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Abstract 
In Windows 10, Microsoft introduced virtualization-based security (VBS), the set of security solutions 

based on a hypervisor. In this paper, we will talk about details of VBS implementation and assess the 

attack surface - it is very different from other virtualization solutions. We will focus on the potential 

issues resulting from the underlying platform complexity (UEFI firmware being a primary example). 

Note that most of the research described in this paper was done with Windows 10 Enterprise 1511. 

Judging by the preview Windows 10 versions, VBS is actively being worked on and enhanced; 

therefore it is possible that the behavior of later Windows 10 releases might differ in some aspects. 

We focus on the Intel hardware throughout this paper. 

Architecture and features 
High-level overview of Windows 10 virtualization-based security (VBS) can be found at [dgo]. In this 

section we shortly summarize its architecture and provide details on the implementation. For more 

in-depth information, see [bsi] [sop]. 

Note that below we describe the operation and properties of VBS services under assumption that the 

hypervisor has not been compromised. Attacks against the hypervisor are discussed in “Hypervisor 

security” section. 

When Hyper-V is present, it has control over the root partition. Therefore it is capable of 

implementing extra restrictions and providing secure services to the root partition. With VBS, the 

threat model is that the root partition has been compromised by malicious entity, up to the point of 

malware possessing kernel privileges. Note that VBS provides mitigation only for very specific attack 

cases, described below. Many actions typical for malware, e.g. exfiltration of confidential documents, 

keyloggers, or access to the internal (or corporate) network are not obstructed in any way. 

When VBS is enabled, Hyper-V creates a special-purpose virtual machine and assigns it higher trust 

level (Virtual Trust Level 1, VTL1). Code running in this VM is responsible for providing security 

services. Unlike other VMs, VTL1 VM is protected from the root partition. 



Credential Guard 
The best description of Credential Guard (CG) is [sop]. It is advertised as a method to prevent pass-

the-hash attacks. Note that after KB2871997, lsass never keeps in memory the hashes of logged-out 

users – so all we can get is the hashes of a currently logged-in user. Also, in this paper we are not 

interested in Credential Manager, just logon credentials. 

As described in [sop], there are two different types of configuration possible. 

Scenario 1: Just enable Credential Guard in Group Policy 

Without CG, lsass.exe keeps the hashes of passwords in its memory, in order to be able to provide 

SSO to remote servers. Many public tools, particularly mimikatz [mim], are capable of extracting 

these hashes. Afterwards, attacker can use these hashes to launch pass-the-hash attack from any 

machine, anytime (until the password is changed). 

If CG is enabled, then lsass.exe no longer keeps hashes of passwords in its memory. As seen in the 

screenshot below, mimikatz1 is not able to obtain the hashes (only encrypted opaque blobs are 

available): 

 

How is SSO implemented in such case, particularly, the management of password hashes? 

It is the LsaIso trustlet, running in VTL1 that keeps the hashes for the logged-in user. LsaIso exposes 

RPC interface over ALPC port \RPC Control\LSA_ISO_RPC_SERVER. The interface consists of the 

following functions: 
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 In fact, the unmodified mimikatz malfunctioned on w10 1511 system with CG enabled; I needed to patch out 

the attempt to print 0x640000 zeroes. 



 

The workflow is as follows: 

1) On startup, lsass calls NtlmIumGetContext, to obtain the secret nounce. This function can be 

called only once during system lifetime. All other functions require the correct nounce as the 

argument. 

2) When user logs in, lsass creates a structure named _MSV1_0_SECRETS_WRAPPER and stores 

authentication material (likely, NTOWF) there. Then lsass calls NtlmIumProtectCredential. 

This function encrypts the authentication material, and passes the encrypted blob back to 

lsass (in the same _MSV1_0_SECRETS_WRAPPER structure). From this moment on, lsass no 

longer keeps any unencrypted authentication material in its memory (keeps the encrypted 

blob only). 

3) Whenever actual authentication needs to happen (say, ntlm response needs to be 

computed), lsass calls the relevant LsaIso function (say, 

NtlmIumLm20GetNtlm3ChallengeResponse), providing as input the encrypted blob obtained 

in step 2. LsaIso is able to decrypt the blob, use the resulting authentication material to 

perform the required computation and pass the results back to lsass. 

This design has the following properties: 

1) After step 2, lsass no longer keeps any unencrypted authentication material in its memory – 

so it cannot be stolen and used for pass-the-hash attack. 

