
Pangu 9 Internals

Tielei Wang & Hao Xu & Xiaobo Chen
Team Pangu

Agenda

✤ iOS Security Overview

✤ Pangu 9 Overview

✤ Userland Exploits

✤ Kernel Exploits & Kernel Patching

✤ Persistent Code Signing Bypass

✤ Conclusion

Who We Are

✤ A security research team based in Shanghai, China

✤ Have broad research interests, but known for releasing
jailbreak tools for iOS 7.1, iOS 8, and iOS 9

✤ Regularly present research at BlackHat, CanSecWest,
POC, RuxCon, etc.

✤ Run a mobile security conference named MOSEC
(http://mosec.org) with POC in Shanghai

http://mosec.org

iOS Security Overview

✤ Apple usually releases a white paper to
explain its iOS security architecture

✤ Secure Booting Chain

✤ Mandatary Code Signing

✤ Restricted Sandbox

✤ Exploit Mitigation (ASLR, DEP)

✤ Data Protection

✤ Hypervisor and Secure Enclave
Processor

Agenda

✤ iOS Security Overview

✤ Pangu 9 Overview

✤ Userland Exploits

✤ Kernel Exploits & Kernel Patching

✤ Persistent Code Signing Bypass

✤ Conclusion

What Jailbreak is

✤ Jailbreak has to rely on kernel exploits to achieve the
goal, because many software restrictions are enforced
by the kernel

“iOS jailbreaking is the removing of software restrictions
imposed by iOS, Apple's operating system, on devices

running it through the use of software exploits”
–Wikipedia

Kernel Attack Surfaces

D
ifficulty of G

aining the Privilege

Amount of Kernel Attack Surface Gained

mobile, container sandbox

mobile, less restrictive sandbox

root, no sandbox

root with special
entitlements

mobile, no sandbox

Our Preference

D
ifficulty of G

aining the Privilege

Amount of Kernel Attack Surface Gained

mobile, container sandbox

mobile, less restrictive sandbox

root, no sandbox

root with special
entitlements

mobile, no sandbox

Initial Idea and Practice in Pangu 7

✤ Inject a dylib via the DYLD_INSERT_LIBRARIES
environment variable into a system process

✤ Pangu 7 (for iOS 7.1) leveraged the trick to inject a
dylib to timed

✤ The dylib signed by an expired license runs in the
context of timed and exploits the kernel

Team ID Validation in iOS 8

✤ To kill the exploitation technique, Apple introduced a new
security enforcement called Team ID validation in iOS 8

✤ Team ID validation is used to prevent system services
(aka platform binary) from loading third-party dylibs,
with an exceptional case

✤ Team ID validation does not work on the main
executables with the com.apple.private.skip-library-
validation entitlement

Pangu 8’s Exploitation

✤ neagent is a system service which happens to have the
entitlement

✤ Pangu 8 mounts a developer disk into iOS devices,
and asks debugserver to launch neagent, and specify
the DYLD_INSERT_LIBRARIES environment variable

✤ As a consequence, our dylib runs in the context of
neagent and exploits the kernel

More Restrictions since iOS 8.3

✤ iOS 8.3 starts to ignore DYLD environment variables
unless the main executable has the get-task-allow
entitlement

✤ Since neagent does not have the get-task-allow
entitlement, DYLD_INSERT_LIBRARIES no longer
works for neagent

Pangu 9’s Challenge

✤ Userland

✤ We still need to inject a dylib into a system service
with less restrictive sandbox profile

✤ Kernel

✤ KPP bypass

Agenda

✤ iOS Security Overview

✤ Pangu 9 Overview

✤ Userland Exploits

✤ Kernel Exploits & Kernel Patching

✤ Persistent Code Signing Bypass

✤ Conclusion

Userland Exploits

✤ Arbitrary file read/write as mobile via an XPC
vulnerability

✤ Arbitrary code execution outside the sandbox

Recall Our Talk on BlackHat’15

XPC

✤ Introduced in OS X 10.7 Lion and iOS 5 in 2011

✤ Built on Mach messages, and simplified the low level
details of IPC (Inter-Process Communication)

Application
System
Services

XPC

XPC Server

 xpc_connection_t listener = xpc_connection_create_mach_service("com.apple.xpc.example",
 NULL,

 XPC_CONNECTION_MACH_SERVICE_LISTENER);
 xpc_connection_set_event_handler(listener, ^(xpc_object_t peer) {
 // Connection dispatch
 xpc_connection_set_event_handler(peer, ^(xpc_object_t event) {
 // Message dispatch
 xpc_type_t type = xpc_get_type(event);
 if (type == XPC_TYPE_DICTIONARY){
 //Message handler
 }
 });
 xpc_connection_resume(peer);
 });
 xpc_connection_resume(listener);

