
OAuth Demystified for Mobile Application Developers

Eric Chen
Carnegie Mellon University
eric.chen@sv.cmu.edu

Yutong Pei
Carnegie Mellon University
ypei@andrew.cmu.edu

Shuo Chen
Microsoft Research

shuochen@microsoft.com

Yuan Tian
Carnegie Mellon University
yuan.tian@sv.cmu.edu

Robert Kotcher
Carnegie Mellon University

rkotcher@andrew.cmu.edu

Patrick Tague
Carnegie Mellon University

tague@cmu.edu

ABSTRACT
OAuth has become a highly influential protocol due to its
swift and wide adoption in the industry. The initial ob-
jective of the protocol was specific: it serves the autho-
rization needs for websites. What motivates our work is
the realization that the protocol has been significantly re-
purposed and re-targeted over the years: (1) all major iden-
tity providers, e.g., Facebook, Google and Microsoft, have
re-purposed OAuth for user authentication; (2) developers
have re-targeted OAuth to the mobile platforms, in addition
to the traditional web platform. Therefore, we believe that
it is necessary and timely to conduct an in-depth study to
demystify OAuth for mobile application developers.

Our work consists of two pillars: (1) an in-house study
of the OAuth protocol documentation that aims to identify
what might be ambiguous or unspecified for mobile develop-
ers; (2) a field-study of over 600 popular mobile applications
that highlights how well developers fulfill the authentication
and authorization goals in practice. The result is really wor-
risome: among the 149 applications that use OAuth, 89 of
them (59.7%) were incorrectly implemented and thus vul-
nerable. In the paper, we pinpoint the key portions in each
OAuth protocol flow that are security critical, but are con-
fusing or unspecified for mobile application developers. We
then show several representative cases to concretely explain
how real implementations fell into these pitfalls. Our find-
ings have been communicated to vendors of the vulnerable
applications. Most vendors positively confirmed the issues,
and some have applied fixes. We summarize lessons learned
from the study, hoping to provoke further thoughts about
clear guidelines for OAuth usage in mobile applications.

Categories and Subject Descriptors
D.4 [Operating Systems]: Security and Protection

Keywords
Android; iOS; same-origin policy; mobile platform

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CCS’14, November 3–7, 2014, Scottsdale, Arizona, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2957-6/14/11 ...$15.00.
http://dx.doi.org/10.1145/2660267.2660323.

1. INTRODUCTION
The essence of Software-as-a-Service (SaaS) is that differ-

ent components of a web or mobile application are developed
by different providers. The need for secure authentication
and authorization across companies has never been so im-
portant. Today, the most widely adopted protocol in this
space is OAuth. It is currently deployed by numerous major
companies including Facebook, Google and Microsoft.

Originally, OAuth was designed to provide a secure au-
thorization mechanism for websites. It defines a process
for end-users to grant a third-party website the access to
their private resources stored on a service provider. The
third-party website is often referred to as the consumer [26],
client [27], or relying party [41] (we will use the term“relying
party” exclusively in this paper). There are two versions of
OAuth protocols, OAuth 1.0 and OAuth 2.0 [26, 27]. They
are both actively use by real-world websites.

Ever since OAuth was successfully adopted by the indus-
try, major companies have re-purposed OAuth for authenti-
cation as well. That is, the protocol enables a user to prove
his/her identity to a relying party, utilizing his/her existing
session with the service provider. The web industry’s trend
to obsolete other protocols and move toward OAuth is deci-
sive – the new authentication mechanisms provided by the
aforementioned companies are all OAuth-based. Therefore,
despite the fact that neither OAuth 1.0 nor OAuth 2.0 doc-
umentation is explicitly geared for authentication, OAuth is
now a de-facto authentication and authorization protocol.

OAuth for mobile applications. The years of OAuth’s
evolution, since 2007, happen to be the same period of the
boom of mobile applications. Authentication and authoriza-
tion are as needed by mobile applications as by traditional
websites. Almost inevitably, OAuth became the protocol for
implementing authentication and authorization functional-
ity in mobile applications. According to our study, more
than 24% of the 600 top Android applications taken from
several Google Play categories use OAuth. We studied the
OAuth 1.0 and OAuth 2.0 protocol documentation carefully,
and realized that secure usage of OAuth for mobile appli-
cations could be mysterious since the protocol is primarily
designed in the mindset of traditional web technology rather
than mobile platforms. Motivated by earlier work to demys-
tify the setuid system calls on UNIX systems [8], we believe
that it is very necessary and timely to conduct a study to
demystify OAuth for mobile application developers.

We observe that, despite its wide deployment, the OAuth
protocol is very complicated for average developers to com-
prehend. For example: (1) the use-case for authentication is

left unspecified for both OAuth specifications, which causes
developers to assemble a set of OAuth concepts and crypto
primitives more or less through their own intuition. (2) Both
OAuth 1.0 and 2.0 use browser redirection extensively for
delivering OAuth tokens. However, it is unclear how this
operation can be performed in mobile applications without
browser’s involvement. (3) The two versions of OAuth pro-
tocols target different scenarios and contain different sets
of concepts. One version does not subsume or obsolete an-
other. They simply coexist with many unconsolidated dis-
crepancies. (4) The OAuth 2.0 specification is extremely
extensible, and in a way, underspecified by design. For all
these reasons, we wondered how likely mobile application
developers were to misinterpret the OAuth protocol, or fall
into pitfalls that the protocol leaves unspecified.

Our work. Our work consists of two pillars: (1) an in-
house study of the OAuth protocol documentation in the
mindset of mobile application development that aims to un-
derstand what might be ambiguous or unspecified in the
protocol; (2) a field-study of popular mobile applications to
see how well developers fulfill the authentication and au-
thorization goals. First, we study three canonical OAuth
flows described in the OAuth specifications [26, 27] – the
OAuth 1.0 flow, the OAuth 2.0 authorization code grant
and the OAuth 2.0 implicit grant. We then analyze the two
use-cases of OAuth: authorization and authentication, and
factor out properties of the protocol that must be satisfied in
order to achieve security. We proceed to show how the three
aforementioned protocol flows realize these security proper-
ties. Finally, we investigate how OAuth is being interpreted
by real-world mobile application developers, and point out
several common misconceptions that ultimately undermine
the security properties of OAuth.

Our study was conducted on 149 popular OAuth-capable
mobile applications. The focus was to dissect the rationales
behind different OAuth implementations, and to understand
why some of these applications are secure while others are
seriously vulnerable. Our analysis reveals that real-world
OAuth implementations are extremely diverse; rarely do two
service providers (or even relying parties of the same service
provider) share the same protocol flow (e.g., Hulu, Spotify
and Instagram all use Facebook for authentication but each
have their own protocol flows). We believe that this diver-
sity of mobile implementations reflects the real issues with
OAuth. Not only is the protocol defined over multiple spec-
ifications with two different use-cases, but also its mobile
usage is poorly defined and underspecified. This forces de-
velopers to resort to their own interpretations when imple-
menting the protocol. Our study shows that 59.7% of these
implementations were faulty and vulnerable to attacks.