2) While the user is logged in, if attacker can execute code as this user, then attacker can freely 

authenticate to other servers as the user, without any trickery needed. Attacker’s actions are 

indistinguishable from the user using SSO legally. 

3) If attacker collects the encrypted blob from lsass memory2 while the user is logged in, then 

even after the user logs out, attacker can still call LsaIso functions, pass the encrypted blob 

and authenticate as the user. 

In the proof-of-concept code implementing the above, the rpc call to 

NtlmIumLm20GetNtlm3ChallengeResponse is hooked so that a saved encrypted blob is 

passed instead of the current credentials. Then any attacker action (say, access to SMB share) 

gets automatically authenticated, even after user logout. 
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 Attacker needs SYSTEM privileges for this 



The situation is still improved in comparison to the case without CG: attacker needs to launch 

the lateral movement from the same machine that the encrypted blob was collected on. 

Also, after reboot, the encrypted blob is no longer valid – if we pass the saved encrypted blob 

to NtlmIumLm20GetNtlm3ChallengeResponse then it returns STATUS_DECRYPTION_FAILED. 

4) There is still a problem with how the unencrypted credentials are initially delivered to VTL1 

(which happens during logon). Attacker can entice the user to perform logon again, while the 

machine is under attacker’s control, e.g. by locking the workstation (just run “rundll32.exe 

user32.dll,LockWorkStation”). If not using smart-card based authentication, then the 

plaintext credentials can be captured by keylogger and used anywhere, anytime. In case of 

smart-card based authentication, the NTOWF hashes sent by KDC can be captured and 

reused. This problem is solved below – but it requires much more configuration, and limiting 

flexibility. 

Scenario 2: Credential Guard with armor key protection and smartcard-based 

authentication 

As described in [sop], it is possible to configure an account so that it can authenticate only from a 

single machine. Another key (machine key, specific to the machine) is needed in order to decrypt the 

authentication material received from KDC. With CG enabled, the machine key is available only in 

VTL1 (protected against rogue root partition), so only CG running on a particular machine can decrypt 

the authentication material. 

In such case, the above problem no 4 goes away. Still, same as before, the scenarios 2 and 3 are 

possible: until reboot, attacker can interact with CG and have it perform all necessary authentications 

(supported by SSO) for remote resources; again, all attacker’s actions must originate from the 

initially-compromised machine. There is no reliable way to deliver “user has logged out, refuse SSO” 

message to VTL1 – it would have to be produced by the root partition. The threat model it that it has 

been compromised, so even if such a message was supported and recognized by VTL1, compromised 

lsass could just elect to not send it. 

One thing worth noting is that the only secret needed permanently by CG is the machine key, and it 

is why TPM is required in order to protect it reliably against rogue root partition. Without TPM, there 

is no way to store the machine key permanently in a manner preventing the root partition from 

reading it3. 

 

VBS-enforced code integrity 
One can configure Windows 10 to enforce code integrity of usermode binaries, usermode scripts4 

and kernelmode code. In this paper, we will talk about details of implementation of VBS-enforced 

kernelmode code integrity. 

The goal is ambitious – not allow execution of any unsigned code in kernel context, even if the kernel 

has been compromised5. The basic idea is that the trusted code (running in VTL1) agrees to grant 

                                                           
3
 See also the below discussion on protecting keys used during S4. 

4
 Judging by [pow], powershell scripts integrity is enforced in usermode and can be easily bypassed by 

attaching a debugger to the powershell process. 



execute rights in EPT tables of the root partition only for pages storing signed code. As the root 

partition does not have direct access to its EPT table, then even malware having kernel privileges 

cannot alter these permissions. 

The problem arises when the configuration allows unsigned usermode code and only signed 

kernelmode code. Intel CPUs use same EPT table regardless whether running VM usermode or 

kernelmode. The problematic scenario is: 

1) Usermode tries to execute unsigned code stored in physical page X. DG needs to approve it, 

by marking X as executable in EPT. 

2) VM changes to kernelmode, and attempts to execute same code as above. Because X was 

just marked as executable, this operation will succeed, violating the policy. 

This problem was considered in secvisor paper [scv], and although it is not stated explicitly in any 

official MS document, VBS-enforced KMCI uses very similar approach. The scenario below starts with 

usermode running unsigned code: 

1) The root partition is configured so that each attempt to transition to kernelmode causes 

vmexit, namely: 

a. Root partition usermode runs with both IDT limit and GDT limit set to 0. Thus, any 

action involving reloading CS must throw #GP exception. VMCS exception bitmap 

(when running usermode) is all 1. 

b. IA32_EFER.SCE is cleared (so "syscall" instruction throws #UD) and 

IA32_SYSENTER_CS is zeroed (so that "sysenter" instruction throws #GP). 

