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ABSTRACT 

Introduced in Windows 10, Segment Heap is the native heap implementation used in Windows apps (formerly 

called Modern/Metro apps) and certain system processes. This new heap implementation is an addition to the 

well-researched and widely documented NT Heap that is still used in traditional applications and in certain types of 

allocations in Windows apps. 

One important aspect of the Segment Heap is that it is enabled for Microsoft Edge which means that 

components/dependencies running in Edge that do not use a custom heap manager will use the Segment Heap. 

Therefore, reliably exploiting memory corruption vulnerabilities in these Edge components/dependencies would 

require some level of understanding of the Segment Heap. 

In this presentation, I’ll discuss the data structures, algorithms and security mechanisms of the Segment Heap. 

Knowledge of the Segment Heap is also applied by discussing and demonstrating how a memory corruption 

vulnerability in the Microsoft WinRT PDF library (CVE-2016-0117) is leveraged for a reliable arbitrary write in the 

context of the Edge content process. 
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1. INTRODUCTION 
With the introduction of Windows 10, Segment Heap, a new native heap implementation was also introduced. It is 

currently the native heap implementation used in Windows apps (formerly called Modern/Metro apps) and in 

certain system processes, while the older native heap implementation (NT Heap) is still the default for traditional 

applications.  

From a security researcher’s perspective, understanding the internals of the Segment Heap is important as 

attackers may leverage or exploit this new and critical component in the near future, especially because it is being 

used by the Edge browser. Additionally, a security researcher performing software audits may need to develop a 

proof-of-concept for a vulnerability in order to prove exploitability to the vendor/developer. If creating the proof-

of-concept requires precise manipulation of a heap managed by the Segment Heap, an understanding of its 

internals will definitely help. This paper aims to help the reader have a deep understanding of the Segment Heap.  

This paper is divided into three major sections. The first section (Internals) discusses in depth the different 

components of the Segment Heap. It includes the data structures and algorithms used by each Segment Heap 

component when performing their functions. The second section (Security Mechanisms) discusses the different 

mechanisms that make it difficult or unreliable to attack important Segment Heap metadata, and in certain cases, 

make it difficult to conduct precise heap layout manipulation. The third section (Case Study) is where the 

understanding of the Segment Heap is applied by discussing methods for manipulating the layout of a heap 

managed by the Segment Heap in order to leverage a vulnerability for a reliable arbitrary write. 

Since the Segment Heap and NT Heap share similar concepts, the reader is encouraged to read prior works that 

discuss NT Heap internals [1, 2, 3, 4, 5]. These prior works and the various papers/presentations they reference 

also discuss the security mechanisms and attack techniques for the NT Heap which will give the reader an idea why 

certain heap security mechanisms are in place in the Segment Heap. 

All information in this paper is based on NTDLL.DLL (64-bit) version 10.0.14295.1000 from the Windows 10 

Redstone 1 Preview (Build 14295). 
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2. INTERNALS 
This section discusses in depth the internals of the Segment Heap. The discussion will start with an overview of the 

different components of the Segment Heap and then describing the instances when the Segment Heap will be 

enabled. After the overview, each Segment Heap component will be discussed in details in their own subsections. 

Note that internal NTDLL functions discussed here may be inlined in some NTDLL builds. Therefore, the internal 

functions may not be seen in IDA’s functions listing and a copy of the functions may be seen embedded in other 

functions. 

2.1. OVERVIEW 

Architecture 
The Segment Heap is consists of four components: (1) The backend which services allocation requests for >128KB 

to 508KB. It uses the virtual memory functions provided by the NT Memory Manager to create and manage the 

segments where backend blocks are allocated from. (2) The variable size (VS) allocation component which services 

allocation requests for <=128KB. It uses the backend to create the VS subsegments where VS blocks are allocated 

from. (3) The Low Fragmentation Heap (LFH) services allocation requests for <=16,368 bytes but only if the 

allocation size is detected to be commonly used in allocations. It uses the backend to create the LFH subsegments 

where LFH blocks are allocated from. (4) The large blocks allocation component services allocation requests for 

>508KB. It uses the virtual memory functions provided by the NT Memory Manager for the allocation and freeing 

of large blocks. 

 

Defaults and Configuration 
The Segment Heap is currently an opt-in feature. Windows apps are opted-in by default and executables with a 

name that matches any of the following (names of system executables) are also opted-in by default to use the 

Segment Heap: 

 csrss.exe 
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 lsass.exe 

 runtimebroker.exe 

 services.exe 

 smss.exe 

 svchost.exe 

To enable or disable the Segment Heap for a specific executable, the following Image File Execution Options (IFEO) 

registry entry can be set: 

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\ 
Image File Execution Options\(executable) 
FrontEndHeapDebugOptions = (DWORD) 
 
Bit 2 (0x04): Disable Segment Heap 
Bit 3 (0x08): Enable Segment Heap 

To globally enable or disable the Segment Heap for all executables, the following registry entry can be set: 

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Session Manager\Segment Heap 
Enabled = (DWORD) 
 
0      : Disable Segment Heap 
(Not 0): Enable Segment Heap 

If after all the checks it is determined that a process will use the Segment Heap, bit 0 of the global variable 

RtlpHpHeapFeatures will be set.  

Note that even if Segment Heap is enabled in a process, not all heaps created by the process will be managed by 

the Segment Heap as there are specific types of heaps that still need to be managed by the NT Heap (this will be 

discussed in the next subsection). 

Heap Creation 
If the Segment Heap is enabled (bit 0 of RtlpHpHeapFeatures is set), the heap created by HeapCreate() will be 

managed by the Segment Heap unless the dwMaximumSize argument passed to it is not zero (means the heap is 

not growable).  

If the RtlCreateHeap() API is directly used to create the heap, all of the following should be true for the Segment 

Heap to manage the created heap: 

 Heap should be growable: Flags argument passed to RtlCreateHeap() should have HEAP_GROWABLE set. 

 Heap memory should not be pre-allocated (suggests a shared heap): HeapBase argument passed to 

RtlCreateHeap() should be NULL. 

 If a Parameters argument is passed to RtlCreateHeap(), the following Parameters fields should be set 

to 0/NULL: SegmentReserve, SegmentCommit, VirtualMemoryThreshold and CommitRoutine. 

 The Lock argument passed to RtlCreateHeap() should be NULL. 

The illustration below shows the heaps created when the Edge content process (a Windows app) is initially loaded.  
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Four of five are managed by the Segment Heap. The first heap is the default process heap, and the third heap is 

the MSVCRT heap (msvcrt!crtheap). The second heap is a shared heap (ntdll!CsrPortHeap), and therefore, it is 

managed by the NT Heap. 

HeapBase and _SEGMENT_HEAP Structure  
When a heap managed by the Segment Heap is created, the heap address/handle (called HeapBase for the rest of 

this paper) returned by HeapCreate() or RtlCreateHeap()  will point to a _SEGMENT_HEAP structure, the 

counterpart of the _HEAP structure of the NT Heap.  

The HeapBase is the central location where the states of the different Segment Heap components are stored. It 

has the following fields: 

windbg> dt ntdll!_SEGMENT_HEAP 
   +0x000 TotalReservedPages : Uint8B 
   +0x008 TotalCommittedPages : Uint8B 
   +0x010 Signature        : Uint4B 
   +0x014 GlobalFlags      : Uint4B 
   +0x018 FreeCommittedPages : Uint8B 
   +0x020 Interceptor      : Uint4B 
   +0x024 ProcessHeapListIndex : Uint2B 
   +0x026 GlobalLockCount  : Uint2B 
   +0x028 GlobalLockOwner  : Uint4B 
   +0x030 LargeMetadataLock : _RTL_SRWLOCK 
   +0x038 LargeAllocMetadata : _RTL_RB_TREE 
   +0x048 LargeReservedPages : Uint8B 
   +0x050 LargeCommittedPages : Uint8B 
   +0x058 SegmentAllocatorLock : _RTL_SRWLOCK 
   +0x060 SegmentListHead  : _LIST_ENTRY 
   +0x070 SegmentCount     : Uint8B 
   +0x078 FreePageRanges   : _RTL_RB_TREE 
   +0x088 StackTraceInitVar : _RTL_RUN_ONCE 
   +0x090 ContextExtendLock : _RTL_SRWLOCK 
   +0x098 AllocatedBase    : Ptr64 UChar 
   +0x0a0 UncommittedBase  : Ptr64 UChar 
   +0x0a8 ReservedLimit    : Ptr64 UChar 
   +0x0b0 VsContext        : _HEAP_VS_CONTEXT 
   +0x120 LfhContext       : _HEAP_LFH_CONTEXT 

 Signature - 0xDDEEDDEE (heap is managed by the Segment Heap). 

Fields for tracking large blocks allocation state (further discussed in 2.5): 

 LargeAllocMetadata - Red-black tree (RB tree) [6] of large blocks metadata. 

 LargeReservedPages - Number of pages that are reserved for all large blocks allocation. 
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 LargeCommittedPages - Number of pages that are committed for all large blocks allocation. 

Fields for tracking backend allocation state (further discussed in 2.2): 

 SegmentCount - Number of segments owned by the heap. 

 SegmentListHead - Linked list of segments owned by the heap. 

 FreePageRanges - RB tree of free backend blocks. 