A real example. The result of our study highlights
not only the complexity of the OAuth protocol, but also
the misunderstandings amongst OAuth developers. For in-
stance, the security property of the OAuth access token dif-
fers across OAuth 1.0 and OAuth 2.0. In OAuth 1.0, each
access token is bound to and can only be used by the re-
lying party the access token was issued to. However, an
access token in OAuth 2.0 (which is also referred to as a
“bearer token”) can be used by any party in possession of
this token [28]. In reality, the confusion between these two
types of access tokens is reflected through several erroneous
OAuth implementations. We found that a known vulner-
ability (described in references [7, 43]) still existed in the

Friendcaster Android application’s Facebook authentication
service, which allowed an attacker to sign into an honest
Facebook user’s Friendcaster account. This error was caused
by Friendcaster blindly accepting an access token received
from a user’s device then using this token to exchange for the
user’s Facebook ID. A malicious application could obtain a
legitimate access token from a user, then use this access to-
ken to log into Friendcaster as the user. When we reported
this issue to Friendcaster, the developers were confused be-
cause they thought Facebook’s access tokens were bound
to relying parties and checked with every API call: “From
Facebook’s perspective, the API calls wouldn’t appear to be
originating from Friendcaster, but the attacker’s own app.”
In other words, the developers of Friendcaster thought Face-
book uses the OAuth 1.0 interpretation of the access token,
while in reality Facebook uses the OAuth 2.0 interpreta-
tion. We find similar misinterpretations of the protocol to
be common amongst mobile developers. We will explain
these cases in more detail in Section 5 and summarize the
lessons learned from them.

The rest of the paper is organized as follows: Section 2
provides the background for OAuth 1.0 and 2.0. We give an
overview about our study in Section 3. The details of the
study are presented in Section 4 and Section 5. We describe
related work in Section 6 and conclude in Section 7.

2. OAUTH BACKGROUND
The OAuth discussion group began in 2007 as a commu-

nity effort to allow third-party access to users’ protected
resources without the need to reveal their credentials. The
first version of the OAuth protocol (OAuth 1.0) was drafted
in October 2007 and published as an RFC in April 2010 [26].
Since then, the protocol has gone through numerous revi-
sions. The most notable changes to the protocol were re-
leased in October 2012 as the OAuth 2.0 framework [27].

2.1 OAuth 1.0 and OAuth 1.0a
When the first version of OAuth was drafted, there existed

another popular protocol called OpenID for third-party user
authentication [13]. Hence, OAuth was mainly designed to
address an issue that was not covered by OpenID – secure
API access delegation (i.e., authorization). While the term
“API authentication” was occasionally used to describe the
functionality of OAuth [29], the protocol specification itself
was never meant for user authentication.

The OAuth 1.0 protocol flow is illustrated in Figure 1. All
dashed lines in our figures represent browser redirection and
solid lines represent direct server-to-server API calls (e.g., a
SOAP or REST API call). In addition, parameters inside
square brackets are signed using shared secrets, which we
describe in detail in Section 4.1. For now, we present a
summary of the protocol flow.

• Unauthorized request token (Step 1,2) – First, the
relying party obtains a request token from the service
provider using a direct server-to-server call.

• Authorized request token (Step 3-5) – Then, the
relying party redirects the user to the service provider
(possibly via a browser redirection) with the request
token as a URI parameter. Then, the user grants the
relying party access to his/her protected resource and
is redirected back to the relying party.

• Access token (Step 6,7) – At this point, the relying
party can exchange the request token for an access
token using another direct server-to-server call with
the service provider.

• Protected resource (Step 8,9) – Finally, this access
token is used to obtain the user’s protected resource.

Two years after the release of the OAuth 1.0 draft, a ses-
sion fixation attack was discovered against the request token
approval step of the protocol [23]. To fix the vulnerability, a
revision to the original protocol was released (called OAuth
1.0a), which included a verification code to the final request
token response (Step 5 of Figure 1). This code is used during
the access token exchange to prove that the user complet-
ing the access token exchange is the same user who granted
access. For simplicity, we will use the term “OAuth 1.0” to
refer to OAuth 1.0a for the rest of this paper.

2.2 OAuth 2.0
OAuth 1.0 (and OAuth 1.0a) had several notable limita-

tions for its usage scenarios. However, instead of augment-
ing the existing protocol, the working group decided to alter
the specification completely to create a different protocol –
OAuth 2.0. This decision was the result of a “strong and
unbridgeable conflict” between different interest groups, ac-
cording to a departing lead author of OAuth 1.0 [22].

One major change introduced by OAuth 2.0 was the con-
cept of bearer tokens [28]. That is, a user’s access token was
no longer bound to a relying party; any party in possession of
this token could freely access the user’s protected resource.
In addition, OAuth 2.0 also offers four methods for exchang-
ing access token; these methods are referred to as grants and
they can be viewed as different “versions” of OAuth 2.0. Our
study in Section 3 reveals that out of the four grant types
in OAuth 2.0, only two were used in practice for authoriza-
tion and authentication – implicit grant and authorization
code grant. We illustrate these two grants in Figure 2a and
Figure 2b, and briefly describe them below.

2.2.1 Implicit grant
The implicit grant is the shortest of all OAuth flows. It

consists of two steps. First, the user is redirected to the
service provider to grant the relying party access to his/her
protected resource. After the permission is granted, the ser-
vice provider redirects the user back to the relying party
along with an access token. The relying party can then
use this access token to exchange for the user’s protected
resource.

There are two core features that differentiate the implicit
grant from other OAuth flows. First, with exception to the
final protected resource request, every message in the proto-
col is exchanged through the user agent (e.g., using browser
redirection). Second, the implicit grant does not require
the relying party to present a shared secret to the service
provider. This is ideal for the mobile environment, where
the relying party resides on an untrusted device.

2.2.2 Authorization code grant
The authorization code grant augments the implicit grant

by adding an additional step to authenticate the relying
party. After the user grants permission to the relying party,
the service provider redirects the user back to the relying

User Service Provider Relying party
1. [App ID]

2. Req Token

3. Req Token

4. User grants permission

5. Req Token, verifier

6. [Req Token, verifier]
7. Access Token

8. [Access token]

9. Protected resource

Verifies signature

Verifies signature

Verifies signature

Figure 1: OAuth 1.0 and OAuth 1.0a.

User Service Provider Relying party

2. User grants
permission3. Access token

4. Access token

5. Protected resource

1. App ID, redirect URI

Verifies
redirect URI

(a) Implicit grant

User Service Provider Relying party
1. App ID, redirect URI

3. Auth code
2. User grants
permission

5. Access Token

7. Protected resource

6. Access token

4. Auth code, redirect URI,
app ID, app secret

Verifies
redirect URI

Authenticates
relying party

(b) Authorization code grant

Figure 2: Two grant types of OAuth 2.0

party with an authorization code (instead of an access to-
ken). Then, this authorization code is used to exchange for
the user’s access token through a direct server-to-server call.
In this access token exchange step the relying party has to
include its own identity, so the service provider can verify
that the authorization code is granted to the same party.

3. OUR STUDY
Our study consists of two main components, which are

explained in detail in the next two sections:

• We first focus on understanding and comparing the
protocol specifications of OAuth 1.0 and 2.0 in order
to pinpoint their key steps in authentication and au-
thorization. Pinpointing these key steps plays an im-
portant role in our work because they are implemented
by different mechanisms on the mobile platforms, as
compared to those on the web platform. Section 4.2
will elaborate on how such differences lead to secu-
rity issues which mobile application developers may
not foresee.