2) Upon detecting attempt to transition to kernelmode, hypervisor changes EPT to a version 

(let’s name it sEPT) suitable for kernel – it has execute permission bit set only for pages 

containing signed code. IDT and GDT limits are restored to sanity, context is manually 

switched to kernelmode, and execution is resumed. 

3) When kernelmode attempts to return to usermode, then either: 

a. RIP points to unsigned usermode code. Page storing such code is never marked as 

executable in the EPT used to run kernelmode. So, vmexit (EPT violation) happens, 

DG detects that the root partition attempts to return to usermode, so it emulates 

just this, additionally flipping EPT pointer back to the EPT tables specific for unsigned 

usermode (let’s name it uEPT). 

b. RIP points to signed usermode code. No vmexit happens, VM continues to run with 

sEPT, until it tries to execute unsigned usermode code (and then vmexit and switch 

to uEPT happens). 

c. RIP points to kernel code. Sane kernel never returns to usermode with RIP pointing 

to kernel code, but if it happens, such scenario does not allow breaking the policy 

(because all kernel code is signed). Depending on the page tables used and whether 

SMEP is available, this might cause an exception in kernelmode.  

Naturally, in case of unsigned usermode code, such approach results in many additional vmexits, and 

this impacts performance. In the worst case scenario involving Hyper-V running in VM and the 
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 Actually, the last statement is a conjecture - the author has not found any official explicit description on what 

precisely VBS KMCI is supposed to ensure. Perhaps, the name is self-descriptive, at least to some. 



workload consisting of executing nonexistent syscall in a tight loop (from a location in unsigned 

usermode page), the performance hit was x200. Yes, 20000% slowdown. Again, signed usermode 

code performance is not impacted (because there are no uEPT->eEPT transitions). 

With this approach, there are effectively separate EPTs for unsigned and signed code, managed by 

VTL1: 

1) The root partition can request DG to make a set of pages to be executable (in sEPT). If the 

pages form a signed executable, the request is approved - pages are marked as executable 

and not writable. 

2) The root partition can request DG to make a set of pages to be nonexecutable (e.g. on 

kernel driver unload). Then pages are marked as not executable and writable. 

One interesting effect of enabling VBS-enforced KMCI is that it makes writing exploits for kernel 

vulnerabilities more difficult. Usually, the goal of an exploit is to run arbitrary code. Introduction of 

SMEP made it more challenging, but the workarounds were natural – first, gain ROP capability, then 

the ROP chain can either turn off CR4.SMEP [smp], or change page tables so that some usermode 

page become kernelmode (S bit cleared). None of this approach beats or can be adapted to beat 

KMCI, because it is enforced by EPT, and the root partition does not have access to it. This does not 

mean that kernel exploits are impossible – one can either use write-what-where primitive to corrupt 

kernel memory (e.g. change the token for the current process to be SYSTEM’s), or perform all 

required actions in a ROP chain (but this is painful, and not everything is possible). Some actions 

become problematic, though – e.g. one cannot easily hook kernel code (because it is not writable6) 

and moreover one cannot have an arbitrary unsigned hook code.  

A vigilant reader should observe that it is crucial to maintain the W^X invariant on all signed pages – 

otherwise, attacker could overwrite the legal signed executable code with unsigned code, without 

DG noticing. The algorithm described above seems to achieve this. 

However, when analyzing EPT dumps of a W10 1511 system with KMCI enabled, it turned out that 

there are pages marked RWX. At the moment of inspection they seem to store non-executable 

usermode content; it is unclear what they were used for initially. The best hypothesis it that they are 

the pages originally storing early boot code, UEFI-related possibly. For whatever reason they were 

marked RWX, and then returned to the kernel as free pages, with the EPT permissions not corrected. 

The impact is that attacker capable of corrupting kernel memory can execute arbitrary, unsigned 

code in kernel context. This vulnerability has been reported to Microsoft by the author and fixed in 

MS16-066 bulletin. 

A technical problem remains – how an attacker in the root partition can determine which pages have 

RWX permission in EPT. Of course root partition does not have any access to pages storing its EPT, so 

attacker cannot search EPT directly. The idea is to “probe” each page in kernelmode – try writing to it 

and then executing. A failed probe will result in exception injected by the hypervisor. The probe code 

needs to catch this exception and continue probing. Catching an exception is straightforward if we 

can load a kernel module, and use normal try/except construct. The more interesting case is when 
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with the help of permanently changing page table entries pointing to the relevant pages. 



attacker does not have ability to load a custom signed module7. Let’s assume attacker can launch a 

ROP chain in kernel mode, e.g. by exploiting a kernel vulnerability. Then we can use a gadget that 

resides in legal code wrapped in an exception handler. A suitable gadget is “call r10” instruction in nt! 

