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Agenda: Windows 10 Segment Heap 

• Internals 

• Security Mechanisms 

• Case Study and Demonstration 
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Notes 

• Companion white paper is available 

̶ Details of data structures, algorithms and internal functions 

• Paper and presentation are based on the following NTDLL build 

̶ NTDLL.DLL (64-bit) version 10.0.14295.1000  

̶ From Windows 10 Redstone 1 Preview (Build 14295) 
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Architecture 
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Defaults 

• Segment Heap is currently an opt-in feature 

• Windows apps (Modern/Metro apps) are opted-in by default 

̶ Apps from the Windows Store, Microsoft Edge, etc. 

• Executables with the following names are also opted-in by 
default (system processes) 

̶ csrss.exe, lsass.exe, runtimebroker.exe, services.exe, smss.exe, 
svchost.exe 

• NT Heap (older heap implementation) is still the default for 
traditional applications 
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Configuration 

• Per-executable 

 

 

 

• Global 

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\ 
CurrentVersion\Image File Execution Options\(executable) 
FrontEndHeapDebugOptions = (DWORD) 
 
Bit 2 (0x04): Disable Segment Heap 
Bit 3 (0x08): Enable Segment Heap 

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\ 
Session Manager\Segment Heap 
Enabled = (DWORD) 
 
0      : Disable Segment Heap 
(Not 0): Enable Segment Heap 
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Edge Content Process Heaps 

• Segment Heap: default process heap, MSVCRT heap, etc. 

• Some heaps are still managed by the NT Heap (e.g.: shared 
heaps, heaps that are not growable) 
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HeapBase 

• Heap address/handle returned by HeapCreate()  or 
RtlCreateHeap() 

• Signature field (+0x10): 0xDDEEDDEE (Segment Heap) 
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Backend 

• Allocation Size: >128KB to 508KB (page size granularity) 

• Segments are 1MB virtual memory allocated via 
NtAllocateVirtualMemory() 

• Backend blocks are group of pages in a segment 
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Backend Page Range Descriptors 

• Describe the pages in the segment 

• “First” page range descriptors additionally describe the  start of 
a backend block 
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Backend Page Range Descriptors Example 

• Example: 131,328 (0x20100) bytes busy backend block 

• “First” page range descriptor is highlighted 
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Backend Free Tree 

• Red-black tree (RB tree) of free backend blocks 

• Key: Page count, encoded commit count (bitwise NOT of the 
number of committed pages) 

 

WINDOWS 10 SEGMENT HEAP INTERNALS 



 15 IBM Security 

Backend Allocation and Freeing 

• Allocation 

̶ Best-fit search with preference to most committed block 

̶ Large free blocks are split 

• Freeing 

̶ Coalesce to-be-freed block with neighbors 
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Variable Size (VS) Allocation  

• Allocation Size: <=128 KB (16 bytes granularity, 16 bytes busy 
block header) 

• VS blocks are allocated from VS subsegments 
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VS Subsegment 

• Backend block with “VS Subsegment (0x20)” bit set in page 
range descriptor’s RangeFlags field  

• VS blocks start at offset 0x30 
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VS Block Header 

• Busy VS block (first 9 bytes are encoded) 

 

 

 

• Free VS block (first 8 bytes are encoded) 
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VS Free Tree 

• RB tree of free VS blocks 

• Key: Block size (in 16-byte blocks), memory cost (most 
committed blocks have a lower memory cost) 
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VS Allocation and Freeing 

• Allocation 

̶ Best-fit search with preference to most committed block 

̶ Large free blocks are split unless the block size of the resulting 
remaining block will be less than 0x20 bytes 

• Freeing 

̶ Coalesce to-be-freed block with neighbors 
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Low Fragmentation Heap (LFH) 

• Allocation Size: <=16,368 bytes (granularity depends on the 
allocation size) 

