
ANALYSIS OF THE ATTACK SURFACE OF 
WINDOWS 10 VIRTUALIZATION-BASED 

SECURITY 

Rafal Wojtczuk 
rafal@bromium.com 



aAgendaupa 

• Short reminder on VBS architecture 

• Credential Guard properties and internals 

• HV Code Integrity properties and internals 

• Hyper-V security/complexity/attack surface 

• More details in the whitepaper 
 



aScopeupa 

• Most of this research done with W10 1511 

• Intel’s hardware (when hw mentioned) 

• Mixed original, little-known and well-known 
content 
 



VBS architecture 



aCredential Guard architectureupa 

Picture taken from BH2015  
Microsoft  presentation 



Mimikatz fails on CG-protected box 



aCG scenario 1upa 

• Admins just enabled CG in Group Policy 

• No further hardening 

• Easy to deploy 

 
 



aCG RPC interfaceupa 

LsaIso trustlet, running in VTL1, exposes the above functions via RPC over ALPC port \RPC Control\LSA_ISO_RPC_SERVER   



aNtlmIumProtectCredentialupa 

• Input (from lsass.exe): plaintext credentials 

• Output (from LsaIso.exe) : blob with encrypted 
credentials 

 

 
 



aNtlmIumLm20GetNtlm3Challen
geResponseupa 

• Input (from lsass.exe): blob with encrypted 
credentials + NTLM challenge 

• Output (from LsaIso.exe): NTLM response 

 

 
 



aScenario 1 propertiesupa 

• After logon, no cleartext credentials in lsass 

• While user is logged in, lsass will auth to remote 
servers automatically (SSO), for attacker as well 

• If attacker collects encrypted blob, he can force 
LsaIso to auth even after logout (until reboot) 

• Demo 

 

 
 



Credentials during logon ? 
• There is still a problem with how the unencrypted 

credentials are initially delivered to VTL1 (which happens 
during logon).“rundll32.exe user32.dll,LockWorkStation”.  

• If not using smart-card based authentication, then the 
plaintext credentials can be captured by keylogger and 
used anywhere, anytime.  

• In case of smart-card based authentication, the NTOWF 
hashes sent by KDC can be captured and reused. 

 

 
 



aCG scenario 2upa 

• Credential Guard with armor key protection and 
smartcard-based authentication 

• Nontrivial deployment challenge 

• Possible to enable without TPM, but in such 
case no real advantage 
 



aCG scenario 2upa 

Picture taken from BH2015  
Microsoft  presentation 



aScenario 2 properties 
• No more cleartext creds in lsass, ever 

• Still, as before, until reboot, attacker can 
interact with CG and have it perform all SSO-
supported authentications for remote resources 

• There is no reliable way to deliver “user has 
logged out, refuse future SSO” message to VTL1  
 



aCG properties summary 
• Even in the most hardened configuration, once attacker has 

SYSTEM privileges, they can silently authenticate as logged-in 
user to remote servers, from the compromised machine, until 
reboot 

• No more classical pass-the-hash – but attackers can adapt and 
start lateral movement from the same machine, until reboot 

• In classical pass-the-hash, one can reuse stolen hashes 
anytime, from anywhere – thus CG is an improvement 

• Again, no hypervisor compromise required for the above 
attack, just root partition compromise 



VBS-enforced code integrity 
• Windows 10 can enforce code integrity of 

usermode binaries, usermode scripts  and 
kernelmode code; the latter via VBS 

• We focus on kernelmode case 

• The goal – not allow execution of any unsigned 
code in kernel context, even if the kernel has 
been compromised 



VBS-enforced code integrity 
• Basic idea: trusted code (running in VTL1) 

agrees to grant execute rights in EPT tables of 
the root partition only for pages storing signed 
code 

• No such page can be both writable and 
executable  



Mixing signed & unsigned code 
• Common configuration: unsigned usermode code 

allowed, unsigned kernelmode denied 

• Usermode wants to execute unsigned code at C 

–VTL1 must grant execute right for C in EPT 

• Usermode switches to kernelmode, and jumps to C 

–? 



Kernel HVCI is based on secvisor 
• Separate EPT for code originating from signed 

and unsigned page 

• Root partition is configured so that any attempt 
by unsigned usermode code to enter 
kernelmode results in vmexit (and EPT flip) 

–IDT, GDT limits set to 0, syscall&sysenter disabled 



Kernel HVCI and kernel exploits 
• Attackers love arbitrary code running in ring0 
• SMEP a problem, but natural bypass: 

–Get ROP capability, then clear CR4.SMEP 
–Or, via write-what-where, clear U/S bit in PT 
– Run your arbitrary code 

• Not working with Kernel HVCI ! 
• Also, cannot hook kernel code, at least not directly 
• Data-only exploits, or ROP-only, still fine 