ObQueryNameStringMode function – if code executed by it throws an exception, it is gracefully 

handled and the function returns (to another ROP gadget) with exception code in RAX register. One 

catch is that apparently during exception handling, kernel does a security check – it verifies that the 

current stack pointer is within [stack_base, stack_limit] range defined by KTHREAD fields, and if not, 

it bugchecks in nt!RtlpGetStackLimits via int 29: 

 

This means that the probe ROP chain must execute with RSP being within the legal bounds. Normally, 

for exploit purposes, the ROP chain is stored in usermode pages. Therefore, the ROP chain needs to 

relocate itself to the legal thread stack on startup. 

The proof-of-concept ROP chain is capable of all the above; on the test W10 1511 system, it produces 

the following output: 
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On the test system, there were other, smaller RWX regions as well, scattered around physical 

address 0xa00000. 

Bioiso, vtpm trustlets 
In post-1511 Windows 10 builds there is another trustlet, BioIso. We did not investigate its 

properties. Similarly, we did not research vtpm trustlet functionality. 

VTL1 security 
The code running in VTL1 is privileged, and its compromise could be fatal to security functions 

implemented in VTL1. The attack surface consists of: 

1) Services exposed by VTL1 

a) rpc services implemented in LsaIso. That also means the whole rpc demarshalling code. 

All that runs in VTL1 usermode. 

b) 48 services implemented in securekernel!IumInvokeSecureService (called by nt! 

HvlpEnterIumSecureMode), so, in VTL1 kernelmode. 

2) VTL1 extensively calls into VTL0 (the root partition) to use some services. VTL1 must be 

careful to sanitize all responses received from VTL0. 

This topic has been well discussed [bsi], and Microsoft apparently has devoted a lot of effort to audit 

all the interactions. Still, there is potential for vulnerabilities there. 

Hypervisor security 
The whole concept of VBS hinges on the ability to run code in VTL1 partition securely, even if the root 

partition is compromised. This protection is implemented by the hypervisor; if the latter can be 

compromised, all security guarantees are gone. 



The topic of hypervisor security has been discussed on many occasions. However, usually the threat 

model is: a rogue, unprivileged, worker VM that has no access to hardware. In our case, we try to 

secure the hypervisor from an attacker in the root partition. Note that without VBS enabled, the root 

partition can compromise Hyper-V in a number of ways: 

1) There is HvCallDisableHypervisor hypercall, that does what its name suggests, in runtime 

2) hypervisor pages are in clear in hiberfile. We have verified that hooking the hibernation code 

in the kernel (and trojaning the hypervisor pages before they are written to the hiberfile) 

results in a trojaned hypervisor after restore from hibernation. 

3) VTd not enabled, so it is possible to overwrite hypervisor body via DMA. 

All these above known issues are prevented when VBS is enabled8. However, note that VBS can be 

enabled on a system without VTd support (or with VTd disabled)9. In such case, attacker can use the 

demonstrated DMA attacks against the hypervisor [sxh] and hijack the hypervisor in runtime. It is 

worth repeating one more time – VTd support is necessary in order to secure Hyper-V against the 

root partition. If available, Hyper-V enables both DMA and interrupt remapping – both are necessary 

[svt]. 

Another crucial feature is secureboot. It is required in order to enable VBS10. There were numerous 

vulnerabilities allowing breaking secureboot protection [sb1] [sb2], and they could be exploited from 

within the root partition11. The impact of such an exploit depends on the configuration: 

1)  Credential Guard with armor key protection and smartcard-based authentication. 

Secureboot vulnerability does not break credential guard in this case, because the change in 

the boot sequence will result in change of TPM measurements, which will result with inability 

to unseal the secret machine key12. All other features (e.g. code integrity) could be bypassed, 

though. 

2) The remaining cases 

All VBS protection can be bypassed by altering the boot sequence so that a trojaned 

hypervisor is loaded. 

It is worth mentioning that secureboot (even if it works as designed) is a weak concept, because it 

does not guarantee that the expected environment has been launched – just one of myriad of signed 

ones. TPM provides much better assurance, if used properly. 

