLoadDll

• Register load image callback using PsSetLoadImageNotifyRoutine
and wait for ntdll.dll module to load

INJECTION METHODS – NTDLL.DLL/USER32.DLL PATCHING

Application

Ntoskrnl.exe EvilDriver.sys

Kernel Space

User Space
RtlUserThreadStart

KiStartUserThread Callback Routine

LdrLoadDll

• Write the payload to the process address space

INJECTION METHODS – NTDLL.DLL/USER32.DLL PATCHING

Application

Ntoskrnl.exe EvilDriver.sys

Payload

Kernel Space

User Space
RtlUserThreadStart

KiStartUserThread Callback Routine

LdrLoadDll

• Replace the LdrLoadLibrary prolog with JMP (or equivalent) to the payload

INJECTION METHODS – NTDLL.DLL/USER32.DLL PATCHING

Application

Ntoskrnl.exe EvilDriver.sys

PayloadPayload

JMP Payload

Kernel Space

User Space
RtlUserThreadStart

KiStartUserThread Callback Routine

LdrLoadDll

• The payload loads a dll, fixes LdrLoadDll and jumps to it

INJECTION METHODS – NTDLL.DLL/USER32.DLL PATCHING

Application

Ntoskrnl.exe EvilDriver.sys

PayloadPayload

JMP Payload
Jump to LdrLoadDll

• Kernel-To-User Injections are extensively used by both
malware and security/software products

• Kernel injections are mainly used to inject a DLL to
target processes

• In security products the injected DLL is commonly the
hooking engine

• Prone to mistakes – due to its relative complexity

INJECTION METHODS – QUICK SUMMARY

The 6 security issues of hooking

Severity: Very High
Affected Systems: All Windows Versions

Occurs due to bad DLL injection implementation

 We found 2 types of unsafe injections:

• LoadLibrary from a relative path – vulnerable
to DLL Hijacking

• Unprotected injected DLL file – placed in
%appdata%\Local\Vendor
Can easily be replaced by the attacker

#1 – UNSAFE INJECTION

RWX PermissionsFunctions pointers in constant addresses

Severity: Very High
Affected Systems: All Windows Versions

The Kernel-To-User DLL injection allocates RWX code in a
predictable location

• Implications:

• ASLR Bypass – The code stubs normally contains
addresses of critical OS functions

• Great for shellcode – Allows writing malicious code
to the allocated code-stub

#2 – PREDICTABLE RWX CODE STUBS

Severity: Very High
Affected Systems: All Windows Versions

The Kernel-To-User DLL injection or hooking engine
allocates R-X code in a predictable location

Implications:

• ASLR Bypass – The code stubs contain the addresses
of critical OS functions

• Hooks Bypass – Calling the hook code stub
effectively bypasses the hook

• Code Reuse – The code can also be useful for ROP

#3 – PREDICTABLE R-X CODE STUBS

Severity: High
Affected Systems: Windows 7 and Below

The Kernel-To-User DLL injection allocates RWX code
without specifying exact address

Implications:

• Similar to the first predictable RWX Code issue

#4 – PREDICTABLE RWX CODE STUBS 2

Severity: Medium
Affected Systems: All Windows Versions

The most common issue: most hooking engines leave their
hook code stubs as RWX

The implication - possible CFG bypass:

• Get arbitrary read/write in the target process

• Find the hook’s stub (R)

• Overwrite it (W)

• Trigger the execution of the hooked function (X)

#5 –RWX CODE STUBS

* Note: Attacker with arbitrary read/write will probably succeed anyway

LdrLoadDll Hook
RWX Permissions

Severity: Medium
Affected Systems: All Windows Versions

Some hooking engines leave the code of the hooked
modules as RWX

The implication - possible CFG bypass

#6 –RWX HOOKED MODULES

SECURITY ISSUES OF HOOKING - RECAP

Demo
Bypassing Exploit Mitigations

3rd Party Hooking Engines

 Developing a hooking engine is not an easy task

 Using open-source* or commercial hooking engines has many advantages:

