@SIEGE(IN

Breaking Hardware-Enforced Security
with Hypervisors

Joseph Sharkey, Ph.D.

Chief Technology Officer /
. . . Vice President of Advanced Programs
This work was sponsored in part by the Air Force Research

Laboratory (AFRL) and Air Force Office of Scientific Research Siege Tech n0|0gies
(AFOSR) under contracts FA8750-C-0235, FA9550-11-1-0267, - .
o PR B MG www.siegetechnologies.com



@ Presentation Content

* Background on modern hardware-enforced security primitives for
PC platforms

 Compromising Intel TXT with a Hypervisor rootkit
e Compromising AES-NI with a Hypervisor rootkit

* Implications

* Near Term Solutions: What can | do about it?



(®) Trusted Boot (tBoot)

tBoot is open source software that makes use of Intel’s TXT
 Code written and released by Intel engineers

* tBootis the de facto standard code-base for DRTM
leveraging Intel’s TXT extensions

— Used by GRUB, Xen, VMWare ESXi, etc.
e Launch Control Policies (LCP) handle failed
measurement; are settable by system administrator
— Halt policy prevents boot on invalid measurement

— Continuation policy allows boot, but notifies system of
invalid state

TXT MEASURED LAUNCH: TRUE

PUBLIC.KEY: PUBLIC.KEY:

99 9c 2b ef 5f c4 d8 82 77 43 42 10 T4 ae d4 62
99 9c 2b ef 5f c4 d8 82 77 43 42 10 f4 ae d4 62
95 od 33 33 50 b6 1c 3d db ff al 6f 3f d5 d3 dl 95 0d 33 33 50 b6 1c 3d db ff al 6f 3f d5 d3 dl

;;;;;;;;;;;;;;;;;;;;;;;;; B T T T T Ty

TXT measured launch: TRUE TXT measured launch: FALSE

secrets flag set: TRUE secrets flag set: FALSE

TXT.HEAP.BASE: 0xcaf20000 TXT.HEAP.BASE: 0xcaf20000

i TXT.HEAP.SIZE: 0xe0000 (917504)
TXT.HEAP.SIZE: 0xe0000 (917504) %
bios data (@0x7fe@9583c018, 56): bios data (@0x7f29faa®5018, 56):

version: 4

version: 4 : oy .
bios sinit size: 0x0 (0)

bios sinit size: 0x0 (0) - s o
lcp pd base: 6x0 1cp pd ase: 0x
i et i
num logical procs: 4 : s
flags: 0x00000000 flags: 0x00000000

Intel®* TXT: How it Works

Provisioning:

Known good values for
BIOS and Hypervisor
provisioned into the TPM

¢

At power on,
measured launch
of BIOS, results match?

d

Measured launch of
Hypervisor match?

Software measure and verified

—

—

If mismatched, Policy

action enforced, indicates
untrusted status

If mismatched, Policy
action enforced, indicates

untrusted status

Platform trust can be reported




@ Dynamic Root of Trust Measurement (DRTM)

BIOS Bootloader MLE Operating System
DRTM is common
- — across PC/laptop/server
 — s platforms and is used by

tBoot Utilities

\\ / / \ \ L thoot, Xen, Vmware

ESXi, etc.
SRTM PCRs 1-16 DRTM PCRs 17-23

* Establishment of trusted environment is delayed until some time after platform has booted
— Eliminates the need to trust early boot software, no longer need to reboot to start a chain of trust
— Completely remove BIOS & early bootloaders from the Trusted Computing Base

* Atomic “measure and launch” operation ensures a clean initial state; TPM stores integrity
measurements, and optionally sealed storage and remote attestation

* Most popular for PC platforms; addresses challenges of Static Root of Trust approaches
— Used by tBoot, Xen, VMWare ESXi, etc



(®) DRTM Implementations

Intel’s TXT Overview

Intel’s Trusted Execution Technology (TXT)