From now on, let’s assume there is a system with unbreakable secureboot and VTd enabled. Again, 

any exploitable hypervisor vulnerability can be used to break VBS. Hyper-V has a very good security 

history – the only Microsoft security bulletins related to vulnerabilities allowing escaping from a VM 
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 Additionally, some extra features are enabled, e.g. vmexit on sidt (and related) instruction is enabled, thus 

preventing malicious usermode from leaking IDT/GDT addresses. Another features are preventing CR0.WP 
clear and similar. Nice ! 
9
 Still, Microsoft documentation clearly recommends enabling VTd. 
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 Interestingly, after VBS has been enabled, it is possible to reboot and disable secureboot in UEFI 

configuration (which requires physical presence), and VBS is still running. 
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 Note unlike any other VMs, root partition has access to the boot and system device, as well to UEFI variables 
related to boot, and thus can alter the boot sequence. 
12

 Assuming that the implementation is correct (relevant secrets are sealed to the proper PCRs); not verified. 



are [vms] [ms1]. However, most of attention has been devoted to attacks originating from normal, 

unprivileged VMs. What are the attack vectors specific to an attacker in the root partition13?  

In comparison to usual VMs, the root partition has the following extra capabilities: 

1) Privileged (available only to the root partition) hypercalls 

Hypervisor Top-Level Functional Specification [tls] mentions 14 hypercalls usable by 

nonprivileged VM, and 67 privileged hypercalls. More hypercalls exist, entirely 

undocumented. It should be apparent that this kind of attack surface exposed to the root 

partition is much larger. 

2) Access to the most of the physical memory address space 

Besides pages devoted exclusively for hypervisor and VTL1, the root partition can access 

almost whole physical address space, including MMIO, exceptions being LAPIC and VTd bars 

whose addresses are routed to a dummy page in the root partition’s EPT. Some pages are 

shared with VTL1 (e.g. libraries, like iumdll.dll, are mapped both in VTL1 and the root 

partition to the same physical address), but they are marked as read-only in the root 

partition’s EPT. 

With HVCI enabled, the pages storing UEFI runtime are marked as read-only, and UEFI 

runtime executes in VTL1 context. In such case, it is imaginable to deny the root partition 

access to SMM services14, which would be a significant improvement. Without HVCI, the 

pages storing UEFI runtime are marked as writable, and UEFI runtime executes in the root 

partition kernel context.  

3) IO ports  

All are directly accessible, with the following exceptions (configured in the root partition’s 

VMCS IO bitmap): 

a) 32, 33 (PCH interrupt controller), 160, 161 (same). Thus, the root partition cannot 

interfere with physical interrupts directly. 

b) 0x64, lpc microcontroller, keyboard - possibly trapped to control A20 gate setting 

c) 0xcf8, 0xcfc-0xcff. Hyper-V apparently wants to have ability to inspect attempts to alter 

PCIe config space. 

d) 0x1804. It is PMBASE+4 == PM1_CNT, it holds the SLP_EN bit, that triggers S3 sleep. This 

prevents the root partition from entering S3 sleep directly. More on S3 later. 

4) MSR 

Only three SYSENTER MSRS and fs/gs/shadow gs base are allowed direct access; write to the 

rest result in vmexit. Hypervisor Top-Level Functional Specification states: “The default 

behavior for MSRs not listed here is pass through to hardware for root, and #GP for non-

root”, but it might not apply to VBS case. It would be interesting to reverse-engineer Hyper-V 

handling of such writes to verify that writes to some crucial ones, like IA32_APIC_BASE MSR, 

are handled properly [tms]. 
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 Note the root partition does not need virtual devices (or it implements them by itself), so vulnerabilities in 
the device emulator (e.g.  virtual disk) are not applicable to the case of an attacker in root partition, while a 
significant problem in case of a rogue normal VM. Similarly, denial-of-attacks against hypervisor are entirely 
not interesting in case of the root partition – it can simply do “shutdown /p” etc. 
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 UEFI runtime SetVariable must invoke SMM, as the flash storage is writable only in SMM mode. 
Unfortunately, on some systems, SMM services are used for other vital purposes, and denying the root 
partition access to SMM is problematic. 



Utilizing the availability of the above resources, the following attacks are possible. 

Unrestricted PCIe config space access via MMCFG 
On Intel chipsets, it is possible to reserve a region of physical address space for memory-mapped 

PCIe config space. Most firmware enable such region, by writing the region base to PCIEXBAR register 

(in device 0:0.0 PCIe config space). Access to such region results in PCIe config cycles, the device and 

offset determined by the offset of MMCFG region being accessed. 

