
ANALYSIS OF THE ATTACK SURFACE OF
WINDOWS 10 VIRTUALIZATION-BASED

SECURITY

Rafal Wojtczuk
rafal@bromium.com

aAgendaupa

ÅShort reminder on VBS architecture

ÅCredential Guard properties and internals

ÅHV Code Integrity properties and internals

ÅHyper-V security/complexity/attack surface

ÅMore details in the whitepaper

aScopeupa

ÅMost of this research done with W10 1511

ÅLƴǘŜƭΩǎ ƘŀǊŘǿŀǊŜ όǿƘŜƴ Ƙǿ ƳŜƴǘƛƻƴŜŘύ

ÅMixed original, little-known and well-known
content

VBS architecture

aCredential Guard architectureupa

Picture taken from BH2015
Microsoft presentation

Mimikatz fails on CG-protected box

aCG scenario 1upa

ÅAdmins just enabled CG in Group Policy

ÅNo further hardening

ÅEasy to deploy

aCG RPC interfaceupa

LsaIso trustlet, running in VTL1, exposes the above functions via RPC over ALPC port \RPC Control\LSA_ISO_RPC_SERVER

aNtlmIumProtectCredentialupa

ÅInput (from lsass.exe): plaintext credentials

ÅOutput (from LsaIso.exe) : blob with encrypted
credentials

aNtlmIumLm20GetNtlm3Challen
geResponseupa

ÅInput (from lsass.exe): blob with encrypted
credentials + NTLM challenge

ÅOutput (from LsaIso.exe): NTLM response

aScenario 1 propertiesupa

ÅAfter logon, no cleartext credentials in lsass

ÅWhile user is logged in, lsass will auth to remote
servers automatically (SSO), for attacker as well

ÅIf attacker collects encrypted blob, he can force
LsaIso to auth even after logout (until reboot)

ÅDemo

Credentials during logon ?
ÅThere is still a problem with how the unencrypted

credentials are initially delivered to VTL1 (which happens
during logon).άǊǳƴŘƭƭонΦŜȄŜ ǳǎŜǊонΦŘƭƭΣ[ƻŎƪ²ƻǊƪ{ǘŀǘƛƻƴέΦ

ÅIf not using smart-card based authentication, then the
plaintext credentials can be captured by keylogger and
used anywhere, anytime.

ÅIn case of smart-card based authentication, the NTOWF
hashes sent by KDC can be captured and reused.

aCG scenario 2upa

ÅCredential Guard with armor key protection and
smartcard-based authentication

ÅNontrivial deployment challenge

ÅPossible to enable without TPM, but in such
case no real advantage

aCG scenario 2upa

Picture taken from BH2015
Microsoft presentation

aScenario 2 properties
ÅNo more cleartext creds in lsass, ever

ÅStill, as before, until reboot, attacker can
interact with CG and have it perform all SSO-
supported authentications for remote resources

Å¢ƘŜǊŜ ƛǎ ƴƻ ǊŜƭƛŀōƭŜ ǿŀȅ ǘƻ ŘŜƭƛǾŜǊ άǳǎŜǊ Ƙŀǎ
ƭƻƎƎŜŘ ƻǳǘΣ ǊŜŦǳǎŜ ŦǳǘǳǊŜ {{hέ ƳŜǎǎŀƎŜ ǘƻ ±¢[м

aCG properties summary
ÅEven in the most hardened configuration, once attacker has

SYSTEM privileges, they can silently authenticate as logged-in
user to remote servers, from the compromised machine, until
reboot
ÅNo more classical pass-the-hash ς but attackers can adapt and

start lateral movement from the same machine, until reboot
ÅIn classical pass-the-hash, one can reuse stolen hashes

anytime, from anywhere ς thus CG is an improvement
ÅAgain, no hypervisor compromise required for the above

attack, just root partition compromise

VBS-enforced code integrity
ÅWindows 10 can enforce code integrity of

usermode binaries, usermode scripts and
kernelmode code; the latter via VBS

ÅWe focus on kernelmode case

ÅThe goal ς not allow execution of any unsigned
code in kernel context, even if the kernel has
been compromised

VBS-enforced code integrity
ÅBasic idea: trusted code (running in VTL1)

agrees to grant execute rights in EPT tables of
the root partition only for pages storing signed
code

ÅNo such page can be both writable and
executable

Mixing signed & unsigned code
ÅCommon configuration: unsigned usermode code

allowed, unsigned kernelmode denied

ÅUsermode wants to execute unsigned code at C

ïVTL1 must grant execute right for C in EPT

ÅUsermode switches to kernelmode, and jumps to C

ï?