The following substructures track the variable size allocation and the Low Fragmentation Heap states: 

 VsContext - Tracks the state of the variable size allocation (see 2.3). 

 LfhContext - Tracks the state of the Low Fragmentation Heap (see 2.4). 

The heap is allocated and initialized via a call to RtlpHpSegHeapCreate(). NtAllocateVirtualMemory() is used to 

reserve and commit the virtual memory for the heap. The reserve size varies depending on the number of 

processors and the commit size is the size of the _SEGMENT_HEAP structure.  

The remaining reserved memory below the _SEGMENT_HEAP structure is called the LFH context extension and it is 

dynamically committed to store the necessary data structures for activated LFH buckets. 

 

Block Allocation 
When allocating a block via HeapAlloc() or RtlAllocateHeap(), the allocation request will eventually be routed 

to RtlpHpAllocateHeap() if the heap is managed by the Segment Heap.  

RtlpHpAllocateHeap() has the following function signature: 

PVOID RtlpHpAllocateHeap(_SEGMENT_HEAP* HeapBase, SIZE_T UserSize, ULONG Flags, USHORT Unknown) 

Where UserSize (user-requested size) is the size passed to HeapAlloc() or RtlAllocateHeap(). The return value 

is the pointer to the newly allocated block (called UserAddress for the rest of this paper).  

The diagram below shows the logic of RtlpHpAllocateHeap(): 
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The purpose of RtlpHpAllocateHeap() is to call the allocation function of the appropriate Segment Heap 

component based on AllocSize. AllocSize (allocation size) is the adjusted UserSize depending on Flags, but by 

default, AllocSize will be equal to UserSize unless UserSize is 0 (if UserSize is 0, AllocSize will be 1). 

Note that the logic starting where AllocSize is checked is actually in a separate RtlpHpAllocateHeapInternal() 

function, it is just inlined in the diagram for brevity. Also, one part to notice is that if LFH allocation returns -1, it 

means that the LFH bucket corresponding to AllocSize is not yet activated, and therefore, the allocation request 

will eventually be passed to the VS allocation component. 

Block Freeing 
When freeing a block via HeapFree() or RtlFreeHeap(), the call will eventually be routed to RtlpHpFreeHeap() if 

the heap is managed by the Segment Heap.  

RtlpHpFreeHeap() has the following function signature: 

BOOLEAN RtlpHpFreeHeap(_SEGMENT_HEAP* HeapBase, PVOID UserAddress, ULONG Flags, 
                       SIZE_T* UserSize, USHORT* Unknown) 
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Where UserAddress is the block address returned by HeapAlloc() or RtlAllocateHeap() and the UserSize will 

become the user-requested size of the freed block. 

The diagram below shows the freeing logic of RtlpHpFreeHeap(): 

 
 
The purpose of RtlpHpFreeHeap() is to call the freeing function of the appropriate Segment Heap component 

based on the value of UserAddress and what type of subsegment it is located. Subsegments will be further 

discussed later in this paper, but for now, subsegments are special types of backend blocks where VS and LFH 

blocks are allocated from. 

Since the address of large allocations are 64KB aligned, a UserAddress with low 16 bits cleared is first checked 

against the large allocation bitmap. If the UserAddress (actually, UserAddress >> 16) is set in the large allocation 

bitmap, large block freeing is called.  
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Next, the subsegment where UserAddress is located is determined. If UserAddress is less than or equal the 

resulting subsegment address, it means that the UserAddress is for a backend block, because the address of VS 

blocks and LFH blocks are above the subsegment address due to VS/LFH subsegment headers being located before 

the VS/LFH blocks. If UserAddress points to a backend block, backend freeing is called.  

Finally, if the subsegment is an LFH subsegment, LFH freeing is called. Otherwise, VS freeing is called. If VS freeing 

is called, and if the returned LfhBlockSize (equivalent to the block size of the freed VS block minus 0x10) is 

serviceable by the LFH, the usage counter of the LFH bucket corresponding to LfhBlockSize is updated. 

Note that the logic starting where the subsegment of UserAddress is derived is actually in a separate 

RtlpHpSegFree() function, it was inlined in the diagram for brevity. Also, the diagram only shows the freeing logic 

of RtlpHpFreeHeap(), its other functionalities were not included. 

2.2. BACKEND ALLOCATION  

The backend is used for allocations with sizes 131,073 (0x20001) to 520,192 (0x7F000) bytes. Backend blocks have 

a page size granularity and each does not have a block header at the beginning. In addition to allocating backend 

blocks, the backend is also used by the VS and LFH component for the creation of VS/LFH subsegments (special 

types of backend blocks) where VS/LFH blocks are allocated from.  

Segment Structure 
The backend operates on segment structures which are 1MB (0x100000) blocks of virtual memory allocated via 

NtAllocateVirtualMemory(). The segments are tracked via the SegmentListHead field in the HeapBase: 

 

 
 

The first 0x2000 bytes of a segment is used for the segment header, while the rest is used for the allocation of 

backend blocks. Initially, the first 0x2000 plus an initial commit size of the segment is committed, while the rest are 

in the reserve state and are committed and decommitted as needed.  

The segment header is consists of an array of 256 page range descriptors that describe the status of each page in 

the segment. Since the data portion of the segment starts at offset 0x2000, the first page range descriptor is 

repurposed to store the _HEAP_PAGE_SEGMENT structure, while the second page range descriptor is unused. 
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_HEAP_PAGE_SEGMENT Structure 
As mentioned, the first page range descriptor is repurposed to store the _HEAP_PAGE_SEGMENT structure. It has 

the following fields: 

windbg> dt ntdll!_HEAP_PAGE_SEGMENT 
   +0x000 ListEntry        : _LIST_ENTRY 
   +0x010 Signature        : Uint8B 

 ListEntry - Each segment is a node of the heap’s segments linked list (HeapBase.SegmentListHead). 

 Signature - Used for verifying if an address is part of a segment. This field is computed via: 

(SegmentAddress >> 0x14) ^ RtlpHeapKey ^ HeapBase ^ 0xA2E64EADA2E64EAD. 

_HEAP_PAGE_RANGE_DESCRIPTOR Structure 
Also mentioned are page range descriptors that describe the status of each page of the segment. Since a backend 

block can span multiple pages (a page range), the page range descriptor for the first page of the backend block is 

marked as “first”, and therefore, will have additional fields set. 

windbg> dt ntdll!_HEAP_PAGE_RANGE_DESCRIPTOR -r 
   +0x000 TreeNode         : _RTL_BALANCED_NODE 
   +0x000 TreeSignature    : Uint4B 
   +0x004 ExtraPresent     : Pos 0, 1 Bit 
   +0x004 Spare0           : Pos 1, 15 Bits 
   +0x006 UnusedBytes      : Uint2B 
   +0x018 RangeFlags       : UChar 
   +0x019 Spare1           : UChar 
   +0x01a Key              : _HEAP_DESCRIPTOR_KEY 
      +0x000 Key              : Uint2B 
      +0x000 EncodedCommitCount : UChar 
      +0x001 PageCount        : UChar 
   +0x01a Align            : UChar 
   +0x01b Offset           : UChar 
   +0x01b Size             : UChar 

 TreeNode - “First” page range descriptors of free backend blocks are nodes of the backend free tree 

(HeapBase.FreePageRanges). 

 UnusedBytes - For “first” page range descriptors. The difference between UserSize and the block size. 

 RangeFlags – Bit field representing the type of the backend block and the state of the page represented 

by the page range descriptor. 

 0x01: PAGE_RANGE_FLAGS_LFH_SUBSEGMENT. For “first” page range descriptors. Backend block is 

an LFH subsegment.  

 0x02: PAGE_RANGE_FLAGS_COMMITED. Page is committed. 

 0x04: PAGE_RANGE_FLAGS_ALLOCATED. Page is allocated/busy. 

 0x08: PAGE_RANGE_FLAGS_FIRST. Page range descriptor is marked as “first”. 

 0x20: PAGE_RANGE_FLAGS_VS_SUBSEGMENT. For “first” page range descriptors. Backend block is a 

VS subsegment. 

 Key - For “first” page range descriptors of free backend blocks. This is used when a free backend block is 

inserted to the backend free tree. 

 Key - WORD-sized key used for the backend free tree, high BYTE is the PageCount field and the 

low BYTE is the EncodedCommitCount field (see below). 

 EncodedCommitCount - Bitwise NOT of the number of committed pages of the backend block. 

The larger number of committed pages the free backend block has, the lower 

EncodedCommitCount will be. 
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 PageCount - Number pages of the backend block. 

 Offset - For non-“first” page range descriptors. Offset of the page range descriptor from the “first” page 

range descriptor. 

 Size - For “first” page range descriptors. Same value as Key.PageCount (overlapping fields). 

Below is an illustration of a segment: 

 

And below is an illustration of a 131,328 bytes (0x20100) busy backend block and the corresponding page range 

descriptors (the “first” page range descriptor is highlighted): 

 

Note that because the page range descriptors that describe the backend blocks are stored at the top of the 

segment, it means that each backend block does not have a block header at the beginning. 
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Backend Free Tree 
Backend allocation and freeing use the backend free tree for finding and storing information on free backend 

blocks.  