Hyper-V does not restrict access to MMCFG. Therefore, unlike access via ioports cf8/cfc case, the 

root partition can access PCIe config space via MMCFG without Hyper-V knowing about it. 

It is not known whether and how precisely such access could be abused. There are some interesting 

registers in chipset PCIe config space whose altering can result in behavior breaking hypervisor 

security. E.g. REMAP_LIMIT/REMAP_BASE registers (that reside in device 0:0.0 PCIe config space), 

can be used to create physical memory aliases and provide access to hypervisor memory [rbl]. 

REMAP_LIMIT/REMAP_BASE registers are expected to be locked by firmware, though. 

Note that a naïve attack based on configuring PCIe memory bar address so that it overlaps (and 

covers, takes priority when routing memory access) some sensitive RAM locations (e.g. used by 

hypervisor) will not work15. Intel specifications state clearly that only addresses in [TOLUD, 4G] and 

above TOUUD are decoded to DMI and can be claimed by a PCIe device. TOLUD and TOUUD registers 

are locked by any sane firmware. Other types of resource overlaps might be more dangerous. 

Particularly, it is possible to cover the VTd bars with PCIe memory bar, and apparently read access is 

routed to PCIe memory, at least on the tested Haswell and Skylake systems: 

 

The plausible attack is to cover VTd bar range, which will result in Hyper-V being unable to invalidate 

cached VTd translations (which is necessary for security when changing ownership of a page from 

root domain to HyperV, e.g. during HvDepositMemory hypercall). However, on the tested systems, 

the write access to the overlapped region resulted in platform hang (again, despite read access 

apparently working), so the above attack would not work on the tested systems16.  
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 Overlapping physical memory ranges are briefly mentioned in [gd1], however, without any description of an 
actually reproduced attack. Either this is the “naïve” scenario described here, or something not applicable to 
more-or-less recent Intel chipsets. 
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 Most likely, other generations of chipsets behave the same; not verified. 



Other chipset registers access 
Full semantics of all chipset registers is not documented publicly by Intel. Some memory-mapped 

regions17, e.g. ones in MCHBAR , have thousands of registers, most of them undocumented at all. We 

can only hope that all sensitive ones (example: VTd bars addresses) are properly lockable by chipset 

(quite likely) and that firmware actually locks them. Intel has implemented Hardware Security Test 

Interface to help with verifying that the known crucial locks have been applied. 

Another little-known example of a scary feature of the chipset is the ability to overwrite the SPD 

configuration of the DRAM chips, stored in DRAM EEPROM [spd]. It is imaginable that altering SPD 

data can result in creating physical memory aliases. SPD EEPROM can be accessed using SMBUS, via 

IO ports 0x50–0x57.  Again, firmware is expected to disable this feature, by writing to the "SPD Write 

disable" bit in (recent) PCH D31:F4 config space at offset 0x40. 

S3 sleep 
S3 sleep/resume cycle is interesting from security point of view. During this cycle, hypervisor loses 

control, and needs to trust firmware to maintain its integrity and properly return to the hypervisor. 

The boot script hijack vulnerability [bt1] [bt2] rootcause was that the crucial data structure (boot 

script) controlling S3 resume was kept in normal RAM. This attack can be launched from the root 

partition and provide arbitrary asmcode execution before Hyper-V is woken up. Such asmcode can 

trojan the hypervisor and then complete S3 resume, maintaining the stability of the system. This 

vulnerability is expected to be fixed in up-to-date firmware releases. 

The above vulnerability was interesting even outside of hypervisor security context, because it 

allowed for code execution in environment where not all hardware locks have yet been applied by 

firmware. But if we are focused on attacking the hypervisor, we do not care about these locks, all we 

need is to get arbitrary code execution before the hypervisor. One possibility is to introduce 

mismatch between where hypervisor stores the waking vector, and what firmware actually uses. 

Hyper-V follows the specification, and just before triggering S3 sleep, it stores the waking vector in 

ACPI FACS table. Consider the following scenario: 

1) Assumption: firmware caches the location of FACS table in its private data structures 

2) Then, assuming the cached pointer is in ACPI NVS region, root partition can corrupt the 

cached pointer before asking Hyper-V to initiate S3 sleep. 

3) During S3 resume, firmware will read the waking vector not from the legal ACPI FACS table, 

but from the location controlled by the root partition, and thus arbitrary code will be 

executed instead of Hyper-V’s waking vector.  

Assumption 1 (and the following scenario) was confirmed with an old version of AMI firmware; 

current versions are not vulnerable. 