• In order to understand how real-world developers in-
terpret and implement OAuth, we conducted a com-

prehensive study on 149 popular mobile applications.
These applications included 133 Android applications
from the following Google Play store categories: top
300 free applications in all categories, top 200 free ap-
plications in social and top 100 free applications in
communication. In addition, we manually selected 16
popular iOS and Android OAuth applications (e.g.,
Quora and Weibo) that were not included in the top
charts. 25 (16.8%) applications used in our study were
service providers, 126 (84.5%) were relying parties and
2 (1.3%) were both service providers and relying par-
ties. Furthermore, 52 (41.3%) of the relying parties
were using OAuth for authorization, the remaining 74
(58.7%) were using it for authentication. Our study
revealed that 59.7% of these protocol implementations
were faulty and vulnerable to attacks. These results
confirm our suspicion that, for a large population of
developers, how to use OAuth securely on mobile ap-
plications is indeed unclear. Section 5 explains a set of
representative cases among the vulnerable applications
that we studied.

4. OAUTH SPECIFICATIONS AND MOBILE
PLATFORMS

In this section, we start by studying three canonical OAuth
protocol flows: OAuth 1.0, OAuth 2.0 implicit grant and au-
thorization code grant, and their two use cases: authoriza-
tion and authentication. Since the use case of authentication
is largely unaddressed by the current OAuth specifications,
we offer our insights on how to achieve it using different ver-
sions of OAuth. Furthermore, we demonstrate key factors
that make the existing OAuth specifications error-prone (or
even insufficient) for implementations on mobile platforms.

4.1 Dissecting the OAuth specifications
Our analysis is focused on authorization and authentica-

tion. For each of these two problems, we identify key el-
ements within the two specifications (OAuth 1.0 [26] and
OAuth 2.0 [27]) that account for their security. We focus on
three OAuth protocol flows: OAuth 1.0 (Figure 1), OAuth
2.0 implicit grant (Figure 2a) and authorization code grant
(Figure 2b).

Note that, as a prerequisite of any OAuth protocol flow,
the relying party must obtain an ID and a secret from the
service provider. This is typically done by registering the
relying party application through the service provider.

4.1.1 Authorization
Authorization is a process that enables an end-user to

grant a relying party access to his/her protected resource
stored on a service provider. The security audience for au-
thorization is the service provider. That is, the user’s sensi-
tive information is located on the service provider, and the
service provider must verify that the protected resource is
sent to the same party that the user had granted access to.

Although the descriptions of the three protocol flows in
the OAuth specifications are fairly complicated, we believe
that each has a few key elements for secure authorization,
as we identify below.

OAuth 1.0 – The OAuth 1.0 specification requires every
token request and protected resource request to be signed
by the relying party using the secret obtained during the

application registration stage. The security for authoriza-
tion is achieved between Steps 8 and 9 of the protocol (see
Figure 1) when the service provider verifies the signature
of the protected resource request. Assuming that the rely-
ing party secret is only known to the relying party and the
service provider, this step ensures that the receiver of the
protected resource is the same party that the user granted
the request to.

OAuth 2.0 implicit grant – The OAuth 2.0 framework
requires the relying party to provide a redirection URI when
registering itself to the service provider. This redirection
URI is an essential element for achieving security for autho-
rization using the implicit grant. In Step 2 of the implicit
grant (see Figure 2a), the redirection URI provided by the
relying party is checked against the registered redirection
URI in the service provider’s database. If the two URIs
match, it means that the user is granting access to the same
relying party that the access token is sent to.

OAuth 2.0 authorization code grant – The autho-
rization code grant augments the implicit grant by adding
an additional step that allows a service provider to verify
the identity of a relying party. Security for authorization is
achieved in between Step 4 and Step 5 of the protocol (see
Figure 2b). At this point, the service provider authenticates
the relying party using its application ID and secret pro-
vided in Step 4 (recall that this ID-secret pair is obtained by
the relying party during the application registration stage).
After authenticating the relying party, the service provider
must verify that this relying party is the same as the one
that the user had granted access to in Step 2 of the proto-
col. This step ensures that the protected resource is sent to
the correct relying party.

4.1.2 Authentication
Although many websites and applications use OAuth for

authentication, these use-cases are unspecified by both OAuth
standards (1.0 and 2.0). This section provides our insights
on the protocol details that are important to achieve secure
authentication.

Authentication is a process where an end-user signs onto
a relying party account by proving to the relying party that
he/she is a certain user on the service provider. Unlike au-
thorization, the security audience for authentication is the
relying party. That is, the protected resource is located on
the relying party (i.e., the user’s relying party account), not
the service provider.

To leverage OAuth for authentication, a relying party uses
the OAuth authorization flow to request the user’s account
ID from the service provider. Once this account ID is re-
trieved from the service provider, it can be used to identify
the user on the relying party. However, because the secu-
rity goals of authentication are very different from those of
authorization, not all OAuth protocol flows are secure for
authentication.

In general, in order to determine whether an authorization
protocol flow can be used for authentication, there are two
properties that the relying party must ensure. First, the
relying party must ensure that the user ID received from
the service provider cannot be tampered with by the user.
Otherwise, an adversary can impersonate arbitrary users.
Second, the relying party must check that OAuth tokens
used to retrieve the user ID is granted to the same relying
party. If this check is not done, an adversary could use

tokens issued to a malicious application to sign onto users’
benign relying party account.

We now examine the three canonical OAuth protocol flows
and analyze whether they can be used for authentication.

OAuth 1.0 – There are two aspects of the OAuth 1.0 pro-
tocol that make it secure for authentication. First, the user
ID exchange in Step 8 and 9 of the protocol (see Figure 1)
are done using server-to-server API calls. These calls can-
not be tampered by the user. Second, the signature check
in Step 8 ensures that the access token used to retrieve the
user ID is granted to the same relying party. That is, the
user is using this access token to sign onto the same relying
party.

OAuth 2.0 implicit grant – Unfortunately, the implicit
grant is insecure for authentication. Since access tokens in
OAuth 2.0 are no longer bound to relying parties (i.e., any-
one with a valid access token can use it to exchange for the
user ID), it is impossible to verify whether the user is using
an access token to sign onto the same relying party. A ma-
licious relying party could obtain access tokens from users
signing onto itself, then use these access tokens to log into
a benign relying party, impersonating these users.

OAuth 2.0 authorization code grant – We mentioned
previously that the reason why the implicit grant cannot be
used for authentication is because OAuth 2.0 access tokens
are not bound to relying parties they are issued to. This
problem is mitigated in the authorization code grant using
an additional parameter called the authorization code. A
service provider implementing the authorization code grant
does not send access tokens to relying parties using browser
redirection. Instead, access tokens are delivered using server-
to-server API calls (Steps 6 and 7 of Figure 2b), which can-
not be tampered by a malicious user. Access tokens are
exchanged using authorization codes (Steps 4 and 5 of Fig-
ure 2b), where each authorization code is bound to the re-
lying party it was issued to. By verifying the redirection
URI associated with the authorization code in Step 4 of the
protocol, the service provider can make sure that the access
token is always sent to the relying party that the user tries
to authenticate to.

4.2 Differences between mobile and web plat-
forms that affect OAuth security

The previous subsection showed that the three OAuth pro-
tocol flows differ significantly. Each flow is carefully designed
with unique checks (e.g., app secret or redirection check)
and message delivery methodologies (e.g., browser redirec-
tion or server-to-server API call) to provide security. In this
subsection, we shift our attention to mobile platforms and
identify key factors that make OAuth difficult to adopt for
mobile applications. Specifically, we demonstrate that since
the OAuth specifications were written primarily for the web
community, many core concepts that are essential for secu-
rity cannot be trivially converted to the mobile world. This
causes mobile developers to frequently resort to their own
interpretations while implementing the protocol, making the
development process error-prone.