XPC Client

 xpc_connection_t client = xpc_connection_create_mach_service("com.apple.xpc.example",
 NULL,
 0);
 xpc_connection_set_event_handler(client, ^(xpc_object_t event) {
 //connection err handler
 });
 xpc_connection_resume(client);
 xpc_object_t message = xpc_dictionary_create(NULL, NULL, 0);
 xpc_dictionary_set_double(message, "value1", 1.0);
 xpc_object_t reply = xpc_connection_send_message_with_reply_sync(client, message);

Vulnerability in Assetsd

✤ Container apps can communicate with a system
service named
com.apple.PersistentURLTranslator.Gatekeeper via
XPC

✤ assetsd at /System/Library/Frameworks/
AssetsLibrary.framework/Support/ runs the service

Path Traversal Vulnerability

✤ Assetsd has a method to move the file or directory at the specified
path to a new location under /var/mobile/Media/DCIM/

✤ Both srcPath and destSubdir are retrieved from XPC messages,
without any validation

Exploit the Vulnerability

✤ Use “../“ tricks in srcPath/destSubdir can lead to
arbitrary file reads/writes as mobile

More Severe Attack Scenario

✤ Arbitrary file reads result in severe privacy leaks

✤ Arbitrary file writes can be transformed into arbitrary
app installation, system app replacement, and so on

✤ Please refer to MalwAirDrop: Compromising iDevices
via AirDrop, Mark Dowd, Ruxcon 2015 for more
details

✤ Exploitable by any container app

From Arbitrary File Reads/Writes to
Arbitrary Code Execution

✤ Recall that DYLD_INSERT_LIBRARIES only works for
the executables with the get-task-allow entitlement

✤ Who has this entitlement?

No One Holds get-task-allow in iOS 9

✤ We checked entitlements of all executables in iOS 9,
and found no one had the get-task-allow entitlement

✤ But we found a surprise in developer disk images

Make Vpnagent Executable on iOS 9

✤ Mount an old developer disk image (DDI) that contains vpnagent

✤ MobileStorageMounter on iOS 9 is responsible for the mount job

✤ Although the old DDI cannot be mounted successfully, MobileStorageMounter
still registers the trustcache in the DDI to the kernel

✤ Trustcache of a DDI contains (sort of) hash values of executables in the DDI

✤ Trustcache is signed by Apple

✤ MobileStorageMounter will notify the kernel that vpnagent is a platform binary

✤ Old vpnagent can run on iOS 9 without causing code signing failure

Debug Vpnagent

✤ Mount a normal DDI to enable debugserver on iOS 9

✤ How the kernel enforces the sandbox profile

✤ If the executable is under/private/var/mobile/Containers/Data/,
the kernel will apply the default container sandbox profile

✤ Otherwise the kernel applies the seatbelt-profile specified in the
executable’s signature segment

✤ Leverage the XPC vulnerability to move vpnagent to some places that
debugserver has access to and the kernel does not apply the default
sandbox

Wait a Moment

✤ vpnagent does not have the com.apple.private.skip-
library-validation entitlement, so it would not be able
to load third party dylib, right?

Bonus of get-task-allow

✤ Debugging and code signing have a conflict

✤ e.g., setting a software breakpoint actually is to
modify the code, which certainly breaks the
signature of the code page

✤ To enable debugging, the iOS kernel allows a process
with the get-task-allow entitlement to continually run
even if a code signing invalidation happens

Bonus of get-task-allow

✤ We reuse the code signature of a system binary in our dylib.
As a result, when loading the dylib, the kernel believes that
vpnagent just loads a system library

✤ Team ID Passed

✤ Code signing validation is softly disabled after the kernel
finds that the vpnagent with the get-task-allow entitlement
is under debugging

✤ Code Signing Validation Passed

Put It All Together

✤ Mount an old DDI to make vpnagent be a platform binary

✤ Mount a correct DDI to make debugserver available

✤ Exploit the XPC vulnerability to move a copy of vpnagent
to some places that debugserver has access

✤ Debug the copy of vpnagent, and force it to load our dylib
that reuses the code signature segment of a system binary

Agenda

✤ iOS Security Overview

✤ Pangu 9 Overview

✤ Userland Exploits

✤ Kernel Exploits & Kernel Patching

✤ Persistent Code Signing Bypass

✤ Conclusion

Attack iOS Kernel

✤ Gain arbitrary kernel reading & writing

✤ KASLR / SMAP / …

✤ Patch kernel to disable amfi & sandbox

✤ KPP (Kernel Patch Protection)

Kernel Vulnerability for iOS 9.0

✤ CVE-2015-6974

✤ A UAF bug in IOHID

✤ Unreachable in container sandbox (need to escape sandbox)