The root of the backend free tree is stored in HeapBase.FreePageRanges and the tree nodes are the “first” page 

range descriptors of free backend blocks. The key used for inserting nodes in the backend free tree is the “first” 

page range descriptor’s Key.Key field (see details of Key.Key in the previous subsection). 

Below is an illustration of a backend free tree in which there are three free backend blocks with sizes 0x21000, 

0x23000 and 0x4F000 (all pages of the free blocks are decommitted - Key.EncodedCommitCount is 0xFF): 

 

Backend Allocation 
Backend allocation is performed via RtlpHpSegAlloc() which has the following function signature: 

PVOID RtlpHpSegAlloc(_SEGMENT_HEAP* HeapBase, SIZE_T UserSize, SIZE_T AllocSize, ULONG Flags) 

RtlpHpSegAlloc() first calls RtlpHpSegPageRangeAllocate() to allocate a backend block. 

RtlpHpSegPageRangeAllocate(), on the other hand, accepts the number of pages to allocate and returns the 

“first” page range descriptor of the allocated backend block. Then, RtlpHpSegAlloc() converts the returned 

“first” page range descriptor to the actual backend block address (UserAddress) which it will then use as the 

return value.  

The diagram below shows the logic of RtlpHpSegPageRangeAllocate(): 
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RtlpHpSegPageRangeAllocate() first traverses the backend free tree to find a free backend block that can fit the 

allocation. The search key used for finding a free backend block is a WORD-sized value in which the high BYTE is 

the requested number of pages and the low BYTE is the bitwise NOT of the number of requested pages. This 

means that a best-fit search is conducted with the most committed block given preference, in other words, if two 

or more free blocks with equivalent size will best fit the allocation, the most committed free block will be selected 

for the allocation. If any of the free backend blocks cannot fit the allocation, a new segment is created.  

Since the selected free backend block can have more pages than the requested number of pages, the free block is 

first split if necessary via RtlpHpSegPageRangeSplit() and the “first” page range descriptor of the resulting 

remaining free block is inserted to the backend free tree.  
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Finally, the RangeFlags field of the block’s page range descriptors are updated (PAGE_RANGE_FLAGS_ALLOCATED bit 

is set) to mark the block’s pages as allocated. 

Backend Freeing 

Backend freeing is performed via RtlpHpSegPageRangeShrink() which has the following function signature: 

BOOLEAN RtlpHpSegPageRangeShrink(_SEGMENT_HEAP* HeapBase,  
                                 _HEAP_PAGE_RANGE_DESCRIPTOR* FirstPageRangeDescriptor,  
                                  ULONG NewPageCount, ULONG Flags) 

Where FirstPageRangeDescriptor is the “first” page range descriptor of the to-be-freed backend block and 
NewPageCount is 0 which means to free the block. 
 

RtlpHpSegPageRangeShrink() first clears the PAGE_RANGE_FLAGS_ALLOCATED bit in the RangeFlags field of all 

(except the “first”) page range descriptors that describe the to-be-freed backend block. It then calls 

RtlpHpSegPageRangeCoalesce() which coalesces the to-be-freed backend block with neighboring (before and 

after) free backend blocks and clears the PAGE_RANGE_FLAGS_ALLOCATED bit in the RangeFlags field of the “first” 

page range descriptor of the to-be-freed block.  

 

The “first” page range descriptor of the resulting coalesced block is then inserted to the backend free tree making 

the coalesced free block available for allocations. 
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2.3. VARIABLE SIZE ALLOCATION 

Variable size (VS) allocation is used for allocations with sizes 1 to 131,072 (0x20000) bytes.  VS blocks have a 16 

bytes granularity and each has a block header at the beginning. 

VS Subsegments 
The VS allocation component relies on the backend for creating the VS subsegments where VS blocks are allocated 

from. A VS subsegment is a special type of a backend block in which the RangeFlags of the “first” page range 

descriptor has the PAGE_RANGE_FLAGS_VS_SUBSEGMENT (0x20) bit set. 

Below is an illustration of the relationship of the HeapBase, a segment and a VS subsegment: 

 

_HEAP_VS_CONTEXT Structure  
The VS context structure tracks the free VS blocks, VS subsegments, and other information related to the VS 

allocation state. It is stored in the VsContext field in the HeapBase and has the following fields: 

windbg> dt ntdll!_HEAP_VS_CONTEXT 
   +0x000 Lock             : _RTL_SRWLOCK 
   +0x008 FreeChunkTree    : _RTL_RB_TREE 
   +0x018 SubsegmentList   : _LIST_ENTRY 
   +0x028 TotalCommittedUnits : Uint8B 
   +0x030 FreeCommittedUnits : Uint8B 
   +0x038 BackendCtx       : Ptr64 Void 
   +0x040 Callbacks        : _HEAP_SUBALLOCATOR_CALLBACKS 

 FreeChunkTree - RB tree of free VS blocks. 

 SubsegmentList - Linked list of all VS subsegments. 

 BackendCtx - Pointer to the _SEGMENT_HEAP structure (HeapBase). 

 Callbacks - Encoded (see 3.5) callbacks used for the management of VS subsegments. 

_HEAP_VS_SUBSEGMENT Structure 
VS subsegments are where VS blocks are allocated from. VS subsegments are allocated and initialized via 

RtlpHpVsSubsegmentCreate() and will have the following _HEAP_VS_SUBSEGMENT structure as the header: 

windbg> dt ntdll!_HEAP_VS_SUBSEGMENT 
   +0x000 ListEntry        : _LIST_ENTRY 
   +0x010 CommitBitmap     : Uint8B 
   +0x018 CommitLock       : _RTL_SRWLOCK 
   +0x020 Size             : Uint2B 
   +0x022 Signature        : Uint2B 
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 Listentry - Each VS subsegment is a node of the VS subsegments linked list 

(VsContext.SubsegmentList). 

 CommitBitmap - Commit bitmap of the VS subsegment pages. 

 Size - Size of the VS subsegment (minus 0x30 for the VS subsegment header) in 16-byte blocks. 

 Signature - Used for checking if the VS subsegment is corrupted. Computed via: Size ^ 0xABED.  

Below is an illustration of a VS subsegment. The _HEAP_VS_SUBSEGMENT structure is at offset 0x00, while the VS 

blocks start at offset 0x30: 

 

_HEAP_VS_CHUNK_HEADER Structure 
Busy VS blocks have a 16-byte (0x10) header which has following structure: 

windbg> dt ntdll!_HEAP_VS_CHUNK_HEADER -r 
   +0x000 Sizes            : _HEAP_VS_CHUNK_HEADER_SIZE 
      +0x000 MemoryCost       : Pos 0, 16 Bits 
      +0x000 UnsafeSize       : Pos 16, 16 Bits 
      +0x004 UnsafePrevSize   : Pos 0, 16 Bits 
      +0x004 Allocated        : Pos 16, 8 Bits 
      +0x000 KeyUShort        : Uint2B 
      +0x000 KeyULong         : Uint4B 
      +0x000 HeaderBits       : Uint8B 
   +0x008 EncodedSegmentPageOffset : Pos 0, 8 Bits 
   +0x008 UnusedBytes      : Pos 8, 1 Bit 
   +0x008 SkipDuringWalk   : Pos 9, 1 Bit 
   +0x008 Spare            : Pos 10, 22 Bits 
   +0x008 AllocatedChunkBits : Uint4B 

 Sizes - Encoded (see 3.6) QWORD-sized substructure that encapsulates important size and state 

information: 

 MemoryCost - Used in free VS blocks. A value computed based on how large the committed 

portion of the block is. The larger the portion of the block is committed, the lower the memory 

cost is. This means that if a low memory cost block is selected for allocation, the smaller amount 

of memory needs to be committed. 

 UnsafeSize - Size of the VS block (includes the block header) in 16-byte blocks. 

 UnsafePrevSize - Size of the previous VS block (includes the block header) in 16-byte blocks. 

 Allocated - Block is busy if value is not zero. 
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 KeyULong - Used in free VS blocks. A DWORD-sized key used when inserting the free VS block to 

the VS free tree. The high WORD is the UnsafeSize field and the low WORD is the MemoryCost 

field. 

 EncodedSegmentPageOffset – Encoded (see 3.6) offset of the block from the start of the VS subsegment 

in pages. 

 UnusedBytes - Flag that indicates whether the block has unused bytes which is the difference between 

the UserSize and the total block size (minus 0x10 bytes for the header). If this flag is set, the last two 

bytes of the VS block is treated as a 16 bit low endian value. If the number of unused bytes is 1, the high 

bit of this 16 bit value is set and the rest of the bits are unused, otherwise, the high bit is clear and the low 

13 bits are used to store the unused bytes value. 