Different redirection mechanisms – One web concept
that is heavily used throughout both OAuth specifications is
browser redirection (e.g., using the HTTP 302 status code).
This mechanism is used for directing a user to the service
provider and delivering OAuth tokens (e.g., request token
or access token) to the relying party.

While the process of handling HTTP 302 status code
is well defined for browsers, it is unclear how to perform
the same redirection on mobile applications. Unfortunately,
both OAuth specifications ignore this factor by labeling the
methodology for performing redirection as an implementa-
tion detail. For example, the following excerpt was taken
from the OAuth 2.0 specification [27].

This specification makes extensive use of HTTP
redirections, ... any other method available via
the user-agent to accomplish this redirection is
allowed and is considered to be an implementa-
tion detail.

The closest concept related to browser redirection on mo-
bile platforms is the custom scheme mechanism on iOS and
the Intent mechanism on Android. They are used by mo-
bile applications to register custom URI schemes for them-
selves [2, 18]. When a URI with a custom scheme is vis-
ited inside a mobile browser or an embedded browser (e.g.,
WebView), the mobile OS will subsequently launch the ap-
plication registered with the custom scheme. Using this ap-
proach, a service provider application can simulate a browser
redirection by sending the access token to a URI with the
honest relying party’s custom scheme. However, unlike for
web applications, where the Domain Name System (DNS)
maintains a global one-to-one mapping between a host name
and a unique web principal, mobile operating systems al-
low multiple applications to register for the same custom
scheme. This many-to-one mapping between multiple lo-
cally installed applications and a single custom scheme is
fundamentally flawed for redirection.

Lack of application identity – The absence of a proper
redirection mechanism for mobile applications introduces
another complication for mobile service providers – their in-
ability to identify message receivers. The security of OAuth
depends on the service provider’s ability to send confidential
messages (e.g., access tokens) to specific relying parties.

For web applications, this is accomplished through browser
redirection, where the browser is entrusted to deliver the
message to the web principal given by a host name. Ad-
ditionally, the DNS is responsible for maintaining an asso-
ciation between a host name and a web principal. Hence,
assuming that the DNS and the browser are well-behaved, a
web-based service provider can effectively send confidential
messages to a relying part of its choosing. Unfortunately, the
same concept does not apply to mobile applications. That
is, for both iOS and Android, installed applications do not
have an origin associated with them. It is not immediately
obvious how a mobile service provider could guarantee that
a confidential message is only sent to its intended recipient.

Although in practice, different approaches have been used
to facilitate message passing between different principals,
most of these methods are incorrect. We demonstrate later
in Section 5 that many developers have ill-conceived notions
of the real recipients for different message passing mecha-
nisms on mobile devices.

Client-side protocol logic – Although client-side mes-
sage passing mechanisms such as the Android Intent [17]
are frequently used as a replacement for browser redirection,
there is a clear distinction between using browser redirection
and using a client-side message passing mechanism. When
a browser redirection is used by a web service provider, the
request is directly sent to the relying party’s server and han-

dled by server-side logic. However, when a client-side mes-
sage passing mechanism (such as the Android Intent) is used
by a mobile service provider, the logic that first processes the
message is located on the user’s device. Although in theory,
all of the core protocol logic for a mobile relying party could
reside on a server, while the client-side application is only
used to deliver and receive messages to and from the server,
this is difficult to do in practice. From our observations,
many mobile developers incorporate parts of their applica-
tions’ core logic into their client-side applications. The issue
with this practice is that when OAuth is used for authenti-
cation, the user’s device is assumed to be untrusted. Hence,
including security sensitive protocol logic or data with the
client-side application could allow a malicious user to bypass
security checks and steal confidential data (e.g., the relying
party secret).

5. STUDY OF REAL-WORLD MOBILE
APPLICATIONS

In the previous section, we highlighted several portions
of the OAuth specifications that are critical for security,
and also pointed out several differences between the mobile
platforms, as compared to the web platform which OAuth
is primarily designed for. Of course, a main concern our
study aims to address is how well real developers are able
to tackle these critical portions in the protocol specifica-
tions, and whether they have sufficient awareness about the
platform differences. As mentioned in Section 3, our study
includes 616 real-world mobile applications. Our selection
was unbiased: the selected applications are the top 300 free
applications in Google Play, the top 200 free social applica-
tions, the top 100 free communication applications, as well
as 16 other clearly popular applications.

We found that 149 out of the 616 applications imple-
ment OAuth. Surprisingly, 89 of them (59.7%) were incor-
rectly implemented, which resulted in vulnerabilities. We
have given our best effort to communicate with the ap-
plication vendors, including Facebook, Twitter, Instagram,
Quora and many others. In most cases, we have received
their positive acknowledgments.

In this section, we delve into a number of representative
vulnerability cases. The goal is to demonstrate different
ways real-world developers interpret the OAuth specifica-
tions, and to provide our study result about the pervasive-
ness of each of these issues.

5.1 Storing relying party secrets locally
One common issue was that many developers fail to un-

derstand the purpose of the relying party secret, and thus
store it locally inside the client application. We believe that
the terminology of OAuth confuses developers significantly
– the relying party secret is referred to as the “consumer se-
cret” by OAuth 1.0 and “client secret” by OAuth 2.0, where
the terms consumer and client are used by each specification
to describe the relying party. These names are extremely
misleading for developers who have never studied the spec-
ifications. For application developers, it is very reasonable
to believe that the term consumer or client is referred to the
user. Hence, many relying parties believed that it was safe
to bundle their secrets with their mobile applications.

Two notable developers making this mistake were Pin-
terest and Quora. Both Pinterest and Quora used Twitter

Figure 3: Pinterest’s OAuth dialogue forged using a stolen
application secret.

as a service provider for authentication, and both of them
bundled their relying party secrets with their mobile appli-
cations. To make the matter worse, after obtaining their
secrets using simple reverse engineering, we discovered that
the same secrets were used for the Pinterest and the Quora
web applications. Since Twitter mainly used OAuth 1.0, this
gave an adversary the ability to generate arbitrary OAuth
request tokens for Quora and Pinterest. Using these tokens,
we (acting as the attacker) could direct users (both web and
mobile users) to a legitimate Twitter page with the dialogue
box shown in Figure 3. Once the user clicks authorize, Twit-
ter’s access token will be sent to the attacker, giving him/her
full access to the user’s account.

We have reported this problem to Pinterest and Quora,
both of them have acknowledged this issue and revoked their
application secret. Quora also took the extra step of dis-
abling their Twitter authentication mechanism completely
for its Android application.

5.2 Using authorization flows for authentica-
tion

Another common confusion amongst mobile developers is
treating authorization and authentication as the same prob-
lem. Vulnerabilities due to this issue were described in the
literature [7, 43]. As we mentioned in Section 4.1, the use-
case of authentication is not considered in both the OAuth
1.0 and the OAuth 2.0 specifications. However, the terms
“authenticate” and “authentication” are still used frequently
in both specifications. For example, Section 3 of OAuth
1.0 [26] and Section 2.3 of OAuth 2.0 [27] describe a method
called “client authentication”. In actuality, these sections
describe the method for which the relying party proves its
identity to the service provider using its application ID and
secret, not the method to identify the user. However, it is
easy to see that without contexts, this can lead to devel-
oper confusions. Many relying parties using various service
providers fall victim to this misunderstanding. In this sec-
tion, we primarily focus on Facebook’s relying parties, but
the same concept can be applied to others as well.