Another potential problem is that the ACPI FACS table is writable by the root partition. One should 

consider the following attack: 

1) Write asmcode address to ACPI FACS 

2) trigger S3 sleep directly, without using hypercalls, by writing to the PM1_CNT io port 
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 Memory-mapped, thus accessible to the root partition without any Hyper-V mediation. 



In order to prevent this, both the following conditions must hold: 

1) hypervisor does not grant root partition direct access to PM1_CNT io port 

2) root partition cannot change the value of PMBASE io port range (that includes PM1_CNT) in 

chipset registers 

Hyper-V takes care of 1); tested chipsets seem to lock register PMBASE (in device 0:31.0, offset 0x40 

on recent Intel chipsets) relevant to 2). 

It would be interesting to investigate whether any of the below is possible: 

a) S3 can be triggered by something else than write to PM1_CNT 

b) Attacker can warm-reboot and fool firmware into believing that it is resume from S3, not a 

warm reboot 

Either would bypass Hyper-V safeguards. 

S4 sleep 
Similarly to S3 case, during S4, hypervisor loses control. This time, the information on the system 

state is stored in hiberfile that is written to by the root partition. Therefore, the contents of hiberfile 

must be protected against tampering. 

The natural idea is that VTL1 should be tasked with hiberfile generation and encrypt it before asking 

root partition to write it to disk. The problem is how to manage encryption keys. The keys must 

1) be available to VTL1 

2) survive cold reboot (so permanent storage is needed) 

3) be inaccessible to any other OS that can be booted in the meantime 

4) winresume.efi must be able to read them 

The combination of 3 and 4 means the permanent storage mechanism must distinguish between 

“the expected winresume.efi is running” and “some other OS, potentially booted for malicious 

purposes is running”18, and release keys only in the former case. The only way to implement this is to 

use TPM. If it is available, the key package is sealed to particular PCR values19 and the encrypted blob 

is saved to EFI environment variable “VsmLocalKey2” (prepended by the 0x44454C4145534C42 

constant). Winresume! BlVsmKeysReadAndUnsealLKeyPkg function is able to retrieve the cleartext 

keys via TPM unseal operation. 

If TPM is not available, then there is no hope. “VsmLocalKey2” is created with attributes indicating 

that only boot services can access it (without EFI_VARIABLE_RUNTIME_ACCESS), and indeed after OS 

is started, the documented UEFI runtime functions do not expose it. However, the storage for UEFI 

variables (SPI flash) is accessible directly by any entity capable of reading physical memory below 4G 

(where SPI flash is mapped) – root partition is capable of it. 
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 Or, at least, are we before ExitBootServices(). This could be done with help of ME (as it has its own flash 
partition); such “key escrow” is not available, though. 
19

 Meaning, TPM will release the cleartext only if the platform is in the expected state (read: winload.efi is 
running) 



With TPM unavailable20, the key package is stored unencrypted in “VsmLocalKey2” variable, this time 

content prepended by 0x31474B5059454B4C constant. It can be found in physical memory dump: 

 

Therefore, without TPM, the keys used to encrypt hiberfile can be determined by root partition, and 

the contents of the hiberfile changed on the fly during hibernation so that the hypervisor is 

trojaned21. 

SMM 
SMM is highly-privileged mode of execution of x86 CPU. Compromised SMM code can compromise a 

hypervisor22. 

There was a number of SMM vulnerabilities discovered in the past. Before ca 2011, most of the 

vulnerabilities were at the platform level, caused by insufficient protection of SMM code against 

hostile ring0 code. Recently, all newly discovered vulnerabilities are in the SMM code itself, in the 

code providing services to the operating system. Such services can be invoked by OS via write to IO 

port 0xb2. 

The crucial observation is that VBS allows root partition to access IO port 0xb2, thus allowing it to 

invoke SMM services directly. Another issue is that VBS allows root partition to corrupt ACPI NVS 

memory23 – many SMM vulnerabilities were caused by SMM code trusting data (e.g. code pointer) in 

ACPI NVS. Therefore, it is expected that most of SMM vulnerabilities are exploitable from root 

partition. 

The quality of SMM code is perceived as poor, and more such vulnerabilities are expected in the 

future. For a quite comprehensive overview of the exploitation process of particular recent (from 

2016) vulnerabilities and the impact, see the recent [do1] [bp1], and especially [do2]. 
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 Note Microsoft documentation recommends enabling TPM if possible. 
21

 This has not been reproduced, though – some nontrivial code is required to actually perform necessary 
crypto operations. 
22

 Unless STM is in use; but, no major firmware vendor support it 
23

 Again, denying root partition access to ACPI NVS results in compatibility problems on some systems. 