• Prevents fragmentation by allocating similarly-sized blocks from 
larger pre-allocated blocks of memory (LFH subsegments) 
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LFH Buckets 

• Allocation sizes are distributed to buckets 

• Bucket is activated on the 17th active allocation or the 2,040th 
allocation request for the bucket’s allocation size 

 

Bucket Allocation Size Granularity  

1 – 64 1 – 1,024 bytes 
(0x1 – 0x400) 

16 bytes 

 

65 – 80 1,025 – 2,048 bytes  
(0x401 – 0x800) 

64 bytes 

 

81 – 96 2,049 – 4,096 bytes 
(0x801 – 0x1000) 

128 bytes 

97 – 112 4,097 – 8,192 bytes 
(0x1001 – 0x2000) 

256 bytes 

113 – 128 8,193 – 16,368 bytes 
(0x2001 – 0x3FF0) 

512 bytes 
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LFH Affinity Slots 

• Affinity slots own the LFH subsegments where LFH blocks are 
allocated from 

• After bucket activation: 1 affinity slot is created with all 
processors assigned to it 

• Too much contention: new affinity slots are created and 
processors are re-assigned to the new affinity slots 
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LFH Subsegment 

• Backend block with “LFH Subsegment (0x01)” bit set in page 
range descriptor’s RangeFlags field 

• LFH blocks are stored after the LFH subsegment metadata 
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LFH Block Bitmap 

• 2 bits per LFH block (BUSY bit and UNUSED BYTES bit) 

• Divided into BitmapBits (64 bits each = 32 LFH blocks) 
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LFH Allocation and Freeing 

• Allocation 

̶ Select a BitmapBits from block bitmap (biased by a free hint) 

̶ Randomly select a bit position (where BUSY bit is clear) in 
BitmapBits, set BUSY and UNUSED BYTES bits; result: 

 

 

 

 

• Freeing 

̶ Clear block’s BUSY and UNUSED BYTES bits in the block bitmap 
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Large Blocks Allocation 

• Allocation Size: >508KB  

• Blocks are allocated via NtAllocateVirtualMemory() 

• Block metadata is stored in a separate heap 
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Large Blocks Allocation and Freeing 

• Allocation 

̶ Allocate block’s metadata 

̶ Allocate block’s virtual memory  

̶ Mark block’s address in the large allocation bitmap 

• Freeing 

̶ Unmark block’s address in the large allocation bitmap 

̶ Free block’s virtual memory 

̶ Free block’s metadata 
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Block Padding 

• Added if the application is not opted-in by default to use the 
Segment Heap 

• Padding increases the total block size and changes the layout of 
backend blocks, VS blocks and LFH blocks 
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Internals: Summary 

• Four components: Backend, VS allocation, LFH, and large blocks 
allocation 

• Largely different data structures compared to the NT Heap 

• Free trees instead of free lists 

• Only VS blocks have a header at the beginning of each block 

• Backend/VS allocation: Best-fit search algorithm with preference 
to most committed block 

• LFH allocation: Free blocks are randomly selected 
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FastFail on Linked List Node Corruption 

• Segment and subsegment lists are linked lists 

• Prevents classic arbitrary writes due to corrupted linked list 
nodes 

 

 

WINDOWS 10 SEGMENT HEAP INTERNALS 



 38 IBM Security 

FastFail on Tree Node Corruption 

• Backend and VS free trees are RB trees 

• Prevents arbitrary writes due to corrupted tree nodes 
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Heap Address Randomization 

• Makes guessing of the heap address unreliable 
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Guard Pages 

• Prevents overflow outside the subsegment (VS and LFH blocks) 
or outside the block (large blocks) 

• VS/LFH subsegment size should be >=64KB 

• Backend blocks (non-subsegment) do not have a guard page 
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Function Pointer Encoding 

• Protects function pointers in the HeapBase from trivial 
modification 
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VS Block Header Encoding 

• Protects important VS block header fields from trivial 
modification 
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LFH Subsegment BlockOffsets Encoding 

