
Windows 10 Segment Heap 
Internals 

Mark Vincent Yason 
IBM X-Force Advanced Research 
yasonm[at]ph[dot]ibm[dot]com 
@MarkYason 



 2 IBM Security 

Agenda: Windows 10 Segment Heap 

• Internals 

• Security Mechanisms 

• Case Study and Demonstration 

WINDOWS 10 SEGMENT HEAP INTERNALS 



 3 IBM Security 

Notes 

• Companion white paper is available 

̶ Details of data structures, algorithms and internal functions 

• Paper and presentation are based on the following NTDLL build 

̶ NTDLL.DLL (64-bit) version 10.0.14295.1000  

̶ From Windows 10 Redstone 1 Preview (Build 14295) 

WINDOWS 10 SEGMENT HEAP INTERNALS 



Internals: Overview 

WINDOWS 10 SEGMENT HEAP INTERNALS 



 5 IBM Security 

Architecture 

WINDOWS 10 SEGMENT HEAP INTERNALS 



 6 IBM Security 

Defaults 

• Segment Heap is currently an opt-in feature 

• Windows apps (Modern/Metro apps) are opted-in by default 

̶ Apps from the Windows Store, Microsoft Edge, etc. 

• Executables with the following names are also opted-in by 
default (system processes) 

̶ csrss.exe, lsass.exe, runtimebroker.exe, services.exe, smss.exe, 
svchost.exe 

• NT Heap (older heap implementation) is still the default for 
traditional applications 

 

WINDOWS 10 SEGMENT HEAP INTERNALS 



 7 IBM Security 

Configuration 

• Per-executable 

 

 

 

• Global 

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\ 
CurrentVersion\Image File Execution Options\(executable) 
FrontEndHeapDebugOptions = (DWORD) 
 
Bit 2 (0x04): Disable Segment Heap 
Bit 3 (0x08): Enable Segment Heap 

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\ 
Session Manager\Segment Heap 
Enabled = (DWORD) 
 
0      : Disable Segment Heap 
(Not 0): Enable Segment Heap 

WINDOWS 10 SEGMENT HEAP INTERNALS 



 8 IBM Security 

Edge Content Process Heaps 

• Segment Heap: default process heap, MSVCRT heap, etc. 

• Some heaps are still managed by the NT Heap (e.g.: shared 
heaps, heaps that are not growable) 

 

WINDOWS 10 SEGMENT HEAP INTERNALS 



 9 IBM Security 

HeapBase 

• Heap address/handle returned by HeapCreate()  or 
RtlCreateHeap() 

• Signature field (+0x10): 0xDDEEDDEE (Segment Heap) 

 

WINDOWS 10 SEGMENT HEAP INTERNALS 



Internals: Backend 

WINDOWS 10 SEGMENT HEAP INTERNALS 



 11 IBM Security 

Backend 

• Allocation Size: >128KB to 508KB (page size granularity) 

• Segments are 1MB virtual memory allocated via 
NtAllocateVirtualMemory() 

• Backend blocks are group of pages in a segment 

 

WINDOWS 10 SEGMENT HEAP INTERNALS 



 12 IBM Security 

Backend Page Range Descriptors 

• Describe the pages in the segment 

• “First” page range descriptors additionally describe the  start of 
a backend block 

WINDOWS 10 SEGMENT HEAP INTERNALS 



 13 IBM Security 

Backend Page Range Descriptors Example 

• Example: 131,328 (0x20100) bytes busy backend block 

• “First” page range descriptor is highlighted 

WINDOWS 10 SEGMENT HEAP INTERNALS 



 14 IBM Security 

Backend Free Tree 

• Red-black tree (RB tree) of free backend blocks 

• Key: Page count, encoded commit count (bitwise NOT of the 
number of committed pages) 

 

WINDOWS 10 SEGMENT HEAP INTERNALS 



 15 IBM Security 

Backend Allocation and Freeing 

• Allocation 

̶ Best-fit search with preference to most committed block 

̶ Large free blocks are split 

• Freeing 

̶ Coalesce to-be-freed block with neighbors 

 