Below is an illustration of a busy VS block (note that the first 9 bytes are encoded): 

 

_HEAP_VS_CHUNK_FREE_HEADER Structure 
Free VS blocks have a 32-byte (0x20) header where the first 8 bytes are the first 8 bytes of the 

_HEAP_VS_CHUNK_HEADER structure. Starting at offset 0x08 is the Node field which acts as a node in the VS free tree 

(VsContext.FreeChunkTree):  

windbg> dt ntdll!_HEAP_VS_CHUNK_FREE_HEADER -r 
   +0x000 Header           : _HEAP_VS_CHUNK_HEADER 
      +0x000 Sizes            : _HEAP_VS_CHUNK_HEADER_SIZE 
         +0x000 MemoryCost       : Pos 0, 16 Bits 
         +0x000 UnsafeSize       : Pos 16, 16 Bits 
         +0x004 UnsafePrevSize   : Pos 0, 16 Bits 
         +0x004 Allocated        : Pos 16, 8 Bits 
         +0x000 KeyUShort        : Uint2B 
         +0x000 KeyULong         : Uint4B 
         +0x000 HeaderBits       : Uint8B 
      +0x008 EncodedSegmentPageOffset : Pos 0, 8 Bits 
      +0x008 UnusedBytes      : Pos 8, 1 Bit 
      +0x008 SkipDuringWalk   : Pos 9, 1 Bit 
      +0x008 Spare            : Pos 10, 22 Bits 
      +0x008 AllocatedChunkBits : Uint4B 
   +0x000 OverlapsHeader   : Uint8B 
   +0x008 Node             : _RTL_BALANCED_NODE 

Below is an illustration of a free VS block (note that the first 8 bytes are encoded): 
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VS Free Tree 
VS allocation and freeing use the VS free tree for finding and storing information on free VS blocks.  

The root of the VS free tree is stored in VsContext.FreeChunkTree and the tree nodes are the Node field of free 

VS blocks. The key used for inserting nodes in the VS free tree is the free VS block’s Header.Sizes.KeyULong field 

(Sizes.KeyULong is discussed in the “_HEAP_VS_CHUNK_HEADER Structure” subsection above). 

Below is an illustration of a VS free tree in which there are three free VS blocks with sizes 0xF80, 0x1010 and 

0x3010 (all portions of the free blocks are committed - MemoryCost is 0x0000): 

 

VS Allocation 
VS allocation is performed via RtlpHpVsContextAllocate() which has the following function signature: 

PVOID RtlpHpVsContextAllocate(_HEAP_VS_CONTEXT* VsContext, SIZE_T UserSize, SIZE_T AllocSize,  
                              ULONG Flags) 

The diagram below shows the logic of RtlpHpVsContextAllocate(): 
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RtlpHpVsContextAllocate() first traverses the VS free tree to find a free VS block that can fit the allocation. The 

search key used for finding a free VS block is a DWORD-sized value in which the high WORD is the number of 16-

byte blocks that can accommodate AllocSize plus one (for the block header) and the low WORD is 0 (for 

MemoryCost). This means that a best-fit search is conducted with the free VS block with the lowest memory cost 

(most portion of the block is committed) given preference, in other words, if two or more free blocks with 

equivalent size will best fit the allocation, the most committed free block will be selected for the allocation. If any 

of the free VS blocks cannot fit the allocation, a new VS subsegment is created. 

Since the size of the selected free VS block can be larger than the block size that can accommodate AllocSize, 

large free VS blocks are split unless the block size of the resulting remaining block will be less than 0x20 bytes (the 

size of a free VS block header).  
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The free VS block splitting is performed by RtlpHpVsChunkSplit(). RtlpHpVsChunkSplit() is also the function 

that removes the free VS block from VS free tree and also inserts the resulting remaining free block to the VS free 

tree if block splitting occurred.  

VS Freeing 

VS freeing is performed via RtlpHpVsContextFree() which has the following function signature: 

BOOLEAN RtlpHpVsContextFree(_HEAP_VS_CONTEXT* VsContext, _HEAP_VS_SUBSEGMENT* VsSubegment,  
                            PVOID UserAddress, ULONG Flags, ULONG* LfhBlockSize) 

Where UserAddress is the address of the to-be-freed VS block and LfhBlockSize will become the block size of 

the to-be-freed VS block minus 0x10 (busy VS block header size). LfhBlockSize will be used by the caller of 

RtlpHpVsContextFree() in updating the LFH bucket usage counter corresponding to LfhBlockSize. 

RtlpHpVsContextFree() first checks if the VS block is indeed allocated by checking the Allocated field in the 

block’s header. It will then call RtlpHpVsChunkCoalesce() which will coalesce the to-be-freed block with 

neighboring free blocks (before and after).  

 

Finally, the coalesced free block is inserted to the VS free tree making it available for allocation.  
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2.4. LOW FRAGMENTATION HEAP  

The Low Fragmentation Heap (LFH) is used for allocations with sizes 1 to 16,368 (0x3FF0) bytes. Similar to the LFH 

in the NT Heap, the LFH in the Segment Heap prevents fragmentation by using a bucketing scheme which causes 

similarly-sized blocks to be allocated from larger pre-allocated blocks of memory. 

Below is a table listing the different LFH buckets, the allocation sizes distributed to the buckets, and the 

corresponding granularity of the buckets:  

Bucket Allocation Size Granularity 
1 – 64 1 – 1,024 bytes 

(0x1 – 0x400) 
16 bytes 
 

65 – 80 1,025 – 2,048 bytes  
(0x401 – 0x800) 

64 bytes 
 

81 – 96 2,049 – 4,096 bytes 
(0x801 – 0x1000) 

128 bytes 

97 – 112 4,097 – 8,192 bytes 
(0x1001 – 0x2000) 

256 bytes 

113 – 128 8,193 – 16,368 bytes 
(0x2001 – 0x3FF0) 

512 bytes 

 

The LFH buckets are only activated (enabled) if their corresponding allocation sizes are detected to be popular. LFH 

bucket activation and usage counter will be further discussed later.  

Below is an illustration of a few activated buckets and non-activated buckets including their corresponding 

allocation sizes: 

 

Buckets #1, #65 and #97 are activated, and therefore, the allocation requests for the corresponding allocation sizes 

will be serviced via the LFH buckets. Buckets #81 and #113 are still not activated, and therefore, the allocation 

requests for the corresponding allocation sizes will cause the usage counter for the LFH buckets to be updated. If 

the usage counter reaches a particular value after the update, the bucket will be activated and the allocation will 

be serviced via the LFH bucket, otherwise, the allocation request will eventually be passed to the VS allocation 

component. 

 

 



WINDOWS 10 SEGMENT HEAP INTERNALS > INTERNALS  

IBM Security | ©2016 IBM Corporation 
 

25 

LFH Subsegments  
The LFH component relies on the backend for creating the LFH subsegments where LFH blocks are allocated from. 

An LFH subsegment is a special type of a backend block in which the corresponding “first” page range descriptor’s 

RangeFlags field has the PAGE_RANGE_FLAGS_LFH_SUBSEGMENT (0x01) bit set.  

Below is an illustration of the relationship of the HeapBase, a segment and an LFH subsegment: 

 

_HEAP_LFH_CONTEXT Structure 
The LFH context tracks the LFH buckets, LFH bucket usage counters and other information related to the LFH state. 

It is stored in the LfhContext field in the HeapBase and has the following fields: 

windbg> dt ntdll!_HEAP_LFH_CONTEXT -r 
   +0x000 BackendCtx       : Ptr64 Void 
   +0x008 Callbacks        : _HEAP_SUBALLOCATOR_CALLBACKS 
   +0x030 SubsegmentCreationLock : _RTL_SRWLOCK 
   +0x038 MaxAffinity      : UChar 
   +0x040 AffinityModArray : Ptr64 UChar 
   +0x050 SubsegmentCache  : _HEAP_LFH_SUBSEGMENT_CACHE 
      +0x000 SLists           : [7] _SLIST_HEADER 
   +0x0c0 Buckets          : [129] Ptr64 _HEAP_LFH_BUCKET 

 BackendCtx - Pointer to the _SEGMENT_HEAP structure (HeapBase). 

 Callbacks – Encoded (see 3.5) callbacks for managing the LFH subsegments and the LFH context 

extension. 

 MaxAffinity - Maximum number of affinity slots that can be created. 

 SubsegmentCache - Tracks cached (unused) LFH subsegments. 

 Buckets - Array of pointers to the LFH buckets. If the bucket is activated, bit 0 of the pointer is clear and 

the pointer points to a _HEAP_LFH_BUCKET structure. Otherwise (if bit 0 is set), the pointer is actually a 

_HEAP_LFH_ONDEMAND_POINTER structure which is used for tracking LFH bucket usage.  

The reserved virtual memory located after the _SEGMENT_HEAP structure in the HeapBase, called the LFH context 

extension, is dynamically committed to additionally store LFH bucket-related structures for dynamically activated 

LFH buckets (see previous illustration). 

_HEAP_LFH_ONDEMAND_POINTER Structure 
As mentioned above, if the LFH bucket is not activated, the entry for the bucket in LfhContext.Buckets will be a 

usage counter. The bucket usage counter has the following structure: 

windbg> dt ntdll!_HEAP_LFH_ONDEMAND_POINTER 
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   +0x000 Invalid          : Pos 0, 1 Bit 
   +0x000 AllocationInProgress : Pos 1, 1 Bit 
   +0x000 Spare0           : Pos 2, 14 Bits 
   +0x002 UsageData        : Uint2B 
   +0x000 AllBits          : Ptr64 Void 
 

 Invalid - Marker to determine if this pointer is an invalid _HEAP_LFH_BUCKET pointer (lowest bit set), and 

therefore, the structure is a bucket usage counter. 

 UsageData – WORD-sized value describing the usage of the LFH bucket.  The value represented by bit 0 to 

4 is the number of active allocations for the bucket’s allocations size, it is incremented on allocations and 

decremented on frees. The value represented by bit 5 to 15 is the number of allocation requests for the 

bucket’s allocation size, it is incremented on allocations. 