* A set of hardware extensions and primitives
— Safer Mode Extensions (SMX) in the CPU
— Chipset support including VT-d, TPM v1.2, LPC Bus v1.1

e e——
Intel* TXT and VT-x Support
%

* Provides a secure way to launch a measured - =
environment | | | | Intel TXT and VT-d Support @
— GETSEC[SENTER] instruction is used to atomically reset B n/
some chipset, TPM state, halt other cores and execute a T
trusted code module (SINIT) w05 o,
— SINIT module can then pass execution to a known/trusted .
kernel ST ACmodve | S [reraysume
Intel’s GETSEC Instruction Leaf Functions
'Index (EAX) | Leaf function | Description
0 CAPABILITIES Returns the available leaf functions of the GETSEC instruction o o
1 [ Undefine  Reserved AMD'’s Secure Virtual Machine (SVM)
2 ENTERACCS Enter L. .
3 EXTAC exit * Very similar to Intel’s TXT, small differences
4 SENTER Launch an MLE
5 SEXIT Exit the MLE — SKINIT — “Secure Kernel Initialization” instruction
6 PARAMETERS Return SMX related parameter information . .
7 SMCTRL SMX mode control — Chlpset extensions and support
8 WAKEUP Wake up sleeping processors in safer mode
9-(4G-1) | Undefined | Reserved




(®) Trusted Platform Module (TPM)

* Services provided by the TPM include:
* Platform Configuration Registers (PCRs) coys, owner ooty measures g ko
* Locality based access enforcement ki / when in use
* Sealed Storage \
* Remote Attestation

TPM Architecture

Communications

* Platform configuration registers (PCRs)

Trusted Platform Module (TPM)

* Hash accumulator used to track system
COangUrathn external.

+ PCR,, = SHA-1 (PCR, | Value) — —
 Computationally infeasible to set PCR to a specified value
* (ext(A), ext(B)) # (ext(B), ext(a))

* Some registers are used for SRTM (0 - 15 and others DRTM (17 — 23), 16is a
debug PCR

Tamper-Protected Packaging




(®) Trusted Platform Module (TPM)

* Sealed Storage

. . . sealing
— Binds data to system configuration TPM tpm._seal(secret)

— Secrets can only be accessed when PCR17=0x1122334455...
the TPM PCRs are in the proper
PCR18=0x0918273645...

state
tpm_unseal(secret)
PCR 19 = OXFEDCBA9876...

unsealing

e Remote Attestation

— Challenge response protocol with
nonce to eliminate replay

— TPM performs a quote operation (reports PCR values) and signs it with a
key held internally (key exchange happens at setup)



@ Summary of Previously Demonstrated Attacks

Invisible Things Lab, 2009: Malicious SMM [4]

— System Management Mode (SMM) code is not included in TXT system measurement; malicious SMM
code can subvert the root of trust

— Intel has discussed a solution to address SMM in a TXT environment (STM), but does not yet have any
commercial implementations available for testing or use in trusted platforms [1].

Invisible Things Lab, 2009: TXT Chipset Misconfiguration [2]
— A misconfiguration in chipset VT-d settings leave MLE vulnerable to DMA attack

— Misconfiguration issue was subsequently patched by Intel via an updated sinit software module

Invisible Things Lab, 2011: Vulnerabilities in TXT AC module [5]

— Buffer overflow in ACPI DMAR table allows attacker to gain code execution inside the signed
executable

— Bug was patched by Intel via updated SINIT module release

Johannes Winter, 2009, 2011: TPM hardware attacks

— Showed an attacker can monitor [6] and/or manipulate TPM bus communications [3]



(®) SENTER Emulation Attack with Hypervisor Rootkit

BIOS Bootloader MLE Operating System

SENTER emulation
tBoot Utilities attack virtualizes the
S0t L — N , linux  tBoot DRTM establishment
process, and lies
about the state of the
system

Kernel Module

Hypervisor
4 v 2 4 a4 4y

Virtualized DRTM PCRs 17-23

A J

TPM SRTM PCRs 1-16

* Approach: Launch thin hypervisor before tBoot (e.g. via GRUB loader)
— Intercept and emulate the GETSEC[SENTER] & other SMX instructions
— Intercept and emulate TPM interaction to fake local attestation
— Intercept and emulate TXT heap, private memory regions, etc.
e Results: Proof of Concept constructed against tBoot
— tBoot thinks (and reports) that the system successfully boots into a trusted state
— Undermines the security of tBoot DRTM with any policy, including the most restrictive “halt” policy