WINDOWS 10 SEGMENT HEAP INTERNALS 



Internals: Variable Size Allocation 

WINDOWS 10 SEGMENT HEAP INTERNALS 



 17 IBM Security 

Variable Size (VS) Allocation  

• Allocation Size: <=128 KB (16 bytes granularity, 16 bytes busy 
block header) 

• VS blocks are allocated from VS subsegments 

 

WINDOWS 10 SEGMENT HEAP INTERNALS 



 18 IBM Security 

VS Subsegment 

• Backend block with “VS Subsegment (0x20)” bit set in page 
range descriptor’s RangeFlags field  

• VS blocks start at offset 0x30 

 

WINDOWS 10 SEGMENT HEAP INTERNALS 



 19 IBM Security 

VS Block Header 

• Busy VS block (first 9 bytes are encoded) 

 

 

 

• Free VS block (first 8 bytes are encoded) 

 

 

WINDOWS 10 SEGMENT HEAP INTERNALS 



 20 IBM Security 

VS Free Tree 

• RB tree of free VS blocks 

• Key: Block size (in 16-byte blocks), memory cost (most 
committed blocks have a lower memory cost) 

 

WINDOWS 10 SEGMENT HEAP INTERNALS 



 21 IBM Security 

VS Allocation and Freeing 

• Allocation 

̶ Best-fit search with preference to most committed block 

̶ Large free blocks are split unless the block size of the resulting 
remaining block will be less than 0x20 bytes 

• Freeing 

̶ Coalesce to-be-freed block with neighbors 

WINDOWS 10 SEGMENT HEAP INTERNALS 



Internals: Low Fragmentation Heap 

WINDOWS 10 SEGMENT HEAP INTERNALS 



 23 IBM Security 

Low Fragmentation Heap (LFH) 

• Allocation Size: <=16,368 bytes (granularity depends on the 
allocation size) 

• Prevents fragmentation by allocating similarly-sized blocks from 
larger pre-allocated blocks of memory (LFH subsegments) 

 

 

WINDOWS 10 SEGMENT HEAP INTERNALS 



 24 IBM Security 

LFH Buckets 

• Allocation sizes are distributed to buckets 

• Bucket is activated on the 17th active allocation or the 2,040th 
allocation request for the bucket’s allocation size 

 

Bucket Allocation Size Granularity  

1 – 64 1 – 1,024 bytes 
(0x1 – 0x400) 

16 bytes 

 

65 – 80 1,025 – 2,048 bytes  
(0x401 – 0x800) 

64 bytes 

 

81 – 96 2,049 – 4,096 bytes 
(0x801 – 0x1000) 

128 bytes 

97 – 112 4,097 – 8,192 bytes 
(0x1001 – 0x2000) 

256 bytes 

113 – 128 8,193 – 16,368 bytes 
(0x2001 – 0x3FF0) 

512 bytes 

WINDOWS 10 SEGMENT HEAP INTERNALS 



 25 IBM Security 

LFH Affinity Slots 

• Affinity slots own the LFH subsegments where LFH blocks are 
allocated from 

• After bucket activation: 1 affinity slot is created with all 
processors assigned to it 

• Too much contention: new affinity slots are created and 
processors are re-assigned to the new affinity slots 

 

 

 

 

 WINDOWS 10 SEGMENT HEAP INTERNALS 



 26 IBM Security 

LFH Subsegment 

• Backend block with “LFH Subsegment (0x01)” bit set in page 
range descriptor’s RangeFlags field 

• LFH blocks are stored after the LFH subsegment metadata 

 

 

WINDOWS 10 SEGMENT HEAP INTERNALS 



 27 IBM Security 

LFH Block Bitmap 

• 2 bits per LFH block (BUSY bit and UNUSED BYTES bit) 

• Divided into BitmapBits (64 bits each = 32 LFH blocks) 

 

 

WINDOWS 10 SEGMENT HEAP INTERNALS 



 28 IBM Security 

LFH Allocation and Freeing 

• Allocation 

̶ Select a BitmapBits from block bitmap (biased by a free hint) 