_HEAP_LFH_BUCKET Structure 
If the bucket is activated, the entry for the bucket in LfhContext.Buckets is a pointer to a _HEAP_LFH_BUCKET 

structure which has the following structure: 

windbg> dt ntdll!_HEAP_LFH_BUCKET 
   +0x000 State            : _HEAP_LFH_SUBSEGMENT_OWNER 
   +0x038 TotalBlockCount  : Uint8B 
   +0x040 TotalSubsegmentCount : Uint8B 
   +0x048 ReciprocalBlockSize : Uint4B 
   +0x04c Shift            : UChar 
   +0x050 AffinityMappingLock : _RTL_SRWLOCK 
   +0x058 ContentionCount  : Uint4B 
   +0x060 ProcAffinityMapping : Ptr64 UChar 
   +0x068 AffinitySlots    : Ptr64 Ptr64 _HEAP_LFH_AFFINITY_SLOT 

 TotalBlockCount - Total number of LFH blocks in all LFH subsegments related to the bucket. 

 TotalSubsegmentCount - Total number of LFH subsegments related to the bucket. 

 ContentionCount - Number of contentions identified when allocating blocks from the LFH subsegments. 

Every time this field reaches RtlpHpLfhContentionLimit, a new affinity slot is created for the requesting 

thread’s processor. 

 ProcAffinityMapping - Points to an array of BYTE-sized indexes to AffinitySlots. This is used for 

dynamically assigning processors to affinity slots (discussed later). Initially, all are set to 0 which means 

that all processors are assigned to the initial affinity slot that was created when the bucket was activated. 

 AffinitySlots - Pointer to an array of affinity slot pointers (_HEAP_LFH_AFFINITY_SLOT*). When the 

bucket is activated, only one slot is initially created, as more contentions are detected, new affinity slots 

are created. 

_HEAP_LFH_AFFINITY_SLOT Structure 
An affinity slot owns the LFH subsegments where LFH blocks are allocated from. Initially, only one affinity slot is 

created when the bucket is activated and all processors are assigned to the initial affinity slot.  

Because only one affinity slot is initially created, it means that all processors will use the same set of LFH 

subsegments, and therefore, contention can occur. If too many contentions are detected, a new affinity slot is 

created and the requesting thread’s processor is reassigned to the new affinity slot via the ProcAffinityMapping 

field in the bucket.  

There is only one field in an affinity slot and its structure will be described next. 
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windbg> dt ntdll!_HEAP_LFH_AFFINITY_SLOT 
   +0x000 State            : _HEAP_LFH_SUBSEGMENT_OWNER 

Below is an illustration of the relationship between buckets, processors, affinity slots, and LFH subsegments: 

 

_HEAP_LFH_SUBSEGMENT_OWNER Structure 
The subsegment owner structure is used by the affinity slot (LfhAffinitySlot.State) to track the LFH 

subsegments it owns, it has the following fields: 

windbg> dt ntdll!_HEAP_LFH_SUBSEGMENT_OWNER 
   +0x000 IsBucket         : Pos 0, 1 Bit 
   +0x000 Spare0           : Pos 1, 7 Bits 
   +0x001 BucketIndex      : UChar 
   +0x002 SlotCount        : UChar 
   +0x002 SlotIndex        : UChar 
   +0x003 Spare1           : UChar 
   +0x008 AvailableSubsegmentCount : Uint8B 
   +0x010 Lock             : _RTL_SRWLOCK 
   +0x018 AvailableSubsegmentList : _LIST_ENTRY 
   +0x028 FullSubsegmentList : _LIST_ENTRY 

 AvailableSubsegmentCount - Number of LFH subsegments in AvailableSubsegmentList. 

 AvailableSubsegmentList - Linked list of LFH subsegments that have free LFH blocks. 

 FullSubsegmentList - Linked list of LFH subsegments that have no free LFH blocks. 

_HEAP_LFH_SUBSEGMENT  Structure 
The LFH subsegments are where LFH blocks are allocated from. LFH subsegments are created and initialized via 

RtlpHpLfhSubsegmentCreate() and will have the following _HEAP_LFH_SUBSEGMENT structure as the header: 

windbg> dt ntdll!_HEAP_LFH_SUBSEGMENT -r 
   +0x000 ListEntry        : _LIST_ENTRY 
   +0x000 Link             : _SLIST_ENTRY 
   +0x010 Owner            : Ptr64 _HEAP_LFH_SUBSEGMENT_OWNER 
   +0x010 DelayFree        : _HEAP_LFH_SUBSEGMENT_DELAY_FREE 
      +0x000 DelayFree        : Pos 0, 1 Bit 
      +0x000 Count            : Pos 1, 63 Bits 
      +0x000 AllBits          : Ptr64 Void 
   +0x018 CommitLock       : _RTL_SRWLOCK 
   +0x020 FreeCount        : Uint2B 
   +0x022 BlockCount       : Uint2B 
   +0x020 InterlockedShort : Int2B 
   +0x020 InterlockedLong  : Int4B 
   +0x024 FreeHint         : Uint2B 
   +0x026 Location         : UChar 
   +0x027 Spare            : UChar 
   +0x028 BlockOffsets     : _HEAP_LFH_SUBSEGMENT_ENCODED_OFFSETS 
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      +0x000 BlockSize        : Uint2B 
      +0x002 FirstBlockOffset : Uint2B 
      +0x000 EncodedData      : Uint4B 
   +0x02c CommitUnitShift  : UChar 
   +0x02d CommitUnitCount  : UChar 
   +0x02e CommitStateOffset : Uint2B 
   +0x030 BlockBitmap      : [1] Uint8B 

 Listentry - Each LFH subsegment is a node of one of the affinity slot’s LFH subsegments lists 

(LfhAffinitySlot.AvailableSubsegmentList or LfhAffinitySlot.FullSubsegmentList). 

 Owner - Pointer to the affinity slot that owns this LFH subsegment. 

 FreeHint - Block index of the recently allocated or freed LFH block. Used in the allocation algorithm when 

searching for a free LFH block. 

 Location - Location of this LFH subsegment in the affinity slot’s LFH subsegments lists: 0: 

AvailableSubsegmentList, 1: FullSubsegmentList. 

 FreeCount - Number of free blocks in the LFH subsegment. 

 BlockCount - Total number of blocks in the LFH subsegment. 

 BlockOffsets - Encoded (see 3.7) DWORD-sized substructure containing the size of each LFH block and 

the offset of the first LFH block in the LFH subsegment. 

 BlockSize - Size of each LFH block in the LFH subsegment. 

 FirstBlockOffset - Offset of the first LFH block in the LFH subsegment. 

 CommitStateOffset - Offset of the commit state array in the LFH subsegment. An LFH subsegment is 

divided into multiple “commit portions”; commit state is an array of WORD-sized values that represent 

the commit state of each these “commit portions”.  

 BlockBitmap - Each LFH block is represented by 2 bits in this block bitmap (further discussed below).  

Below is an illustration of an LFH subsegment: 

 

And below is an illustration of the different data structures and fields that support the LFH component: 
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LFH Block Bitmap 
Each LFH block does not have a block header at the beginning, instead, and a block bitmap 

(LfhSubsegment.BlockBitmap) is used to track the state of each LFH block in the LFH subsegment. 

Each LFH block is represented by two bits in the block bitmap. Bit 0 represents the BUSY bit and bit 1 represents 

the UNUSED BYTES bit.  If the UNUSED BYTES bit is set, it means that there is a difference between the UserSize 

and the LFH block size, and the last two bytes of the LFH block is treated as a 16 bit low endian value to represent 

the difference. If the number of unused bytes is 1, the high bit of this 16 bit value is set and the rest of the bits are 

unused, otherwise, the high bit is clear and the low 14 bits are used to store the unused bytes value. 

The block bitmap is also subdivided into QWORD-sized (64 bits) chunks, called BitmapBits in this paper, with each 

BitmapBits representing 32 LFH blocks. 

Below is an illustration of the LFH block bitmap: 
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LFH Bucket Activation 
In every allocation request in which the allocation size is <=16,368 (0x3FF0) bytes, RtlpHpLfhContextAllocate() 

is first called to check if the bucket corresponding to the allocation size is activated. If the bucket is activated, the 

allocation is serviced by the LFH.  

If the bucket is not activated, the bucket usage counter is updated. If after the update, the bucket usage counter 

reaches a particular value, the bucket is activated via RtlpHpLfhBucketActivate() and the LFH will service the 

allocation request. Otherwise, the VS allocation component will eventually handle the allocation request. 

Bucket activation occurs if there are 17 active allocations for the bucket’s allocation size. The 17
th

 active allocation 

will activate the bucket, and the 17
th

 allocation and the next allocations afterwards will be serviced by the LFH.  

Bucket activation also occurs if there are 2,040 allocation requests for the bucket’s allocation size, regardless if the 

blocks from previous allocations were already freed. The 2,040
th

 allocation will activate the bucket, and the 

2,040
th

 allocation and the next allocations afterwards will be serviced by the LFH. 