@ SENTER Emulation Attack Discussion

* Load a custom thin hypervisor rootkit first and then run tBoot inside

the virtual machine container IXT MEASURED LAUNCH: TRUE
— Trap SMX instructions (e.g. GETSEC[SENTER]) e
* Emulate those instruction's, using the pseudo-code provided by Intel clbleie it i

in the Developer’s Manual
* Modified as desired of course © e e e e
— AC module can either be skipped or run in the virtualized environment | ittt

bios data (@0x7fe09583c018, 56):

TXT measured launch: TRUE

secrets flag set: TRUE

so the chipset is reinitialized to the specification blos cirtt size: 649 (6)
 Again, modify/filter operations as desired of course © ?E?Eﬁ??fiiw:
— Shadow memory is used to emulate TPM and provide falsified PCR —
measurements

* No matter what policy tBoot is configured with (since GETSEC[SENTER] isn’t run, any Launch Control
Policy can be ignored by the rootkit), it continues to boot and the txt-stat command reports “TXT

measured launch: TRUE”
— System thinks it is in a trusted state, even though a rogue hypervisor is running underneath the kernel!

— Dumping PCR values from within Linux shows the same exact state as when TXT succeeds
* Because it isn’t actually talking to the real TPM,; it is talking to the hypervisor rootkit virtualized TPM



@ Should this type of attack succeed?

* According to the documentation, NO!

— TXT should prevent the launch of a measured

environment if a system can not be measured and
verified

* |ntel’s show-case example states that TXT is
capable of detecting the presence of a
hypervisor rootkit

— This is only possible when sealed storage or
remote attestation is used

— tBoot (written & maintained by Intel developers as
a TXT reference implementation) does not use
sealed storage or remote attestation out-of-the-
box!...it is left for the user to implement

* Whitepaper: Evolution of Integrity Checking with Intel® Trusted Execution Technology: an Intel IT Perspective
http://www.intel.com/content/dam/doc/white-paper/intel-it-security-trusted-execution-technology-paper.pdf

Trust Level: Measured
Software can be measured and
verified as known good

Power on hardware system
firmware verified by Intel® Trusted
Execution Technology (Intel® TXT)

prior to startup

Hardware with Intel TXT

Firmware/BIOS Yes
match?
{

Hypervisor code measured by
Intel TXT and compared to known
good value prior to allowing launch

Hypervisor
Hardware with Intel TXT

(N /

Hypervisor
measure Yes
match?

v

Launch virtual machines, OS, )
and so on

S
Applications Applications
.

7

Hypervisor
Hardware with Intel TXT

. J

Figure 3. Intel® Trusted Execution Technology helps protect virtualized

server environments.

Trust Level: Enforced

Unknown software is measured,
detected, and can be blocked

Power on hardware system

firmware verified by Intel TXT

prior to startup

Hardware with Intel TXT

Firmware/BIOS

match? s

\

4 . A
/ Hypervisor code measured by \

Intel TXT and compared to known
good value prior to allowing launch

Rootkit Hypervisor

Hardware with Intel TXT

J

Hypervisor
measure No
match?

-

Intel TXT blocks launch
of Rootkit Hypervisor

~

Hardware with Intel TXT
_

J




@ Fundamental Problem

* DRTM implementations require a single atomic instruction to be executed to
initiate the root of trust

— How can you trust an untrusted system to execute even 1 single assembly
instruction safely?

 Both AMD and Intel implementations of DTRM allow a hypervisor to gain
execution whenever a guest tries to execute a root-of-trust instructions

— This prevents a guest operating system from ousting its underlying hypervisor by
setting up an MLE of its own

— UNFORTUNATLEY, this design also allows an attacker to setup a thin-hypervisor at
boot time and virtualize/emulate all TXT instructions and TPM interactions

Fundamental Tradeoff:

Allow attacker to kick-out trusted hypervisor by executing GETSEC[SENTER]; OR
Provide the mechanisms necessary for hypervisor rootkit to emulated GETSEC[SENTER]




@ AES-NI Instructions

* Improve performance of cryptographic operations by adding support directly
into the CPU (more than an order of magnitude faster in some cases!)

e Use XMM (128-bit) / YMM (256-bit) CPU registers

 Round keys & data are provided directly as a parameter to the instructions

Instruction Description=
AESENC Perform one round of an AES encryption flow F\E S E N C
AESENCLAST Perform the last round of an AES encryption flow
: ) i . P 66 OF 38 DC /r
AESDEC Perform one round of an AES decryption flow AESENC xmm1, xmm2/m128
AESDECLAST Perform the last round of an AES decryption flow
8 8 vp Perform one round of an AES encryption flow,
AESKEYGENASSIST |Assist in AES round key generation operating on a 128-bit data (state) from

xmm1 with a 128-bit round key from

AESIMC Assist in AES Inverse Mix Columns xmmZ/m1Z8.
PCLMULQDQ Carryless multiply (CLMUL).[?]