Facebook advocates its mobile relying parties to use the
implicit grant to access core APIs. The implicit grant is
a simpler method for authorization, and in a way provides
better immunity against developer mistakes since it does
not rely on the secure storage of relying party secrets (since
this secret is not used in the implicit grant). However, as

mentioned previously in Section 4.1, the implicit grant is not
safe to use for authentication. This is because the access
token used in the implicit grant is not bound to its intended
relying party. Hence, an adversary could use a user’s access
token issued to the malicious application to login as the user
for the benign relying party’s application.

Facebook realized this issue, and added an additional step
to enhance its implicit grant for authentication, called the
appsecret proof. This step essentially transformed the im-
plicit grant into a hybrid between itself and the OAuth 1.0
flow. This security-enhanced implicit grant is shown in Fig-
ure 4a. The key difference between the security-enhanced
implicit grant and the regular OAuth 2.0 implicit grant is the
addition of an appsecret proof parameter. This parameter
is a cryptographic hash of the access token using the relying
party secret as its key that is included with every Facebook
API call. To provide security for authentication, Facebook
verifies during each API call (Step 4 of Figure 4a) that the
principal that provides the appsecret proof is the same prin-
cipal that the access token was issued to (in Step 2). Un-
fortunately, because the use-case of authentication is not
well understood by many mobile developers, the security-
enhanced implicit grant is seldom used in practice by Face-
book’s relying parties.

We now present our observations on the different Face-
book protocol flows real-world mobile developer were using
for authentication. Our study included 72 relying parties in
total, all of which were using Facebook for authentication.

Usages of the regular implicit grant. We observed a
large number (61 out of 72, or 84.7%) of the relying parties
using the standard implicit grant for authentication. All of
these applications were vulnerable to the attack previously
described in Section 4.1 against the implicit grant. Some
notable applications included Avast Mobile Security & An-
tivirus and Instagram. We have reported our findings to all
the vulnerable applications. So far 22 (36%) of them have
acknowledged our reports, of which 11 have fixed their issues
by switching to the security enhanced version of the implicit
grant. Facebook rewarded us with a $5000 bounty for the
vulnerability we discovered in Instagram.

Correct usages of appsecret proof. Of the 11 relying
parties that used the security enhanced implicit grant (i.e.,
using appsecret proof) for authentication, 10 had the correct
implementation (e.g., following the protocol flow described
in Figure 4a). Examples of these applications include Hulu
and airbnb.

Incorrect usage of appsecret proof. Interestingly, we
discovered a different interpretation of the appsecret proof
flow by the mobile application Keek (a social video appli-
cation with more than 60 million users), illustrated in Fig-
ure 4b. In Keek’s flow, the appsecret proof was sent from
the user’s mobile device (i.e., Keek’s mobile application) to
Facebook’s server. When this proof was accepted by Face-
book and returned to Keek’s mobile application, Keek in-
formed its server that the appsecret proof was accepted by
Facebook. At this point, Keek fell back to the standard
implicit grant, and chose to complete the user ID exchange
using the standard implicit grant. Unfortunately, the issue
with this flow is that a malicious user launching an attack
against the implicit grant could forge Facebook’s response in
Step 6 of Figure 4b (since the attacker is also the user), and
convince Keek that Facebook accepted the appsecret proof.
This would negate the purpose of the appsecret proof check

and downgrade the protocol into an implicit grant. We have
reported this problem to Keek, but they have not responded.
Our contact in Facebook offered to follow up with all vendors
who are subject to this issue, including Keek.

Although we focused on Facebook’s relying parties in this
section, the problem is universal. For example, 71.4% of
Google relying parties also had the same misconception, and
were using authorization flows for authentication.

5.3 Handling redirection in mobile applications
In Section 4.2, we pointed out that there currently ex-

ist no definitive, platform-independent mechanism to per-
form redirection for mobile applications. In this section, we
present four methodologies used by real-world developers for
handling redirection: iOS custom scheme, Android Intent,
mobile browser and WebView. In addition, we analyse the
security of each of these methods.

5.3.1 Custom scheme and Intent
Previously in Section 4.2, we discussed that the custom

scheme mechanism in iOS and the Intent mechanism in An-
droid bear close resemblance to browser redirection. It is
not immediately obvious whether they can be used securely
for redirection. Recall the issue with these mechanisms is
that it is difficult to determine the true recipients of their
messages. According to Apple, if two iOS applications at-
tempt to register the same custom scheme, behavior regard-
ing which app will be referenced is undefined [1]. As for
Android, we discovered that many mobile service providers
were not directly invoking their relying party applications
(e.g., using Intents), but rather sending data through the
return values of their own applications (e.g., when invoked
by a relying party). However, when passing data through
return values, additional checks are needed to verify that the
caller application matches with the intended recipient of the
data. We investigated several service providers using cus-
tom schemes and Intents, including Google, Facebook and
Foursquare. We present our results below.

For iOS, we concluded that no service provider in our
study was using custom schemes correctly. That is, no
service provider could correctly determine the identity of
its message recipient. When we presented this problem to
Facebook, Facebook acknowledged this issue and added that
“There is unfortunately no completely secure way to trans-
fer an access token from our application to a client appli-
cation.” This problem has severe implications because the
scheme mechanism is used by Facebook’s iOS application to
deliver access tokens to their relying parties. Since Facebook
cannot guarantee that an access token is sent to its intended
relying party application, there is currently no secure way of
performing authentication using Facebook on iOS (even the
security-enhanced implicit grant described in Section 5.2 is
vulnerable).

Fortunately, the Android platform is slightly different.
Our study revealed that both of the two major Android
service providers (i.e., Facebook and Google) were using the
Intent mechanism securely. Unlike for service providers in
iOS, Android service providers can actually verify the recip-
ient’s identity when Android Intent is used for message pass-
ing, using the Android key hash. By default, every Android
application in the Google Play store is signed using its de-
veloper’s secret key (this secret is different from the OAuth
relying party secret). When an Android relying party reg-

User Service Provider Relying party
1. App ID, redirect URI

3. Access Token
2. User grants
permission

5. User’s FB ID

4. [Access Token]Verifies
redirect URI

Verifies
appsecret_proof

(a) Correct usage.

User Service Provider Relying party
1. App ID, redirect URI

3. Access Token
2. User grants
permission

4. [Access Token]
Verifies
appsecret_proof

5. Proof succeeded

6. proof succeeded

Verifies
redirect URI

8. User’s FB ID

7.Access Token

(b) Incorrect usage by Keek.

Figure 4: Usages of the Facebook appsecret proof flow. Parameters inside square brackets are cryptographically hashed using
the relying party secret.

isters itself with the service provider, the service provider
would ask the relying party to provide a hash of its Android
developer key. Then, when the service provider wishes to
send sensitive messages (e.g., access token) to the same re-
lying party, it can use the following code to fetch for the
developer’s key hash:

relying_party = Activity.getCallingPackage();

dev_key_hash = getPackageManager().

getPackageInfo(relying_party,

PackageManager.GET_SIGNATURES);

Once the relying party’s key hash is obtained, the service
provider can check if this key hash matches with the key hash
provided by the developer during its application registration
stage (this is akin to checking for the redirection URI). If the
two key hashes match, then the service provider can trust
that the message is returned to the correct relying party.
We have verified that both Google and Facebook use this
mechanism to deliver access tokens to Android applications.
Out of all the access token delivery methods, this is the only
method in Android that was found to be secure.