LFH Allocation 
LFH allocation is performed via RtlpHpLfhContextAllocate() which has the following function signature: 

PVOID RtlpHpLfhContextAllocate(_HEAP_LFH_CONTEXT* LfhContext, SIZE_T UserSize, SIZE_T AllocSize,  
                               ULONG Flags) 

The first action performed by RtlpHpLfhContextAllocate() is to check if the bucket corresponding to the 

allocation size is activated. If the bucket is not activated, the usage counter of the bucket is updated, and if the 

resulting bucket usage after the update is subject for activation, the bucket is activated and LFH allocation will 

continue.  

Next, the appropriate affinity slot in the bucket is selected depending on the requesting thread’s processor and the 

processor-to-affinity slot mapping (LfhContext.ProcAffinityMapping). Once the affinity slot is selected, 
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allocation in the affinity slot’s available LFH subsegment will be performed via a call to 

RtlpHpLfhSlotAllocate(). 

RtlpHpLfhSlotAllocate(), on the other hand, first makes sure that the slot has an available LFH subsegment by 

creating a new LFH subsegment or re-using a cached LFH subsegment if needed.  RtlpHpLfhSlotAllocate() will 

then call RtlpHpLfhSlotReserveBlock() to attempt to reserve a block from one of the affinity slot’s available LFH 

subsegments by atomically decrementing an LFH subsegment’s FreeCount field. Too many contention detected 

from RtlpHpLfhSlotReserveBlock() will eventually cause a new affinity slot to be created for the requesting 

thread’s processor.  

If RtlpHpLfhSlotReserveBlock() is able to reserve a block in one of the affinity slot’s LFH subsegments, 

RtlpHpLfhSlotAllocate() will call RtlpHpLfhSubsegmentAllocateBlock() to perform the actual allocation 

from the LFH subsegment where a block was reserved.  

The logic of RtlpHpLfhSubsegmentAllocateBlock() for finding a free LFH block in the LFH subsegment is shown 

in the diagram below: 

 

The bulk of the logic is from RtlpLfhBlockBitmapAllocate() (inlined in the diagram for brevity) which scans the 

block bitmap for a clear BUSY bit. The starting position of the search in the block bitmap is biased by 

LfhSubsegment.FreeHint and the selection of a clear BUSY bit is randomized. 
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The logic starts by pointing BlockBitmapPos to a BitmapBits in the block bitmap where FreeHint is (block index 

of recently allocated or freed LFH block). It then moves BlockBitmapPos forward until it finds a BitmapBits in 

which at least 1 BUSY bit is clear. If BlockBitmapPos reaches the end of the block bitmap, BlockBitmapPos is 

pointed to the start of the block bitmap and the search continues. 

Once a BitmapBits is selected, the logic will randomly select a bit position in BitmapBits in which the BUSY bit is 

clear. After the bit position (BitIndex) is selected, the BUSY bit (and UNUSED BYTES bit, if necessary) in the bit 

position is set, then, the value pointed to by BlockBitmapPos is atomically updated with the modified BitmapBits 

value. Finally, the bit position along with the value of BlockBitmapPos is translated into the address of the 

allocated LFH block (UserAddress). Note that the retry logic when the atomic update failed is not included in the 

diagram for brevity. 

Below is an illustration where 8 LFH blocks are sequentially allocated from a new LFH subsegment, notice the 

random position of each LFH allocation: 

 

LFH Freeing 
LFH freeing is performed via RtlpHpLfhSubsegmentFreeBlock()which has the following function signature: 

BOOLEAN RtlpHpLfhSubsegmentFreeBlock(_HEAP_LFH_CONTEXT* LfhContext,  
                                     _HEAP_LFH_SUBSEGMENT* LfhSubsegment,  
                                     PVOID UserAddress, ULONG Flags) 

The freeing code first computes the LFH block index of UserAddress (LfhBlockIndex). If LfhBlockIndex index is 

less than or equal to LfhSubsegment.FreeHint, LfhSubsegment.FreeHint will be set with the value of 

LfhBlockIndex.  

Next, the corresponding BUSY and UNUSED BYTES bits of the LFH block in the block bitmap are atomically cleared. 

Then, the LFH subsegment’s FreeCount field is atomically incremented making the LFH block available for 

allocation. 

2.5. LARGE BLOCKS ALLOCATION 

Large blocks allocation is used for allocations with sizes 520,193 bytes and above (>= 0x7F001). Large blocks do  

not have a block header at the beginning and are allocated and freed using the virtual memory functions provided 

by the NT Memory Manager. 

 

 



WINDOWS 10 SEGMENT HEAP INTERNALS > INTERNALS  

IBM Security | ©2016 IBM Corporation 
 

33 

_HEAP_LARGE_ALLOC_DATA Structure 

Each large block has a corresponding metadata with the following structure:  

windbg> dt ntdll!_HEAP_LARGE_ALLOC_DATA 
   +0x000 TreeNode         : _RTL_BALANCED_NODE 
   +0x018 VirtualAddress   : Uint8B 
   +0x018 UnusedBytes      : Pos 0, 16 Bits 
   +0x020 ExtraPresent     : Pos 0, 1 Bit 
   +0x020 Spare            : Pos 1, 11 Bits 
   +0x020 AllocatedPages   : Pos 12, 52 Bits 

 TreeNode - Each large block metadata is a node of the large blocks metadata tree 

(HeapBase.LargeAllocMetadata). 

 VirtualAddress - Address of the block. First 16 bits are used for the UnusedBytes field. 

 UnusedBytes - Difference between the UserSize and the committed size of the block. 

 AllocatedPages – Committed size of the block in pages. 

Interestingly, this metadata is stored in a separate heap which address is stored in the global variable 

RtlpHpMetadataHeap. 

Large Block Allocation 
Large block allocation is performed via RtlpHpLargeAlloc() which has the following function signature: 

PVOID RtlpHpLargeAlloc(_SEGMENT_HEAP* HeapBase, SIZE_T UserSize, SIZE_T AllocSize, ULONG Flags) 

Large block allocation is straightforward since there’s no free tree/list to consult. First, an allocation of the block’s 

metadata from the metadata heap is done. Next, via NtAllocateVirtualMemory(), a virtual memory with a size 

equal to the allocation size plus 0x1000 bytes for the guard page is reserved. Then, a size equal to the allocation 

size is committed from the initially reserved memory, leaving the last guard page still in the reserved state. 

After allocating the block, the block’s metadata fields are set and the large allocation bitmap 

(RtlpHpLargeAllocationBitmap) is updated to mark the block’s address (actually, UserAddress >> 16) as a 

large block allocation.  

Finally, the block’s metadata is inserted to the large blocks metadata tree (HeapBase.LargeAllocMetadata) using 

the block’s address as the key, then, the block’s address (UserAddress) is returned to the caller. 

Below is an illustration of different structures and global variables that support large blocks allocation: 
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Large Block Freeing 
Large block freeing is performed via RtlpHpLargeFree() which has the following function signature: 

BOOLEAN RtlpHpLargeFree(_SEGMENT_HEAP* HeapBase, PVOID UserAddress, ULONG Flags) 

Similar to large block allocation, freeing a large block is a straightforward process. First, the metadata of the large 

block is retrieved via RtlpHpLargeAllocGetMetadata() and then removed from the large blocks metadata tree 

afterwards.  

Next, the large allocation bitmap is updated to unmark the block’s address as a large block allocation.  Then, the 

virtual memory of the block is freed and the block’s metadata is freed. 

2.6. BLOCK PADDING  

In applications that are not opted-in by default to use the Segment Heap (i.e.: not a Windows app and not a system 

executable as discussed in 2.1), an additional 16 (0x10) bytes padding is added to the block. The padding increases 

the total block size required for the allocation and changes the layout of backend blocks, VS blocks and LFH blocks. 

Below are the layout of a backend, VS and LFH block when padding is added: 
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The padding should be taken into consideration when analyzing allocated blocks, especially if the application under 

observation is neither a Windows app nor a system process. 

2.7. SUMMARY AND ANALYSIS: INTERNALS 

The implementation of the Segment Heap and the NT Heap are very different. The major differences can be 

observed in the data structures used, the use of free trees instead of free lists to track free blocks, and the use of a 

best-fit search algorithm with preference to the most committed block when searching for a free block. 

Also, although the LFH in the Segment Heap and the NT Heap have the same purpose of reducing fragmentation 

and have the same general design, the implementation of the LFH in the Segment Heap had been overhauled. The 

major differences can be observed in the data structures used, the block bitmap representing the LFH blocks, and 

the absence of a block header at the beginning of each LFH block. 
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3. SECURITY MECHANISMS 
This section discusses the different mechanisms added in the Segment Heap to make it difficult or unreliable to 

attack heap metadata, and in certain cases, make it unreliable to perform precise heap layout manipulation. 

3.1. FAST FAIL ON LINKED LIST NODE CORRUPTION 

The Segment Heap uses linked lists for tracking segments and subsegments. Similar to the NT Heap, checks were 

added in the linked list node insertion and removal operations to prevent classic arbitrary writes due to corrupted 

linked list nodes. If a corrupted node is detected, the process immediately terminates via the FastFail [7] 

mechanism: 

 

3.2. FAST FAIL ON RB TREE NODE CORRUPTION 

The Segment Heap uses RB trees for tracking free backend blocks and free VS blocks. It is also used for tracking 

large blocks metadata. The NTDLL-exported functions RtlRbInsertNodeEx() and RtlRbRemoveNode() perform 

the node insertion and removal respectively in addition to making sure that the RB tree is balanced. To prevent 

arbitrary writes due to corrupted tree nodes, the aforementioned functions perform validation when manipulating 

RB tree nodes. Similar to linked list nodes validation, failure in the validation of RB tree nodes will cause invocation 

of the FastFail mechanism. 