Kernel HVCI bypass, MS16-066 
• Before MS16-066 fix, there are some pages with 

RWX permission in root partition (kernelmode) 
EPT 

• Likely artifacts of early boot phase 

• Attacker can find them by probing each physical 
page for write and execute, in ring0 



Kernel HVCI bypass, MS16-066 



HYPERV-V SECURITY 



[Un]usual threat model 
• Usual model: hypervisor must be resistant to attacks 

coming from unprivileged, worker VMs 
• Without VBS, root partition is semi-trusted; it can 

compromise Hyper-V (no big deal) because 
–HvCallDisableHypervisor hypercall 
–Cleartext hiberfile 
–VTd not enabled 

• With VBS, the threat comes from the root partition 
 



Necessary support 
• Secureboot 
–  many vulnerabilities in the past allowing secureboot 

bypass 

• VTd 
–  without it, possible to overwrite hypervisor via DMA 

• TPM 
–  needed to secure S4, see below 



Root partition privileges 
• Access to privileged hypercalls 
–Hypervisor Top-Level Functional Specification 

mentions 14 hypercalls usable by nonprivileged 
VM, and 67 privileged hypercalls. More hypercalls 
exist, entirely undocumented.  

• Possible to overlook some dangerous 
functionality, or e.g. memory corruption bug 



Root partition privileges 
• Access to almost all physical memory range 

–Without pages allocated for Hyper-V and VTL1 

–Including  

• chipset and PCIe MMIO  

• ACPI NVS 

–LAPIC and VTd bars not accessible 



Root partition privileges 
• I/O ports: all available except: 

• 32, 33 (PCH interrupt controller), 160, 161 (same) 

• 0x64, lpc microcontroller (A20 gate) 

• 0xcf8, 0xcfc-0xcff – PCI config space 

• 0x1804. It is PMBASE+4 == PM1_CNT, it holds the 
SLP_EN bit, that triggers S3 sleep; see below 



Root partition privileges 
• MSR – none available directly except : 

• three SYSENTER MSRS  

• fs/gs/shadow gs base  

• So, Hyper-V has at least a chance to react 
properly 



Problem 1 – unfiltered MMCFG 
• MMCFG is a region of physical address space; access 

to it results in PCIe config space access 
–  Device-specific registers, memory bars locations 

• REMAP_LIMIT/REMAP_BASE are locked 

• Overlapping RAM with PCIe memory bar does not 
work 

• Anything else interesting we can overlap/cover ? 



Overlap VTd bars 

But write access hangs the tested platform  



Problem 2 – chipset registers 
• Some memory-mapped regions, e.g. in 

MCHBAR, have thousands of registers, most of 
them undocumented at all 

• Are all of them locked ? Anything evil can be 
done ? 

• I do not know 



S3 sleep 
• S3 is fragile from security POV 

• Boot script hijack vulnerability from 2014 could 
be used to take control over the hypervisor 

–  likely all firmware makes were affected 

• More potential attacks via S3 thinkable (see the 
whitepaper) 



S4 sleep 
• S4 is even more fragile from security POV 

• Need to protect integrity of hiberfile 

• With VBS, it is encrypted 

• Need to keep the key secret 

• If TPM available, the key is sealed to TPM 

• If no TPM, then the key is cleartext in UEFI variable 



S4 is insecure without TPM 



SMM 
• SMM is highly-privileged mode of CPU, 

unrestricted by hypervisor 

• Usually, firmware vendors pack quite some 
services in SMM; they can be invoked by write 
to I/O port 0xb2 

• A lot of bugs in SMM found recently 



SMM code tends to be buggy 



SMM 
• It is well-known that SMM vulnerability can be 

used to compromise a hypervisor in runtime 
–  BTW,  secureboot as well 

• VBS allows direct access to I/O port 0xb2, as 
well as to ACPI NVS 

• Intel researchers demoed searching VTL1 
memory for password hashes 



SMM abuse example 



SMM abuse example 



SMM 



Summary 
• Despite its limited scope, VBS is useful  

• A lot of effort by MS to make it as secure as 
possible; still, unusual attack surface 

• VTd, TPM strictly necessary (with secureboot) 

• SMM vulnerabilities the greatest threat 



Questions ?  



Extra slides: Non-VBS-specific 
threats 

• CPU erratas 

• Rowhammer 

• Flashable discrete hardware 



VTL1 attack surface 
• RPC services implemented in LsaIso (including RPC 

demarshalling code) 

• 48 services implemented in 
securekernel!IumInvokeSecureService (called by nt! 
HvlpEnterIumSecureMode) 

• VTL1 extensively calls into VTL0 to use some 
services – need to sanitize all responses 

 



Other funny chipset capabilities 
• E.g. chipset can program DRAM SPD 

• Capability locked by sane BIOS 

Picture taken from 
Wikipedia article 
on Serial Presence  
Detect 