The author used a runtime vulnerability in an obsolete AMI firmware to achieve convenient, 

repeatable code execution in SMM context. Such capability allows for e.g. scanning the whole 

physical memory for VMCS pages24: 

 

With hypervisor’s cr3 and vmexit handler address known (retrieved from VMCS), we can hook the 

vmexit handler, thus gaining full control over hypervisor’s behavior. The framework was created 

facilitating compiling C code into dll and calling it in the vmexit handler context; sample code (shown 

without supporting includes and runtime) below: 

 

 In the example below, we show that a hooked vmexit handler can recognize that a CPUID instruction 

was executed with a magic value in R13 register, and respond with altering R13 value25: 

                                                           
24

 Other frameworks, notably Chipsec [chi], facilitate scanning for VMCS as well. 
25

 Some readers might recognize similarities with „bpknock” operation on a Bluepill-ed system 



 

 Similarly, another proof-of-concept code used SMM privileges to hook syscall handler of VTL1 kernel 

(securekernel.exe), so that the syscalls invoked by LsaIso.exe could be monitored.  

There are reports of successful use of firmware vulnerability (allowing to escalate to SMM) to extract 

secrets from Credential Guard [yb1], apparently by just scanning the whole physical memory for 

buffers looking like credentials. 

WSMT ACPI table 
In April 2016, Microsoft has released the specification of Windows SMM Security Mitigations Table 

[wsm]. Many of the above potential attacks are described there; firmware vendors should follow 

these guidelines in order to help secure VBS against attacks. Microsoft claims that firmware shipped 

with their hardware is hardened against these types of vulnerabilities. 

Other non-VBS-specific attack vectors 

CPU erratas 
If CPU behaves in a way not matching the specification, then it is possible that the security measures 

implemented in a hypervisor can be bypassed. 

The author is not aware of any case in the past when CPU errata was successfully exploited to escape 

from VTx VM confinement. 



The most interesting cases were CVE-2015-5307 and CVE-2015-810426. VM could misconfigure its 

#AC or #DB exception handling so that CPU entered infinite loop when handling the relevant 

exception. However, this was DoS only. 

This paper focuses on Intel’s hardware. In case of AMD, there is a report about a microcode bug at 

least potentially allowing escape from VM [rs1]. 

Rowhammer 
Similarly, if DRAM is not working properly, then it can be abused to corrupt memory used by a 

privileged entity, including the hypervisor. 

Root partition can control (to some extent) which pages are used by Hyper-V (via HvDepositMemory 

hypercall); this might make the exploitation reasonably reliable (at least in case of repeatable 

bitflips). 

Malicious discrete device firmware 
If there is a discrete device (say, discrete GPU card) with flashable firmware, then the root partition is 

capable of overwriting this device’s firmware, by using the legal interfaces exposed by the device. If 

the attacker can create their own malicious firmware (which is highly nontrivial), then there are well-

known additional attack vectors. For example, malicious firmware could use DMA to hijack early UEFI 

boot phase (before hypervisor configures VTd protection). Such an attack is believed to be very 

difficult, as well as specific to the discrete device and used UEFI firmware. 

Summary 
Despite its limited scope, VBS is useful – it prevents certain attacks that are straightforward without 

it. The security posture of VBS looks good, and it improves the security of a system – certainly it 

requires additional highly nontrivial effort to find suitable vulnerability allowing the bypass. 

VBS depends on availability and security of quite a few features. Looking at the official 

documentation, one may infer that secureboot is a strict requirement, and VTd and TPM are 

recommended but optional enhancements. In fact, both VTd and TPM are necessary in order to 

protect hypervisor against compromised root partition. Similarly, just enabling Credential Guard 

provides little protection – more configuration is needed in order to ensure that the credentials 

never show up in the clear in the root partition. In any case, until reboot, a compromised user 

process can still use SSO to authenticate to other servers in order to perform lateral movement. 

In this paper, many mechanisms are assessed only at design/architecture level – and almost all look 

sound. More problems are possible at the implementation level. The amount of relevant, security-

critical code in the hypervisor and VTL1 is significantly smaller than in case of e.g. all Windows ring0 

code, yet non-negligible. 

Not surprisingly, in case of a well-configured system, the biggest threat comes from vulnerabilities in 

SMM code. There are many examples of such bugs, and more are expected in the future. 
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 Unlike most of the erratas, they were easily exploitable. 
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