In the example validation below, the parent of the left child will be manipulated, which in turn, may lead to an 

arbitrary write if the left child’s ParentValue pointer is controlled by an attacker. To prevent an arbitrary write, 

the parent’s child nodes are checked if one of them is indeed the left child. 
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3.3. HEAP ADDRESS RANDOMIZATION 

To make guessing of the heap address unreliable, randomness is added to where the heap will be located in virtual 

memory.  

Heap address randomization is performed by RtlpHpSegHeapAllocate(), a function used for the creation of the 

heap. It is done by first reserving virtual memory with a size equal to the computed size of the heap plus a 

randomly generated size (the random size is a multiple of 64KB). After reserving virtual memory, the beginning of 

the reserved virtual memory up to a size equal to the initially generated random size is released. Then, HeapBase is 

pointed to beginning of the unreleased portion of the initially reserved virtual memory. 
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3.4. GUARD PAGES 

When VS subsegments, LFH subsegments and large blocks are allocated, a guard page is added at the end of the 

subsegment/block. For VS and LFH subsegments, the subsegment size should be >=64KB for a guard page to be 

added. 

The guard page prevents a sequential overflow from VS blocks, LFH blocks and large blocks from corrupting 

adjacent data outside the subsegment (for LFH/VS blocks) or outside the block (for large blocks). 

 

Backend blocks, on the other hand, do not have a guard page after them, allowing an overflow to corrupt adjacent 

data outside the block. 
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3.5. FUNCTION POINTER ENCODING 

In cases where the attacker is able to determine the address of the heap and assuming that the attacker has a 

Control Flow Guard (CFG) bypass, the attacker can target the function pointers stored in the HeapBase as a way to 

directly control execution flow. To protect these function pointers from trivial modification, the functions pointers 

are encoded using the heap key and the LFH/VS context address. 

 

3.6. VS BLOCK HEADER ENCODING 

Unlike backend/LFH/large blocks, VS blocks have a header at the beginning of each block which makes VS block 

headers a likely target in a buffer overflow. To protect important parts of the VS block header from trivial 

modification, they are encoded using the LFH key and the VS block address. 
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3.7. LFH SUBSEGMENT BLOCKOFFSETS ENCODING 

To protect important LFH subsegment header fields from trivial modification, the block size field and the first block 

offset field in the LFH subsegment header are encoded using the LFH key and the LFH subsegment address. 

 

3.8. LFH ALLOCATION RANDOMIZATION 

To make exploitation of LFH-based buffer overflows and use-after-frees unreliable, the LFH component randomly 

selects which free LFH block to use in an allocation request. The allocation randomization makes it unreliable to 

place a target LFH block adjacent to an LFH block that can be overflowed, and it also makes it unreliable to reuse a 
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recently freed LFH block. The allocation randomization algorithm is discussed in the “LFH Allocation” subsection in 

2.4.  

Below is an illustration where 8 LFH blocks are sequentially allocated from a new LFH subsegment: 

 

Notice the first allocation is on the 20
th

 LFH block, the second allocation is on the 30
th

 block, the third allocation is 

on the 5
th

 block, and so on.  

3.9. SUMMARY AND ANALYSIS: SECURITY MECHANISMS 

The applied security mechanisms in the Segment Heap are mostly a carryover of the security mechanisms from the 

NT Heap, notable of which are the guard pages and the LFH allocation randomization which was new when 

Windows 8 was released [5, 8]. Based on this, and how important fields of the new data structures are protected, 

the Segment Heap is comparable with the NT Heap in terms of applied security mechanisms. However, it is yet to 

be seen how the new Segment Heap data structures will fare when metadata attack research of the Segment Heap 

becomes popular. 

With regards to heap layout manipulation, the best-fit search algorithm and the free block splitting mechanism of 

the backend and the VS component are more welcoming to heap layout manipulation compared to the LFH 

component which uses allocation randomization. 
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4. CASE STUDY 
This section examines how the layout of a heap managed by the Segment Heap can be manipulated by discussing a 

way to leverage a memory corruption vulnerability for a reliable arbitrary write in the context of the Edge content 

process. 

4.1. CVE-2016-0117 VULNERABILITY DETAILS 

The vulnerability (CVE-2016-0117 [9], MS16-028 [10]) is in WinRT PDF’s [11] PostScript interpreter for Type 4 

(PostScript Calculator) functions [12]. PostScript Calculator functions use a subset of the PostScript language 

operators and these PostScript operators use the PostScript operand stack when performing their functions.   

The PostScript operand stack is a vector containing 0x65 CType4Operand pointers. Each CType4Operand, on the 

other hand, is a data structure consisting of one DWORD that represents the type and one DWORD representing 

the value in the PostScript operand stack.  

The PostScript operand stack and the CType4Operands are allocated from the MSVCRT heap which is managed by 

the Segment Heap if WinRT PDF is loaded in the context of the Edge content process: 

 

The issue is that the PostScript interpreter fails to validate if the PostScript operand stack index is past the end of 

the PostScript operand stack (PostScript operand stack index is 0x65), allowing a dereference of a CType4Operand 

pointer located right after the end of the PostScript operand stack.  

If an attacker is able to implant a target address right after the end of the PostScript operand stack, the attacker 

will be able to perform a memory write to the target address via a PostScript operation that pushes a value in the 

PostScript operand stack. 

In the illustration below, multiple integers (1094795585 or 0x41414141) are pushed to the PostScript operand 

stack with the last 0x41414141 pushed to invalid index 0x65 of the PostScript operand stack: 
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4.2. PLAN FOR IMPLANTING THE TARGET ADDRESS 

After understanding the vulnerability, the following plan is used to implant the target address after the end of the 

PostScript operand stack: 

1. Allocate a controlled buffer and set offset 0x328 of the controlled buffer to the target address 

(0x4242424242424242). For reliability, the controlled buffer and the PostScript operand stack will be VS-

allocated instead of being LFH-allocated. 

2. Free the controlled buffer. 

3. The PostScript operand stack will be allocated in the free VS block of the freed controlled buffer. 

Below is an illustration of the plan: 

 

Executing the above plan requires the ability to manipulate the MSVCRT heap in order to reliably implant the 

target address after the PostScript operand stack, this includes the ability to allocate a controlled block from the 

MSVCRT heap and the ability to free the controlled block. In addition, there will be some issues that will affect 

reliability (such as free blocks coalescing) which need to be dealt with. The next subsections will discuss the 

solutions to these requirements/issues. 
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4.3. MANIPULATING THE MSVCRT HEAP WITH CHAKRA’S ARRAYBUFFER 

JavaScript embedded in the PDF can potentially fulfill the requirement of MSVCRT heap manipulation, but 

unfortunately, as of writing, WinRT PDF still does not support embedded JavaScript.  

Fortunately, a solution can be found in the Chakra’s (Edge’s JavaScript engine) ArrayBuffer implementation. 

Similar to WinRT PDF’s PostScript operand stack, the data buffer of Chakra’s ArrayBuffer is also allocated from 

the MSVCRT heap via msvcrt!malloc() [13, 14] if the ArrayBuffer is of a certain size (i.e.: size is less than 64KB, 

or for sizes >=64KB, additional checks are performed).  

This means that a JavaScript code in an HTML file can allocate and free the controlled buffer from the MSVCRT 

heap (step 1 and step 2 of the plan). Then, the JavaScript code can inject an <embed> element in the page which 

causes the PDF file containing the vulnerability trigger to be loaded by WinRT PDF. Upon loading the PDF file, 

WinRT PDF will allocate the PostScript operand stack from the MSVCRT heap, and the free VS block of the freed 

controlled buffer would then be returned by the heap manager to WinRT PDF to fulfill the allocation request (step 

3 of the plan). 

Allocation and Setting Controlled Values 
In the illustration below, a JavaScript code in an HTML file instantiated an ArrayBuffer with a size of 0x340 which 

in turn leads to an allocation of a 0x340 bytes block from the MSVCRT heap; offset 0x328 of the block is then set 

with the target address: 

 

LFH Bucket Activation 

Activating the LFH bucket for a particular allocation size is also an important capability and its use in the plan will 

be later discussed. To activate the LFH bucket for a specific allocation size, 17 ArrayBuffer objects with the same 

size need to be instantiated: 
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Freeing and Garbage Collection 
Freeing blocks involves removing references to the ArrayBuffer object and then triggering a garbage collection. 

Note that Chakra’s CollectGarbage() is still callable but its functionality is disabled in Edge [15], therefore, 

another mechanism to trigger garbage collection is needed.  

Looking again at the ArrayBuffer functionality, every time an ArrayBuffer is created, the size passed to the 

ArrayBuffer constructor is added to an internal Chakra heap manager counter [16]. If that particular counter 

reaches >=192MB in machines with >1GB memory (threshold is lower for machines with lower memory), a 

concurrent garbage collection is triggered. 