5.3.2 Mobile browser and WebView
Since the OAuth specification does not specify how to

perform user-agent redirection for mobile applications, it
may seem natural to use a mobile browser or an embedded
browser (i.e., WebView [3, 19]) to perform web-based OAuth
redirections on mobile devices. Previous work showed some
instances of insecure WebView usages jeopardizing security
[31, 42]. It is valuable to understand how pervasive and
fundamental the problem is in our set of applications.

The WebView usage is very common for service providers
that utilize a single protocol flow for both web and mobile
relying parties. In our study, we observed several notable
service providers that fall into this category, including Twit-
ter, Microsoft LiveID, Flikr, and Renren. Unlike Facebook
and Google, these service providers do not facilitate OAuth
flows for mobile relying party using their own mobile applica-
tions. Instead, they choose to use their websites to conduct
all mobile OAuth transactions.

Many mobile developers näıvely believe that since the
OAuth specification is specifically designed for web usages,
one can securely apply it to mobile platforms by using the
web-based flow inside a mobile web browser (or a WebView
instance). This is a common misconception, as we have not

found a single case in our study where a mobile browser or
WebView is used securely for OAuth.

The fundamental reason why one cannot securely perform
OAuth transactions between a mobile relying party and a
web-based service provider is that it is difficult, if not im-
possible, for the service provider website to determine the
identity of the mobile relying party. To the best of our
knowledge, there currently exists no secure method in ei-
ther iOS or Android to allow a service provider website to
deliver sensitive OAuth tokens (e.g., request token or access
token) to the honest relying party application. In our study,
we observed two flawed methods used by web-based service
providers to deliver OAuth tokens to mobile relying party
applications. These two methods are described below.

• Using custom schemes and custom Intent filters
– One way for a web-based service provider (inside a
mobile browser or WebView) to deliver OAuth tokens
to a mobile relying party is by redirecting the user to
a URI with the relying party’s custom scheme. Recall
in Section 5.3.1, we concluded that: (1) the custom
scheme mechanism in iOS is insecure, and (2) the cus-
tom Intent filter mechanism in Android can be used
securely by verifying the relying party’s developer key
hash. Unfortunately, an Android relying party’s de-
veloper key hash can only be verified using a native
mobile application. A web-based service provider in-
side a browser cannot verify the relying party’s key
hash without using the relying party as an oracle.

• Using URI parameters – Another technique for
sending access token to a mobile relying party is by di-
rectly attaching the access token to the service provider’s
URI (e.g., provider.com/?token=TOKEN). If the ser-
vice provider is contained inside a WebView, the rely-
ing party that hosts the WebView instance can recover
this URI using WebView API calls (e.g., getURL()
in Android). For instance, the Renren Android SDK
was using this method to perform its access token
exchange. Unfortunately, when using this technique,
there is currently no way for the embedded service
provider to determine the identity of the host appli-
cation.

Interestingly, the problem with message passing between
a WebView instance and its host application is similar to the

User Service Provider Relying party

2. User logs
into Tencent3. Access token,

[App ID, User ID]

1. App ID, redirect URI

Verifies
redirect URI

4. Access token,
[App ID, User ID]

Figure 5: Tencent’s enhanced implicit grant for authenti-
cation. The variables inside the square brackets are crypto-
graphically hashed using a secret key known to only Tencent.

problem described by Barth et al. several years ago regard-
ing inter-frame communications in web browsers [6]. In this
work, the authors proposed a method called PostMessage
that allows embedded principals to specify the origin of the
message recipient. A similar technique for mobile applica-
tions has been proposed by Wang et al. [42]. However, this
proposal is yet to be adopted in practice by mobile operating
systems.

5.4 Inventing home-brewed protocol flows
Since the OAuth specification does not specify the use-

case of authentication, instead of leveraging existing autho-
rization flows, several service providers have decided to come
up with their own“OAuth-based”protocol flows. In this sec-
tion, we study one of these home-brewed OAuth protocols
and demonstrate the difficulties in designing a completely
secure authentication flow.

Tencent is a popular Chinese OAuth service provider that
owns Tencent Weibo (a micro-blogging platform with 825
million users [40]) and QQ (an instant messaging application
with 798 million active accounts [39]). Tencent claimed to
provide authentication using the OAuth 2.0 implicit grant.
Upon investigation, we discovered that the implicit grant
used by Tencent is actually a modified version of the OAuth
2.0 implicit grant. We illustrate Tencent’s implicit grant in
Figure 5 and analyze it below.

Tencent’s developers seemed to understand that because
access tokens in OAuth 2.0 are not bound to their relying
parties, the standard implicit grant is inherently insecure
for authentication. In order to make the implicit grant safe
for authentication, Tencent added a new ID hash parameter
into the protocol flow. This ID hash is a concatenated string
of the relying party’s application ID and the user’s Tencent
ID, cryptographically hashed using a secret key that is only
known to Tencent. For authentication purposes, instead of
using the access token to exchange for the user’s Tencent
ID, relying parties can simply use this ID hash directly as
the user ID. Since the value of the ID hash is different for
each application, an adversary cannot utilize a user’s ID
hash generated for one application to sign onto the user’s
account for another application.

Another unique attribute of Tencent’s OAuth flow is how
Tencent authenticates the user in Step 2 of the protocol. In
the canonical OAuth 2.0 implicit grant, this step is defined
as follows [27]:

The authorization server authenticates the re-
source owner (via the user-agent) and establishes
whether the resource owner grants or denies the
client’s access request.

For most service providers, this step involves the user to
first sign onto the service provider using her log-in creden-
tials, then manually click through a permission dialogue box
with the relying party’s name and the permission scope (i.e.,
the type of protected resource the relying party wishes to
access). Only then can the protocol transaction proceed.
However, Tencent interpreted this step differently: it issued
the user’s ID hash to the relying party immediately after au-
thenticating the user (without prompting the user with an
additional permission dialogue box). This step seemed in-
nocuous at first – since if the user voluntarily decided to log
into the relying party application by entering her Tencent
credentials, an additional permission dialogue might seem
unnecessary. Unfortunately, when the protocol transaction
is performed inside a WebView (which is the default method
used by Tencent’s official SDK), the following attack is fea-
sible:

1. A user signs onto a malicious application using Ten-
cent in a WebView. However, the adversary supplies
Tencent with the application ID and redirection URI
of a benign relying party.

2. The user authenticates with Tencent, thinking that she
is signing onto the malicious application. Unfortu-
nately, unbeknownst to the user, Tencent treats this
authentication request as one that comes from the be-
nign relying party. Before proceeding, Tencent verifies
that the redirection URI supplied in Step 1 matches
with the registered URI for the application specified
by the app ID in Step 1 (both of which are the correct
information of the benign relying party provided by
the attacker).

3. Tencent redirects the user to the redirection URI that
belongs to the benign relying party. This redirection
request includes the user’s ID hash for the benign re-
lying party.

4. At this point, the malicious application can obtain the
user’s ID hash associated with the benign relying party
from its WebView using getURL() in Android and cur-
rentWebView.request.URL in iOS.

After the attacker retrieves the user’s ID hash for the benign
relying party, she can use this to sign onto the benign relying
party’s application as the user.

It is important to note that this attack was enabled by
two implementation details that were not well-defined in the
OAuth specifications. First, Tencent used the same service
provider website for both web and mobile OAuth flows. This
forced its mobile relying party applications into using We-
bView for authentication. Second, because Tencent’s user
authentication step did not include a permission dialogue
box, users could not determine the identity of the relying
party application they were signing onto.