̶ Randomly select a bit position (where BUSY bit is clear) in 
BitmapBits, set BUSY and UNUSED BYTES bits; result: 

 

 

 

 

• Freeing 

̶ Clear block’s BUSY and UNUSED BYTES bits in the block bitmap 

 

WINDOWS 10 SEGMENT HEAP INTERNALS 



Internals: Large Blocks Allocation 

WINDOWS 10 SEGMENT HEAP INTERNALS 



 30 IBM Security 

Large Blocks Allocation 

• Allocation Size: >508KB  

• Blocks are allocated via NtAllocateVirtualMemory() 

• Block metadata is stored in a separate heap 

WINDOWS 10 SEGMENT HEAP INTERNALS 



 31 IBM Security 

Large Blocks Allocation and Freeing 

• Allocation 

̶ Allocate block’s metadata 

̶ Allocate block’s virtual memory  

̶ Mark block’s address in the large allocation bitmap 

• Freeing 

̶ Unmark block’s address in the large allocation bitmap 

̶ Free block’s virtual memory 

̶ Free block’s metadata 

WINDOWS 10 SEGMENT HEAP INTERNALS 



Internals: Block Padding 

WINDOWS 10 SEGMENT HEAP INTERNALS 



 33 IBM Security 

Block Padding 

• Added if the application is not opted-in by default to use the 
Segment Heap 

• Padding increases the total block size and changes the layout of 
backend blocks, VS blocks and LFH blocks 

 

 

 

 

WINDOWS 10 SEGMENT HEAP INTERNALS 



Internals: Summary 

WINDOWS 10 SEGMENT HEAP INTERNALS 



 35 IBM Security 

Internals: Summary 

• Four components: Backend, VS allocation, LFH, and large blocks 
allocation 

• Largely different data structures compared to the NT Heap 

• Free trees instead of free lists 

• Only VS blocks have a header at the beginning of each block 

• Backend/VS allocation: Best-fit search algorithm with preference 
to most committed block 

• LFH allocation: Free blocks are randomly selected 

 

 

 

 

WINDOWS 10 SEGMENT HEAP INTERNALS 



Security Mechanisms 

WINDOWS 10 SEGMENT HEAP INTERNALS 



 37 IBM Security 

FastFail on Linked List Node Corruption 

• Segment and subsegment lists are linked lists 

• Prevents classic arbitrary writes due to corrupted linked list 
nodes 

 

 

WINDOWS 10 SEGMENT HEAP INTERNALS 



 38 IBM Security 

FastFail on Tree Node Corruption 

• Backend and VS free trees are RB trees 

• Prevents arbitrary writes due to corrupted tree nodes 

 

 

WINDOWS 10 SEGMENT HEAP INTERNALS 



 39 IBM Security 

Heap Address Randomization 

• Makes guessing of the heap address unreliable 

 

WINDOWS 10 SEGMENT HEAP INTERNALS 



 40 IBM Security 

Guard Pages 

• Prevents overflow outside the subsegment (VS and LFH blocks) 
or outside the block (large blocks) 

• VS/LFH subsegment size should be >=64KB 

• Backend blocks (non-subsegment) do not have a guard page 

 

 

 

WINDOWS 10 SEGMENT HEAP INTERNALS 



 41 IBM Security 

Function Pointer Encoding 

• Protects function pointers in the HeapBase from trivial 
modification 

 

 

 

WINDOWS 10 SEGMENT HEAP INTERNALS 



 42 IBM Security 

VS Block Header Encoding 

• Protects important VS block header fields from trivial 
modification 

 

 

 

WINDOWS 10 SEGMENT HEAP INTERNALS 



 43 IBM Security 

LFH Subsegment BlockOffsets Encoding 

• Protects important LFH subsegment header fields from trivial 
modification 

 

 

 

WINDOWS 10 SEGMENT HEAP INTERNALS 



 44 IBM Security 

LFH Allocation Randomization 

• Makes exploitation of LFH-based buffer overflows and use-after-
frees unreliable 

• Example: 8 sequential allocations in a new LFH subsegment 

 

 

 