✤ One bug to pwn the kernel

✤ Details were discussed at RUXCON and POC

✤ http://blog.pangu.io/poc2015-ruxcon2015/

http://blog.pangu.io/poc2015-ruxcon2015/

Kernel Vulnerability for iOS 9.1

✤ CVE-2015-7084

✤ A race condition bug in IORegistryIterator

✤ Reachable in container sandbox

✤ One bug to pwn the kernel

✤ Reported to Apple by Ian Beer

✤ Exploited by @Lokihardt in his private jailbreak

✤ Some details at http://blog.pangu.io/race_condition_bug_92/

http://blog.pangu.io/race_condition_bug_92/

Kernel Vulnerability for iOS 9.3.3

✤ CVE-????-???? CVE-2016-4654 (fixed in iOS 9.3.4 this morning)

✤ A heap overflow bug in IOMobileFrameBuffer

✤ Reachable in container sandbox

✤ One bug to pwn the kernel

✤ Fixed in iOS 10 beta 2

✤ Details will be discussed in future

Defeat KPP

✤ What does KPP protect

✤ r-x/r-- memory inside kernelcache

✤ Code and Const

✤ Page tables of those memory

✤ What does KPP not protect

✤ rw- memory inside kernelcache

✤ Heap memory

Defeat KPP

✤ Take a look at Mach-O header of com.apple.security.sandbox

✤ __TEXT is protected by KPP

✤ __DATA is not protected by KPP

✤ __got stores all stub functions address

Defeat KPP

✤ Both amfi and sandbox are MAC policy extensions

✤ Call mac_policy_register to setup all hooks

✤ Functions pointers are stored in mac_policy_conf.mpc_ops

✤ Before iOS 9.2 it’s stored in __DATA.__bss which is rw-

✤ Set pointers to NULL to get rid of the special hook

✤ In iOS 9.2 it’s moved to __TEXT.__const

Defeat KPP

✤ How does amfi check if debug flag is set or not?

✤ It calls a stub function of PE_i_can_has_debugger

✤ Stub function pointers are stored in __DATA.__got

✤ It’s easy to cheat amfi that debug is allowed

Defeat KPP

✤ KPP is triggered very randomly when the device is
not busy

✤ Patch/Restore works well if the time window is small
enough

Agenda

✤ iOS Security Overview

✤ Pangu 9 Overview

✤ Userland Exploits

✤ Kernel Exploits & Kernel Patching

✤ Persistent Code Signing Bypass

✤ Conclusion

Attack Surfaces for Persistent

✤ Attack dyld

✤ Dynamic library

✤ Attack kernel

✤ Main executable file

✤ Dynamic linker

✤ dyld_shared_cache

✤ Attack file parsing

✤ Config file/javascript/…

Load dyld_shared_cache

✤ The dyld_shared_cache is never attacked before

✤ All processes share the same copy of dyld_shared_cache

✤ It’s only loaded once

✤ dyld checks the shared cache state and tries to load it in mapSharedCache

✤ _shared_region_check_np to check if cache is already mapped

✤ Open the cache and check cache header to make sure it’s good

✤ Generate slide for cache

✤ _shared_region_map_and_slide_np to actually map it

The Kernel Maps the Cache

✤ 294 AUE_NULL ALL { int shared_region_check_np(uint64_t *start_address) NO_SYSCALL_STUB; }

✤ 438 AUE_NULL ALL { int shared_region_map_and_slide_np(int fd, uint32_t count, const struct
shared_file_mapping_np *mappings, uint32_t slide, uint64_t* slide_start, uint32_t slide_size)
NO_SYSCALL_STUB; }

Structure of dyld_shared_cache

Structure of dyld_shared_cache

✤ dyld_cache_mapping_info stores all mapping informations at header->mappingOffset

✤ From file offset to virtual address

✤ dyld_cache_image_info stores all dylibs and frameworks information at
header->imagesOffset

✤ address indicates the mach-o header of the dylib

✤ pathFileOffset indicates the full path of the dylib

✤ The whole cache file has a single signature blob

✤ codeSignatureOffset / codeSignatureSize

✤ Jtool(http://www.newosxbook.com/tools/jtool.html) helps to decode the header

http://www.newosxbook.com/tools/jtool.html

shared_region_map_and_slide_np

✤ shared_region_copyin_mappings

✤ Copyin all dyld_cache_mapping_info

✤ _shared_region_map_and_slide

✤ Make sure it’s on root filesystem and owned by root

✤ vm_shared_region_map_file

✤ Maps the file into memory according to dyld_cache_mapping_info

✤ Record the 1st mapping and take it’s address as base address of
cache

The Vulnerability

✤ There is no explicit SHA1 check of the cache header

✤ Read only memory with file offsets out of code signature range would
not be killed

✤ Possible to use a fake header and control the mappings

Abuse AMFID

✤ Now we could control the mapping of cache

✤ We still can not touch r-x memory

✤ But we could manipulate r-- / rw- memory

✤ libmis.dylib exports _MISValidateSignature

✤ Change two bytes in export table to points _MISValidateSignature to
return 0

✤ Code signing is bypassed!

Conclusion

✤ The battle between jailbreaks and Apple makes iOS
better, and more secure

✤ IPC and kernel vulnerabilities exploitable by container
apps impose a huge threat to iOS security

Q&A