Therefore, to perform garbage collection, an ArrayBuffer with a size of 192MB is created, then a delay is 

introduced to let the concurrent garbage collection to finish, and afterwards, a succeeding JavaScript code is 

executed:  

 

4.4. PREVENTING TARGET ADDRESS CORRUPTION 

Since VS allocations are performed using a best-fit policy, the first idea that comes to mind is to VS-allocate the 

controlled buffer using 0x330 as the size. However, this first idea has a problem in that the highest 16 bits of the 

target address will be overwritten with unused bytes value which is stored in the last two bytes of a VS block: 

 

To solve the issue, a property of VS chunk splitting can be leveraged. Specifically, as previously mentioned in the 

“VS Allocation” subsection in 2.3, large free blocks are split unless the block size of the resulting remaining block 

will be less than 0x20 bytes.  

Therefore, if a 0x340 bytes controlled buffer (total block size including header: 0x350) is used, and that a 0x328 

bytes PostScript operand stack (total block size including header: 0x340) will be allocated in the freed controlled 

buffer’s free VS block, the size of the remaining block after the split will only be 0x10 bytes, thereby preventing 
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the split of the 0x350 bytes free VS block. And if that is the case, the unused bytes value will be stored at offset 

0x33E of the VS block, leaving the target address unmodified: 

 

4.5. PREVENTING FREE BLOCKS COALESCING 

To prevent the free VS block of the freed controlled buffer from being coalesced with neighboring free VS blocks, 

15 (instead of one) controlled buffers are created sequentially, then, in an alternating manner, eight are kept busy 

and seven are freed.  

The illustration below shows a favorable allocation pattern that prevents the free VS blocks of the freed controlled 

buffers from being coalesced: 

 



WINDOWS 10 SEGMENT HEAP INTERNALS > CASE STUDY  

IBM Security | ©2016 IBM Corporation 
 

47 

Actual allocation patterns will not always exactly match the above illustration, such as when some of the 

controlled buffers are allocated from a different VS subsegment. However, the multiple freed and busy controlled 

buffers increase the chance that at least one or more free VS blocks of the freed controlled buffers will not be 

coalesced. 

4.6.  PREVENTING UNINTENDED USE OF FREE BLOCKS 

After the controlled buffers are freed in step 2, their corresponding free VS blocks might be split and used for small 

allocations that might occur before step 3. In order to prevent the unintended use of these free VS blocks, the 

corresponding LFH buckets for allocation sizes 0x1 to 0x320 are activated so that allocation for those sizes will be 

serviced by the LFH instead of the VS allocation component: 

 

4.7. ADJUSTED PLAN FOR IMPLANTING THE TARGET ADDRESS 

Now that the solutions to the issues were identified, the initial plan for implanting the target address is adjusted to 

the following: 

1. HTML/JavaScript: Create 15 controlled buffers by instantiating ArrayBuffer objects with 0x340 as the 

size. 

2. HTML/JavaScript: Activate the LFH buckets corresponding to allocation sizes 0x1 to 0x320. 

3. HTML/JavaScript: In an alternating manner, free seven controlled buffers and leave eight controlled 

buffers busy. 

4. HTML/JavaScript: Inject an <embed> element to the page in order for WinRT PDF to load the PDF file that 

triggers the vulnerability. 

5. PDF: WinRT PDF will allocate the PostScript operand stack and the block by returned by the heap manager 

will be the free VS block of one of the freed controlled buffers. 
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4.8. SUCCESSFUL ARBITRARY WRITE 

Once the target address is successfully implanted after the end of the PostScript operand stack and the 

vulnerability is triggered, arbitrary write is achieved: 

 

4.9. ANALYSIS AND SUMMARY: CASE STUDY 

The case study showed that precise layout manipulation is achievable in heaps managed by the Segment Heap. 

Specifically, it showed how the layout of VS allocations can be controlled, and how the LFH can be used to preserve 

the controlled layout of VS allocations by redirecting unwanted allocation requests to activated LFH buckets. 

The two main elements that allowed the precise heap layout manipulation in the case study are the scripting 

capability provided by the Chakra JavaScript engine and a common heap used by both Chakra’s ArrayBuffer and 
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WinRT PDF’s PostScript interpreter. Without these two elements, precise layout manipulation of the MSVCRT heap 

using WinRT PDF’s internal allocation and freeing of objects would likely be more difficult. 

Finally, when developing proof-of-concepts, one might encounter issues that seem to be unresolvable, such as the 

target address corruption described in the case study. In cases such as those, understanding the internals of the 

heap implementation will sometimes provide the solution. 
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5. CONCLUSION 
The internals of the Segment Heap and the NT Heap are largely different. Although some components of the 

Segment Heap and the NT Heap have the same purpose, the data structures supporting the Segment Heap are 

mostly unlike their counterpart in the NT Heap. Consequently, these new Segment Heap data structures are 

interesting for metadata attack research.  

Also, the security mechanisms in the initial release of the Segment Heap in Windows 10 show that previous attacks 

and their corresponding mitigations in the NT Heap had been taken into consideration when the Segment Heap 

was developed.  

In terms of heap layout manipulation, the case study showed that, given a capability to perform arbitrary 

allocations and frees, precise layout manipulation of heaps managed by the Segment Heap is achievable. The case 

study also showed that in-depth knowledge of the Segment Heap can help resolve seemingly unresolvable proof-

of-concept reliability/functionality issues.  

Finally, I hope that this paper helped you understand Windows 10’s Segment Heap.  
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6. APPENDIX: WINDBG !HEAP EXTENSION COMMANDS FOR SEGMENT HEAP 
Below are some useful WinDbg !heap extension commands that work with the Segment Heap.  

!heap -x <address> 
This command is useful if the heap where a block was allocated from is unknown since this command only requires 

the block’s address. This command will show the corresponding heap, segment, subsegment, subsegment’s “first” 

page range descriptor, type and total size of the block. 

Example output for a busy VS block (user-requested size is 0x328 bytes): 

windbg> !heap -x 00000203`6b2b6200  
 
[100 Percent Complete] 
[33 Percent Complete] 
Search was performed for the following Address: 0x000002036b2b6200 
Below is a detailed information about this address. 
Heap Address             : 0x000002036b140000 
The address was found in backend heap. 
Segment Address          : 0x000002036b200000 
Page range index (0-255) : 120 
Page descriptor address  : 0x000002036b200f00 
Subsegment address       : 0x000002036b278000 
Subsegment Size          : 266240 Bytes 
Allocation status        : Variable size allocated chunk. 
Chunk header address     : 000002036b2b61f0 
Chunk size (bytes)       : 848 
Chunk unused bytes       : 24 

!heap -i <address> -h <heap> 
Once the corresponding heap of the block is known, this command can be used to display additional information 

about the block such as its user-requested size and the decoded RangeFlags field of the corresponding 

subsegment’s “first” page range descriptor. 

Example output for a busy VS block (user-requested size is 0x328 bytes, same block as the previous example): 

windbg> !heap -i 00000203`6b2b6200 -h 000002036b140000 
 
The address 000002036b2b6200 is in Segment 000002036b200000 
Page range descriptor address: 000002036b200f00 
Page range start address:      000002036b278000 
Range flags (2e): First Allocated Committed VS 
 
UserAddress:             0x000002036b2b6200 
Block is :                Busy 
Total Block Size (Bytes): 0x350 
User Size (bytes):        0x328 
UnusedBytes (bytes):      0x18 

!heap -s -a -h <heap> 
The !heap -s command with the -a option (dump all heap blocks option) can be used for examining the layout of 

a heap since it displays information about each block for each Segment Heap component in sequence. 

Example output: 

windbg> !heap -s -a -h 000002036b140000 
 
Large Allocation X-RAY. 
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   Block Address Metadata Address  Virtual Address      Pages Ununsed Size 
                                                    Allocated     (Bytes) 
     20c7fc020c0      20c7fc020c0      20300df0000        227        2383 
     20c7fc02080      20c7fc02080      20300ee0000        137        1912 
 
Backend Heap X-RAY. 
 
               Page Range  Page Range                                                                      
    Segment    Descriptor  Descriptor    Subsegment  Range        Subsegment      Pages     Unused 
    Address       Address      Index        Address  Flags              Type  Allocated      Bytes 
                                                                                                                  
2036b200000   2036b200040          2    2036b202000     2e    Variable Alloc         17       4096 
2036b200000   2036b200260         19    2036b213000     2e    Variable Alloc         65       4096 
2036b200000   2036b200a80         84    2036b254000      f    LFH Subsegment          1          0 
 
[...] 
 
Variable size allocation X-RAY 
 
         Segment       Subsegment     Chunk Header    Chunk   Bucket       Status   Unused 
         Address          Address          Address     Size    Index                 Bytes 
 
     2036b200000      2036b202000      2036b202030      752       47    Allocated        8 
     2036b200000      2036b202000      2036b202320     1808       77    Allocated        0 
     2036b200000      2036b202000      2036b202a30      272       17    Allocated        0 
 
[...] 
 
LFH X-RAY 
 
    Segment    Subsegment         Block    Block   Bucket       Commit     Busy     Free   Unused      
    Address       Address       Address     Size    Index       Status    Bytes    Bytes    Bytes 
 
2036b200000   2036b254000   2036b254040      256       16    Committed      256        0        0 
2036b200000   2036b254000   2036b254140      256       16    Committed      256        0        0 
2036b200000   2036b254000   2036b254240      256       16    Committed      256        0        0 
 
[...] 
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