WINDOWS 10 SEGMENT HEAP INTERNALS 



 45 IBM Security 

Security Mechanisms: Summary 

• Important Segment Heap metadata are encoded 

• Linked list nodes and tree nodes are checked 

• Guard pages and some randomization are added 

• Precise LFH allocation layout manipulation is difficult 

• Precise backend and VS allocation layout manipulation is 
achievable (no randomization) 

 

 

 

 WINDOWS 10 SEGMENT HEAP INTERNALS 



Case Study and Demonstration 

WINDOWS 10 SEGMENT HEAP INTERNALS 



 47 IBM Security 

WinRT PDF 

• Built-in PDF library since Windows 8.1 (Windows.Data.Pdf.dll) 

• Used by Edge in Windows 10 to render PDFs 

• Vulnerabilities can be used in Edge drive-by attacks 

 

 

 

 

WINDOWS 10 SEGMENT HEAP INTERNALS 



 48 IBM Security 

WinRT PDF: PostScript Operand Stack 

• Used by the WinRT PDF’s PostScript interpreter for Type 4 
(PostScript Calculator) functions 

• 0x65 CType4Operand pointers stored in the MSVCRT heap 

 

 

WINDOWS 10 SEGMENT HEAP INTERNALS 



 49 IBM Security 

WinRT PDF: CVE-2016-0117 

• PostScript interpreter allows access to PostScript operand stack 
index 0x65 (out-of-bounds) 

• Arbitrary write possible if value after the end of PostScript 
operand stack is attacker-controlled 

 

 

WINDOWS 10 SEGMENT HEAP INTERNALS 



 50 IBM Security 

Plan for Implanting the Target Address 

• Allocate a controlled buffer, free it, and the PostScript operand 
stack will be allocated in its place 

• Controlled buffer and PostScript operand stack will be VS-
allocated for reliability 

 

 

WINDOWS 10 SEGMENT HEAP INTERNALS 



 51 IBM Security 

Problem #1: MSVCRT Heap Manipulation 

• Embedded JavaScript in PDF could potentially help, but it is not 
currently supported in WinRT PDF 

• Solution: Chakra (Edge’s JS engine) and Chakra’s ArrayBuffer 

 

 

 

WINDOWS 10 SEGMENT HEAP INTERNALS 



 52 IBM Security 

Problem #1: MSVCRT Heap Manipulation 

• LFH bucket activation 

 

 

• CollectGarbage() does not work in Edge, but concurrent 
garbage collection can be triggered 

 

 

WINDOWS 10 SEGMENT HEAP INTERNALS 



 53 IBM Security 

Problem #2: Target Address Corruption 

• Showstopper: Target address will become corrupted by VS 
unused bytes value 

WINDOWS 10 SEGMENT HEAP INTERNALS 



 54 IBM Security 

Problem #2: Target Address Corruption 

• VS internals: “Large free blocks are split unless the block size of 
the resulting remaining block will be less than 0x20 bytes” 

• Solution: Use 0x340 bytes controlled buffer (block size: 0x350): 
0x350 free block – 0x340 block allocation == 0x10 (no split) 

 

WINDOWS 10 SEGMENT HEAP INTERNALS 



 55 IBM Security 

Problem #3: Free Blocks Coalescing 

• Free VS block of freed controlled buffer will be coalesced 

• Solution: Alternating busy and free controlled buffers 

• Actual allocation patterns will  
not always exactly match the  
illustration, but the chance of an 
un-coalesced freed controlled  
buffer block is increased 

 

WINDOWS 10 SEGMENT HEAP INTERNALS 



 56 IBM Security 

Problem #4: Unintended Use of Free Blocks 

• Free VS blocks of freed controlled buffers will be split and will be 
used for small allocations 

• Solution: Redirect small allocation sizes to the LFH 

 

 

WINDOWS 10 SEGMENT HEAP INTERNALS 



 57 IBM Security 

Adjusted Plan for Implanting the Target Address 

• HTML/JS will setup the MSVCRT heap layout, PDF will trigger the 
vulnerability 

WINDOWS 10 SEGMENT HEAP INTERNALS 



 58 IBM Security 

Demo: Successful Arbitrary Write 

 