XMM/YMM registers provide the round keys as well as the data
to encrypt/decrypt

Applications
using default
crypto libraries
(e.g. libcrypt &
wincrypt)
inherently use
AES-NI when it is
available
whether they
realize it or not




@ Compromising AES-NI: Summary

* Leverage design features of x86/64 architecture to
undermine AES-NI

* Hypervisor configures the CPU to generate an exception
anytime an AES-NI is executed

Set CPU state to

generate traps

* Hypervisor catches the exceptions, logs information
* This generic approach is not tailored to a specific piece of software, and is not
noticeable to the OS

Use hypervisor to man-in-the-middle AES-NI operations, extracting
both the encryption key as well as plain text data




(®) Inducing VMEXxits

* Unlike GETSEC, the hardware does not directly
provide a way to force all AES-NI instructions to
trap to the hypervisor

— Need to get creative ©

— All AES-NI instructions use XMM/YMM registers,
and can therefore generate “Exceptions Type 4”

* Force all AES-NI instructions to trap to the

hypervisor

— Configure the CPU to trip one of the entries in the

table to the right

— Set VMCS to route the appropriate exception (#UD
or #NM) to the hypervisor

— Configure Hypervisor to catch the exception

Exceptions Type 4, from the Instruction
Set Reference Manual

#PF(fault-code)

® B2
4 o=
. = 8 2L 5 .
Exception § % g E < Cause of Exception
2 Bl w
E ec
= oV
| Invalid Opcode, #UD | X X | || VEX prefix
X X | VEX prefix:
If XFEATURE_ENABLED_MASK[2:1]1="11b".
If CR4.0SXSAVE[bit 18]=0.
X | X | X |X | Legacy SSE instruction:
If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
X X X X If preceded by a LOCK prefix (FOH)
X X If any REX, F2, F3, or 66 prefixes precede a
VEX prefix
X X X X If any corresponding CPUID feature flag is '0f
Device Not Available, | X | X X | X | IfCROTS[bit 3]=1
#NM
Stack, SS(0) X For an illegal address in the SS segment
' X | If amemory address referencing the SS seg- |
ment is in a non-canonical form
General Protection, X X X X Legacy SSE: Memory operand is not 16-byte
#GP(0) aligned
X For an illegal memory operand effective
address in the CS, DS, ES, FS or GS segments.
X If the memory address is in a non-canonical
farm.
X X If any part of the operand lies outside the
effective address space from O to FFFFH
Page Fault |'X X | X | Forapagefault




(® Inducing VMEXxits (continued...)

0

J31(63) 20 181716151413 12 1110 9 &8 ¥ 6 5 4 3 2

1
Plv
|

Reserved X E‘" " cle|Bals|o]s|v|m CR4
CR4OSXSAVE/ g | e elelele|e|F|o|1]|E
CR4OSXFXSR DSKSA‘JEJ '_FP%:[E:E?EASE Lc:stMEJ?L:S‘FEJT{SR

» Setting these bits forces all instructions using SSE/AVX to cause exceptions

— When both bits are used together ensures legacy SSE instructions and VEX
prefix generate traps

* Allows the desired events (AES-NI) to be seen by the hypervisor, but also

many other instructions

— Hypervisor must look at the opcode that causes the trap to filter out which ones are
AES-NI and which are not



@ Detailed Results Discussion

Hypervisor Output OpenSSL Output

1 aeskeygenassist 50xl, %zmm0O, %xmml

RCON 01
DATA chab4247cecaedafa3f7481d8fd1%9ad75
RESULT = e7172146l162146e7db36b47037h470db

cap

31 aesdeclast %xmmd, $xmm2
key = £d747b58b0877b%64473157d9f24ced0
DATA = fach9dd822f78741c20eeb6318644134

38 xorps/exmno, $Emm2 | While OpenSSL is encrypting &
opl £ bd90228046bb85ec85304030d8904d8d decrypting data, the hypervisor
sees all the cryptographic

operations, and readily
identifies the key and plain text

RESULT = 5468652062656c746965206573636170

Successfully used hypervisor to man-in-the-middle AES-NI operations,
extracting both the encryption key as well as plain text



(® AES-NI Interception: What'’s the Catch?