After we reported our findings, Tencent immediately ac-
knowledged this issue and patched their user authentication
mechanism by adding an additional permission dialogue box.

5.5 Lessons learned
As we have shown in this section, OAuth usages on mo-

bile applications require detailed understandings and con-
siderations about the protocol specifications and the mobile
platform capabilities. We hope that this study can provoke

the OAuth Working Group to come up with clear guidelines
for mobile application developers. Some lessons we learned
from this study are summarized here.

General lessons. The security of OAuth partially lies in
its access token delivery methodology. We showed that it is
difficult for a mobile service provider to ensure that an access
token is sent to its intended recipient. For this, we come
up with an informal rule-of-thumb for mobile developers to
decide on whether a certain mechanism can be safely used
for access token delivery:

• A mechanism can be safely used to distribute access
tokens if the service provider can always identify the
recipient using a globally unique identifier.

For example, on the Web, browser redirection can be con-
sidered as a secure access token delivery method because the
relying party can always be uniquely identified through its
host name. In Android, an Intent can be used to securely
send an access token to its intended mobile relying party
application because the relying party can be uniquely iden-
tified through its developer key hash. On the other hand,
a custom scheme cannot be used to transfer an access to-
ken because iOS allows multiple applications to register for
the same scheme without offering an accessible method to
identify these applications.

Lessons for authorization. In addition to using a se-
cure method to deliver access tokens, another important se-
curity criterion for authorization is to ensure that the user’s
permission is willfully granted to the relying party. For this,
the service provider should always obtain permission from
a user by presenting a dialogue box including the relying
party’s information and the scopes of its permissions.

Lessons for authentication. When OAuth is used for
authentication, the user’s device must not be trusted. This
rule has two implications. First, the relying party must re-
frain from bundling any security related protocol logic (e.g.,
security checks) or any sensitive information (e.g., the appli-
cation secret) into its own mobile application. Second, the
relying party must assume that the attacker could tamper
with any data sent from the user’s device.

For this reason, an integral step of the protocol is to ensure
that the relying party receiving the user’s ID in the last step
of the protocol is the same relying party that the user intends
to authenticate to. For instance, the OAuth 1.0 flow is secure
for authentication because a given access token can only be
used to exchange for the user’s ID by the same relying party
that the access token was granted to.

6. RELATED WORK
Over the years, several prominent attacks have been dis-

covered against various OAuth implementations [23, 41,
37, 33, 43, 42, 16, 15, 24, 25]. However, despite being the
subject of constant scrutiny from the security community,
the OAuth protocol remains a mystery for the majority of
mobile developers. Instead of focusing on individual attacks,
our work aims to provide deeper insights into how real-world
mobile developers interpret OAuth and why some interpre-
tations are correct while others are not.

We are not the first to discover flaws in commercially de-
ployed authentication protocols [41, 5, 4, 35, 38]. However,
much of the prior work focuses on the security of web-based
protocol implementations. Our study revealed that mobile
platforms significantly differ from the Web. Hence, it can

be non-trivial for developers to translate secure web-based
authentication mechanisms into the mobile environment.

Our motivation for demystifying OAuth came from Chen
et al.’s work on demystifying setuid UNIX system calls [8].
Recent studies also indicated situations where APIs and
SDKs present enough mysteries and challenges for devel-
opers to use securely. For example, Georgiev et al. showed
that developers of mobile applications were often unable to
implement SSL certificate validation logic [14]. Wang et al.
showed that popular SDKs often contain implicit security
assumptions that developers are unaware of [43].

The issues with custom schemes have been studied by sev-
eral others [9, 42]. Unlike previous studies, the focus of our
work is not on the specifics of the attacks, but rather how
and why these attacks happen. We highlight several nuances
within the OAuth protocol that are prone to developer mis-
conceptions when implemented in a mobile environment.

Permission re-delegation is another type of privilege esca-
lation attack. It happens when privileged services are ex-
posed by an application with permission to an application
without permission [10, 12]. Various defenses have been pro-
posed to mitigate permission re-delegation attacks [12, 11,
9, 21, 30]. The attacks covered in this paper do not belong
to the same category as permission re-delegation attacks,
because our adversary is not interested in gaining access to
privileged device resources. Rather, our attacker aims to
obtain application specific resources that are located on the
service provider and the relying party.

Several defense mechanisms have been proposed that uti-
lize privilege separation to secure mobile advertising libraries
and to prevent click frauds [20, 36, 32, 34, 11]. However,
defenses based on privilege separation cannot be used to ad-
dress logic flaws induced by developers’ misinterpretation of
the OAuth protocol.

7. CONCLUSION
The OAuth protocol was initially designed for website au-

thorization, but the industry has imposed additional duties
on the protocol over the years. In particular, it has become
the de-facto protocol for authentication and authorization in
mobile applications. As we show in this paper, a number of
key steps in the OAuth protocol flows and some concepts of
OAuth are confusing, vague, or unspecified when they are
put in the context of mobile platforms. The consequence is
serious: 59.7% of OAuth-capable mobile applications in our
study were vulnerable. The mistakes were diverse: devel-
opers did not know where to store application secrets, had
confusions about the difference between authentication and
authorization, used arbitrary client mechanisms to redirect
secret tokens, and even invented home-brewed OAuth pro-
tocol flows. Our findings have been communicated to ven-
dors of the vulnerable applications. Most vendors positively
confirmed the issues, and some have applied fixes, which is
encouraging. Nevertheless, we believe the ultimate solution
to this problem has to rely on the OAuth Working Group’s
effort to come up with clear usage guidelines specifically tar-
geting mobile platforms. We hope that our work provokes
such an effort.

8. ACKNOWLEDGEMENTS
We thank Rui Wang and anonymous reviewers for valu-

able comments.

9. REFERENCES
[1] Apple Inc. Advanced app tracks. https://developer.

apple.com/library/ios/documentation/iPhone/

Conceptual/iPhoneOSProgrammingGuide/

AdvancedAppTricks/AdvancedAppTricks.html.

[2] Apple Inc. Implementing custom url schemes.
https://developer.apple.com/library/ios/

documentation/iPhone/Conceptual/

iPhoneOSProgrammingGuide/AdvancedAppTricks/

AdvancedAppTricks.html#//apple_ref/doc/uid/

TP40007072-CH7-SW50.

[3] Apple Inc. Uiwebview class reference.
https://developer.apple.com/library/ios/

documentation/uikit/reference/UIWebView_Class/

Reference/Reference.html.

[4] A. Armando, R. Carbone, L. Compagna, J. Cuellar,
and L. Tobarra. Formal analysis of saml 2.0 web
browser single sign-on: Breaking the saml-based single
sign-on for google apps. In Proceedings of the 6th
ACM Workshop on Formal Methods in Security
Engineering, FMSE ’08, pages 1–10, New York, NY,
USA, 2008. ACM.

[5] G. Bai, J. Lei, G. Meng, S. S. Venkatraman,
P. Saxena, J. Sun, Y. Liu, and J. S. Dong. Authscan:
Automatic extraction of web authentication protocols
from implementations. In NDSS. The Internet Society,
2013.

[6] A. Barth, C. Jackson, and J. C. Mitchell. Securing
frame communication in browsers. Commun. ACM,
52(6):83–91, June 2009.

[7] J. Bradley. The problem with oauth for
authentication.
http://www.thread-safe.com/2012/01/problem-

with-oauth-for-authentication.html.

[8] H. Chen, D. Wagner, and D. Dean. Setuid
demystified. In Proceedings of the 11th USENIX
Security Symposium, pages 171–190, Berkeley, CA,
USA, 2002. USENIX Association.