 

 

WINDOWS 10 SEGMENT HEAP INTERNALS 



 59 IBM Security 

Case Study: Summary 

• Precise layout manipulation of VS allocations was performed 

• LFH can be used to preserve the controlled VS allocations layout 
by servicing unintended allocations 

• Scripting capability (Chakra) plus a common heap between 
components (Chakra’s Arraybuffer and WinRT PDF’s 
PostScript interpreter) are key to the heap layout manipulation 

• Seemingly unresolvable problems can potentially be solved by 
knowledge of heap implementation internals 

 

 

WINDOWS 10 SEGMENT HEAP INTERNALS 



Conclusion 

WINDOWS 10 SEGMENT HEAP INTERNALS 



 61 IBM Security 

Conclusion 

• Internals of the Segment Heap and the NT Heap are largely 
different 

• Security mechanisms are comparable with the NT Heap 

• New data structures are interesting for metadata attack research 

• Precise heap layout manipulation is achievable in certain cases 

• Refer to the white paper for more detailed information 

 

 

 

 

 

 

WINDOWS 10 SEGMENT HEAP INTERNALS 



 62 IBM Security 

Prior Works / References 

• J. McDonald and C. Valasek, "Practical Windows XP/2003 Heap Exploitation," [Online]. Available: 
https://www.blackhat.com/presentations/bh-usa-09/MCDONALD/BHUSA09-McDonald-WindowsHeap-
PAPER.pdf. 

• B. Moore, "Heaps About Heaps," [Online]. Available: 
https://www.insomniasec.com/downloads/publications/Heaps_About_Heaps.ppt. 

• B. Hawkes, "Attacking the Vista Heap," [Online]. Available: http://www.blackhat.com/presentations/bh-
usa-08/Hawkes/BH_US_08_Hawkes_Attacking_Vista_Heap.pdf. 

• C. Valasek, "Understanding the Low Fragmentation Heap," [Online]. Available: 
http://illmatics.com/Understanding_the_LFH.pdf. 

• C. Valasek and T. Mandt, "Windows 8 Heap Internals," [Online]. Available: 
http://illmatics.com/Windows%208%20Heap%20Internals.pdf. 

• K. Johnson and M. Miller, "Exploit Mitigation Improvements in Windows 8," [Online]. Available: 
http://media.blackhat.com/bh-us-
12/Briefings/M_Miller/BH_US_12_Miller_Exploit_Mitigation_Slides.pdf. 

• M. Tomassoli, "IE10: Reverse Engineering IE," [Online]. Available: http://expdev-
kiuhnm.rhcloud.com/2015/05/31/ie10-reverse-engineering-ie/. 

 

 

 

 

 

 

WINDOWS 10 SEGMENT HEAP INTERNALS 



THANK YOU 

ibm.com/security 

securityintelligence.com 

xforce.ibmcloud.com 

@ibmsecurity 

youtube/user/ibmsecuritysolutions 

FOLLOW US ON: 

© Copyright IBM Corporation 2016. All rights reserved. The information contained in these materials is provided for informational purposes only, and is provided AS IS without warranty of any kind, 

express or implied.  Any statement of direction represents IBM's current intent, is subject to change or withdrawal, and represent only goals and objectives.  IBM, the IBM logo, and other IBM products 

and services are trademarks of the International Business Machines Corporation, in the United States, other countries or both. Other company, product, or service names may be trademarks or service 

marks of others. 

Statement of Good Security Practices: IT system security involves protecting systems and information through prevention, detection and response to improper access from within and outside your 

enterprise. Improper access can result in information being altered, destroyed, misappropriated or misused or can result in damage to or misuse of your systems, including for use in attacks on others. 

No IT system or product  should be considered completely secure and no single product, service or security measure can be completely effective in preventing improper use or access. IBM systems, 

products and services are designed to be part of a lawful, comprehensive security approach, which will necessarily involve additional operational procedures, and may require other systems, products 

or services to be most effective. IBM does not warrant that any systems, products or services are immune from, or will make your enterprise immune from, the malicious or illegal conduct of any party. 

[V: 081723] 