Kernel HVCI is based on secvisor
ÅSeparate EPT for code originating from signed

and unsigned page

ÅRoot partition is configured so that any attempt
by unsigned usermode code to enter
kernelmode results in vmexit (and EPT flip)

ïIDT, GDT limits set to 0, syscall&sysenter disabled

Kernel HVCI and kernel exploits
ÅAttackers love arbitrary code running in ring0
ÅSMEP a problem, but natural bypass:
ïGet ROP capability, then clear CR4.SMEP
ïOr, via write-what-where, clear U/S bit in PT
ïRun your arbitrary code

ÅNot working with Kernel HVCI !
ÅAlso, cannot hook kernel code, at least not directly
ÅData-only exploits, or ROP-only, still fine

Kernel HVCI bypass, MS16-066
ÅBefore MS16-066 fix, there are some pages with

RWX permission in root partition (kernelmode)
EPT

ÅLikely artifacts of early boot phase

ÅAttacker can find them by probing each physical
page for write and execute, in ring0

Kernel HVCI bypass, MS16-066

HYPERV-V SECURITY

[Un]usual threat model
ÅUsual model: hypervisor must be resistant to attacks

coming from unprivileged, worker VMs
ÅWithout VBS, root partition is semi-trusted; it can

compromise Hyper-V (no big deal) because
ïHvCallDisableHypervisor hypercall
ïCleartext hiberfile
ïVTd not enabled

ÅWith VBS, the threat comes from the root partition

Necessary support
ÅSecureboot
ï many vulnerabilities in the past allowing secureboot

bypass

ÅVTd
ï without it, possible to overwrite hypervisor via DMA

ÅTPM
ï needed to secure S4, see below

Root partition privileges
ÅAccess to privileged hypercalls
ïHypervisor Top-Level Functional Specification

mentions 14 hypercalls usable by nonprivileged
VM, and 67 privileged hypercalls. More hypercalls
exist, entirely undocumented.

ÅPossible to overlook some dangerous
functionality, or e.g. memory corruption bug

Root partition privileges
ÅAccess to almost all physical memory range

ïWithout pages allocated for Hyper-V and VTL1

ïIncluding

Åchipset and PCIe MMIO

ÅACPI NVS

ïLAPIC and VTd bars not accessible

Root partition privileges
ÅI/O ports: all available except:

Å32, 33 (PCH interrupt controller), 160, 161 (same)

Å0x64, lpc microcontroller (A20 gate)

Å0xcf8, 0xcfc-0xcff ς PCI config space

Å0x1804. It is PMBASE+4 == PM1_CNT, it holds the
SLP_EN bit, that triggers S3 sleep; see below

Root partition privileges
ÅMSR ς none available directly except :

Åthree SYSENTER MSRS

Åfs/gs/shadow gs base

ÅSo, Hyper-V has at least a chance to react
properly

Problem 1 ς unfiltered MMCFG
ÅMMCFG is a region of physical address space; access

to it results in PCIe config space access
ï Device-specific registers, memory bars locations

ÅREMAP_LIMIT/REMAP_BASE are locked

ÅOverlapping RAM with PCIe memory bar does not
work

ÅAnything else interesting we can overlap/cover ?

Overlap VTd bars

But write access hangs the tested platform L

Problem 2 ς chipset registers
ÅSome memory-mapped regions, e.g. in

MCHBAR, have thousands of registers, most of
them undocumented at all

ÅAre all of them locked ? Anything evil can be
done ?

ÅI do not know

S3 sleep
ÅS3 is fragile from security POV

ÅBoot script hijack vulnerability from 2014 could
be used to take control over the hypervisor

ï likely all firmware makes were affected

ÅMore potential attacks via S3 thinkable (see the
whitepaper)

S4 sleep
ÅS4 is even more fragile from security POV

ÅNeed to protect integrity of hiberfile

ÅWith VBS, it is encrypted

ÅNeed to keep the key secret

ÅIf TPM available, the key is sealed to TPM

ÅIf no TPM, then the key is cleartext in UEFI variable

S4 is insecure without TPM