[9] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner.
Analyzing inter-application communication in android.
In Proceedings of the 9th International Conference on
Mobile Systems, Applications, and Services, MobiSys
’11, pages 239–252, New York, NY, USA, 2011. ACM.

[10] L. Davi, A. Dmitrienko, A.-R. Sadeghi, and
M. Winandy. Privilege escalation attacks on android.
In Proceedings of the 13th International Conference on
Information Security, ISC’10, pages 346–360, Berlin,
Heidelberg, 2011. Springer-Verlag.

[11] M. Dietz, S. Shekhar, Y. Pisetsky, A. Shu, and D. S.
Wallach. Quire: Lightweight provenance for smart
phone operating systems. In Proceedings of the 20th
USENIX Conference on Security, SEC’11, pages
23–23, Berkeley, CA, USA, 2011. USENIX
Association.

[12] A. P. Felt, H. J. Wang, A. Moshchuk, S. Hanna, and
E. Chin. Permission re-delegation: Attacks and
defenses. In USENIX Security Symposium. USENIX
Association, 2011.

[13] B. Fitzpatrick and D. Recordon. Openid
authentication 1.1.
http://openid.net/specs/openid-authentication-

1_1.html.

[14] M. Georgiev, S. Iyengar, S. Jana, R. Anubhai,
D. Boneh, and V. Shmatikov. The most dangerous
code in the world: Validating ssl certificates in
non-browser software. In Proceedings of the 2012 ACM
Conference on Computer and Communications
Security, CCS ’12, pages 38–49, New York, NY, USA,
2012. ACM.

[15] N. Goldshlager. How i hacked any facebook
account...again! http://www.breaksec.com/?p=5753.

[16] N. Goldshlager. How i hacked facebook oauth to get
full permission on any facebook account (without app
”allow” interaction).
http://www.breaksec.com/?p=5734.

[17] Google Inc. Intent. http://developer.android.com/
reference/android/content/Intent.html.

[18] Google Inc. Intents and intent filter.
http://developer.android.com/guide/components/

intents-filters.html.

[19] Google Inc. Webview. http://developer.android.
com/reference/android/webkit/WebView.html.

[20] M. C. Grace, W. Zhou, X. Jiang, and A.-R. Sadeghi.
Unsafe exposure analysis of mobile in-app
advertisements. In Proceedings of the Fifth ACM
Conference on Security and Privacy in Wireless and
Mobile Networks, WISEC ’12, pages 101–112, New
York, NY, USA, 2012. ACM.

[21] M. C. Grace, Y. Zhou, Z. Wang, and X. Jiang.
Systematic detection of capability leaks in stock
android smartphones. In NDSS. The Internet Society,
2012.

[22] E. Hammer-Lahav. Oauth 2.0 and the road to hell.
http://hueniverse.com/2012/07/26/oauth-2-0-

and-the-road-to-hell/.

[23] E. Hammer-Lahav. Oauth security advisory: 2009.1.
http://oauth.net/advisories/2009-1/.

[24] E. Homakov. How we hacked facebook with oauth2
and chrome bugs.
http://homakov.blogspot.ca/2013/02/hacking-

facebook-with-oauth2-and-chrome.html.

[25] E. Homakov. Oauth1, oauth2, oauth...?
http://homakov.blogspot.ca/2013/03/oauth1-

oauth2-oauth.html.

[26] Internet Engineering Task Force (IETF). The oauth
1.0 protocol. http://tools.ietf.org/html/rfc5849.

[27] Internet Engineering Task Force (IETF). The oauth
2.0 authorization framework.
http://tools.ietf.org/html/rfc6749.

[28] Internet Engineering Task Force (IETF). The oauth
2.0 authorization framework: Bearer token usage.
http://tools.ietf.org/html/rfc6750.

[29] Internet Engineering Task Force (IETF). Oauth core
1.0 revision a. http://oauth.net/core/1.0a/.

[30] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang. Chex:
Statically vetting android apps for component
hijacking vulnerabilities. In Proceedings of the 2012
ACM Conference on Computer and Communications
Security, CCS ’12, pages 229–240, New York, NY,
USA, 2012. ACM.

[31] T. Luo, H. Hao, W. Du, Y. Wang, and H. Yin.
Attacks on webview in the android system. In Annual
Computer Security Applications Conference, pages
343–352, 2011.

[32] P. Pearce, A. P. Felt, G. Nunez, and D. Wagner.
Addroid: Privilege separation for applications and
advertisers in android. In Proceedings of the 7th ACM
Symposium on Information, Computer and
Communications Security, ASIACCS ’12, pages 71–72,
New York, NY, USA, 2012. ACM.

[33] M. Shehab and F. Mohsen. Towards enhancing the
security of oauth implementations in smart phones. In
Proceedings of the IEEE 3rd International Conference
on Mobile Services, 2014.

[34] S. Shekhar, M. Dietz, and D. S. Wallach. Adsplit:
Separating smartphone advertising from applications.
In Proceedings of the 21st USENIX Conference on
Security Symposium, Security’12, pages 28–28,
Berkeley, CA, USA, 2012. USENIX Association.

[35] J. Somorovsky, A. Mayer, J. Schwenk, M. Kampmann,
and M. Jensen. On breaking saml: Be whoever you
want to be. In Proceedings of the 21st USENIX
Conference on Security Symposium, Security’12, pages
21–21, Berkeley, CA, USA, 2012.

[36] R. Stevens, C. Gibler, J. Crussell, J. Erickson, and
H. Chen. Investigating user privacy in android ad
libraries. In IEEE Mobile Security Technologies
(MoST), 2012.

[37] S.-T. Sun and K. Beznosov. The devil is in the
(implementation) details: An empirical analysis of
oauth sso systems. In Proceedings of the 2012 ACM
Conference on Computer and Communications
Security, CCS ’12, pages 378–390, New York, NY,
USA, 2012. ACM.

[38] S.-T. Sun, K. Hawkey, and K. Beznosov.
Systematically breaking and fixing openid security:

Formal analysis, semi-automated empirical evaluation,
and practical countermeasures. Computers & Security,
31(4):465–483, 2012.

[39] Tencent Holdings Limited. Tencent announces 2012
fourth quarter and annual results.
http://www.prnewswire.com/news-

releases/tencent-announces-2012-fourth-

quarter-and-annual-results-199130711.html.

[40] Tencent Holdings Limited. Tencent announces 2013
first quarter results.
http://www.prnewswire.com/news-

releases/tencent-announces-2013-first-quarter-

results-207507531.html.

[41] R. Wang, S. Chen, and X. Wang. Signing me onto
your accounts through facebook and google: A
traffic-guided security study of commercially deployed
single-sign-on web services. In IEEE Symposium on
Security and Privacy, pages 365–379, 2012.

[42] R. Wang, L. Xing, X. Wang, and S. Chen.
Unauthorized origin crossing on mobile platforms:
Threats and mitigation. In Proceedings of the 2013
ACM SIGSAC Conference on Computer;
Communications Security, CCS ’13, pages 635–646,
New York, NY, USA, 2013. ACM.

[43] R. Wang, Y. Zhou, S. Chen, S. Qadeer, D. Evans, and
Y. Gurevich. Explicating sdks: Uncovering
assumptions underlying secure authentication and
authorization. In Proceedings of the 22Nd USENIX
Conference on Security, SEC’13, pages 399–414,
Berkeley, CA, USA, 2013. USENIX Association.