• Easy API to work with

• Supports many platforms

• Saves development effort

• Saves testing effort

 3rd party hooking engines are also integrated into non-security products

 A security issue in a hooking engine results in many patches…

3RD PARTY HOOKING ENGINES

* We really like Gil Dabah’s distormx

https://github.com/gdabah/distormx

 Used by many open-source projects

 Also used by a few security vendors. For example, Vera

Features:

 Kernel Hooking support

 Thread Deadlock Barrier

 RIP-relative address relocation for 64-bit

 …

Security Issues:

 RWX Hook Code Stubs

 RWX Hooked Modules

Bad Practice:

 Uses Non-Executable heap and changes parts of it to code

EASYHOOK – OPEN-SOURCE HOOKING ENGINE

“Several Fortune 500 companies are using Deviare technology for application
virtualization, packaging, and troubleshooting, and for computer security.”

 Dual License – Commercial or GPL for open-source

 Fixed the issues quickly

 From their web site:

Features:

 Defer Hook –Set a hook only when and if a module is loaded

 .NET Function hooking

 Interface for many languages: (C++, VB, Python, C#,…)

 …

Security Issues:

 RWX Hook Code Stubs

DEVIARE2 - OPEN-SOURCE HOOKING ENGINE

 Used by a lot for security vendors (75% of its users)

 Used by emsisoft

 Fixed the issues quickly

Features:

 Injection Driver – Used to perform kernel-injection into processes

 IPC API –Used to easily communicate with some main process

 IAT Hooking

 …

Security Issues:

 RWX Hook Code Stubs

MADCODEHOOK – POWERFUL COMMERCIAL HOOKING

 The most popular hooking engine in the world

 Microsoft’s App-V uses Detours which is integrated into Office

 We were surprised to find out that it has problems too…

Features:

 ARM support

 …

Security Issues:

• Predictable RX (Universal).

MICROSOFT DETOURS

* Details won’t be revealed until the patch is released (September)

“Under commercial release for over 10 years, Detours is licensed by over 100 ISVs and used
within nearly every product team at Microsoft.”

 Microsoft’s hooking engine Detours – via Microsoft.com:

 Could potentially affect millions of users

 Also used in security products

 Hard to patch - In most cases fixing this issue requires recompilation of
each product individually which makes patching cumbersome

MICROSOFT DETOURS VULNERABILITY - IMPLICATIONS

Affected Products

Products/Vendors
UnSafe

Injection

Predictable

RWX(Universal)

Predictable

RX(Universal)

Predictable

RWX

RWX Hook

code stubs

RWX Hooked

Modules
Time To Fix (Days)

Symantec X 90

McAfee X X 90

Trend Micro X X (Initial Fix) X 210

Kaspersky X X 90

AVG X 30

BitDefender X X 30

WebRoot X X 29

AVAST X X 30

Emsisoft X 90

Citrix - Xen Desktop X X 90

Microsoft Office* X 180

WebSense X X X 30

Vera X X ?

Invincea X(64-bit) X X ?

Anti-Exploitation* X ?

BeyondTrust X X Fixed Independently

T O T A L S 2 2 6 8 7 5 7 9 . 9

*

P
at

ch
 w

as
n

’t
 r

el
ea

se
d

 y
et

A
FF

EC
TE

D
 P

R
O

D
U

C
TS

High

Research Tools

Memory Region

Affected Process IDsAffected Process

• Tool to detect predictable RWX code regions

• Can be found at https://github.com/BreakingMalware/AVulnerabilityChecker

• Compares memory maps of processes

RESEARCH TOOLS – AVULNERABILITY

https://github.com/BreakingMalware/AVulnerabilityChecker

• Tool for scanning hooks and checking their code permissions

• Compares code “On-Disk” with the code “In-Memory”

• Does best-effort to track hooks code stubs

RESEARCH TOOLS – HOOKS SCAN

• Code hooking is an important capability for security/software vendors

• Similar to other intrusive operations it has security implications

• Almost all the vendors we tested were vulnerable to at least one issue

• We worked closely with affected vendors to address all these issues –
most are already patched

SUMMARY

Contact Us:

Udi, udi@ensilo.com

Tomer, tomer@ensilo.com

mailto:udi@ensilo.com
mailto:tomer@ensilo.com