• Protects important LFH subsegment header fields from trivial 
modification 
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LFH Allocation Randomization 

• Makes exploitation of LFH-based buffer overflows and use-after-
frees unreliable 

• Example: 8 sequential allocations in a new LFH subsegment 
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Security Mechanisms: Summary 

• Important Segment Heap metadata are encoded 

• Linked list nodes and tree nodes are checked 

• Guard pages and some randomization are added 

• Precise LFH allocation layout manipulation is difficult 

• Precise backend and VS allocation layout manipulation is 
achievable (no randomization) 
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WinRT PDF 

• Built-in PDF library since Windows 8.1 (Windows.Data.Pdf.dll) 

• Used by Edge in Windows 10 to render PDFs 

• Vulnerabilities can be used in Edge drive-by attacks 
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WinRT PDF: PostScript Operand Stack 

• Used by the WinRT PDF’s PostScript interpreter for Type 4 
(PostScript Calculator) functions 

• 0x65 CType4Operand pointers stored in the MSVCRT heap 
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WinRT PDF: CVE-2016-0117 

• PostScript interpreter allows access to PostScript operand stack 
index 0x65 (out-of-bounds) 

• Arbitrary write possible if value after the end of PostScript 
operand stack is attacker-controlled 
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Plan for Implanting the Target Address 

• Allocate a controlled buffer, free it, and the PostScript operand 
stack will be allocated in its place 

• Controlled buffer and PostScript operand stack will be VS-
allocated for reliability 
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Problem #1: MSVCRT Heap Manipulation 

• Embedded JavaScript in PDF could potentially help, but it is not 
currently supported in WinRT PDF 

• Solution: Chakra (Edge’s JS engine) and Chakra’s ArrayBuffer 
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Problem #1: MSVCRT Heap Manipulation 

• LFH bucket activation 

 

 

• CollectGarbage() does not work in Edge, but concurrent 
garbage collection can be triggered 
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Problem #2: Target Address Corruption 

• Showstopper: Target address will become corrupted by VS 
unused bytes value 
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Problem #2: Target Address Corruption 

• VS internals: “Large free blocks are split unless the block size of 
the resulting remaining block will be less than 0x20 bytes” 

• Solution: Use 0x340 bytes controlled buffer (block size: 0x350): 
0x350 free block – 0x340 block allocation == 0x10 (no split) 

 

WINDOWS 10 SEGMENT HEAP INTERNALS 



 55 IBM Security 

Problem #3: Free Blocks Coalescing 

• Free VS block of freed controlled buffer will be coalesced 

• Solution: Alternating busy and free controlled buffers 

• Actual allocation patterns will  
not always exactly match the  
illustration, but the chance of an 
un-coalesced freed controlled  
buffer block is increased 
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Problem #4: Unintended Use of Free Blocks 

• Free VS blocks of freed controlled buffers will be split and will be 
used for small allocations 

• Solution: Redirect small allocation sizes to the LFH 
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Adjusted Plan for Implanting the Target Address 

• HTML/JS will setup the MSVCRT heap layout, PDF will trigger the 
vulnerability 
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Demo: Successful Arbitrary Write 
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Case Study: Summary 

• Precise layout manipulation of VS allocations was performed 

• LFH can be used to preserve the controlled VS allocations layout 
by servicing unintended allocations 

• Scripting capability (Chakra) plus a common heap between 
components (Chakra’s Arraybuffer and WinRT PDF’s 
PostScript interpreter) are key to the heap layout manipulation 

• Seemingly unresolvable problems can potentially be solved by 
knowledge of heap implementation internals 
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Conclusion 

• Internals of the Segment Heap and the NT Heap are largely 
different 

• Security mechanisms are comparable with the NT Heap 

• New data structures are interesting for metadata attack research 

• Precise heap layout manipulation is achievable in certain cases 

• Refer to the white paper for more detailed information 
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