* The hypervisor is able to extract the keys and grab clear text data
in real time in a generic way that isn’t implementation dependent
— Surely the hypervisor could also set a breakpoint on specific library

functions, but that approach would be more tailored to a specific
implementation

e BUT...The devilis in the details

— Our initial implementation incurs non-
negligible performance impact (system is
usable, but noticeably slower)

— Implementation could be optimized,
perhaps with some simplifying assumptions

"I'm here about the details.”




@ Who is affected?

* A variety of systems

— Laptops, desktops, workstations, servers
» Especially those relying on TXT for trusted boot & AES-NI for encryption

— Cloud computing infrastructure

* What if someone compromises the trusted hypervisor (e.qg. via VM breakout; or
malicious employee, etc.), bypasses the DRTM, and starts sniffing AES-NI
operations? They can compromise SSL, VPN, disk encryption, etc. — many of the

technologies that are supposed to keep you “safe” in the cloud

— Not Operating System specific — these issues are inherent in the
architecture and can be realized on any OS



@ Will | know if I’m affected?

* Probably not

— Many sysadmins (and even software developers writing the code!) don’t
know if they are relying on AES-NI currently

* Generally because they rely on library calls and don’t know how the library
implementation is done. Most libraries now use AES-NI by default when it is
available.

— TXT is quite complex; key elements for a single implementation a
modern PC platform is defined by nine specifications and encompasses
hardware implementations from at least three hardware vendors and
eight software components

* Staggering complexity leaves the system administrator responsible to make
configuration decisions for options that are not completely understood



NEAR-TERM SOLUTIONS:
HOW CAN WE PROTECT OURSELVES?



(®) | want to encrypt data in the cloud —is it hopeless?!

* |nitial experimentation indicates significant performance implications
imposed by this hypervisor approach
— Could make it less practical for wide-scale use

— Although implementation optimizations might be able to overcome this
challenge

* To be safe, you can always use a software-only implementation of
AES (not relying on the AES-NI instructions) to avoid compromise

— This would make it harder for a hypervisor rootkit to identify AES operations



@ Hide in the Noise

* Hypervisor rootkit has the privilege to see all guest operations, but must
somehow find what its looking for within all the bits & bytes of the system
(“semantic gap”)

B

I
o

ﬁl

?
- PR DA VI
i s S i

g AES-NI

ANy -

Usin



(®) Sealed Storage!!

* The attack succeeds when sealed storage and remote attestation
are not implemented

— Attack bypasses a default installation of tBoot that does not leverage sealed
storage or remote attestation

* There aren’t even optional tBoot configurations to use sealed storage.

— There are Linux command line utilities to seal/unseal secrets against the TPM,
but you are on your own to script something out using them

* CONCLUSION: Sealed storage should not be optional!!

— If something unique is locked (sealed) in the TPM, the attacker can lie about
PCR state but will ultimately fail to produce the secret value during an unseal
operation

Sealed storage and remote attestation are the

ONLY mechanisms that provide trusted mechanisms to report state




(®) Sealed Storage: Challenges

* Even if sealed storage is used, there are some pitfalls to be aware of:

— Make sure you don’t rely on a sealed secret that can be predicted or possibly
obtained by an attacker at runtime

* |f so, the attacker can report the predicted/captured value during an emulated TPM unseal
operation, without ever actually having had access to the TPM!!

— Make sure you extend PCRs after unsealing your secrets
e Otherwise an attacker can just re-unseal your secrets at runtime!

— Ensure your sealed secret doesn’t stay resident outside of the TPM at runtime

— Be careful how you verify the sealed secrets at boot time

« EXAMPLE: Use disk encryption, seal the key in the TPM, and assume we are safe if our disk gets
mounted properly (if TPM unseal fails we won’t be able to decrypt the disk)

e PITFALL: Attacker at runtime can grab the disk key from memory, and then just report it in the
right place/time during boot

If an attacker can predict or obtain/access your sealed secrets, then they can emulate the

unseal operation, bypassing even the protections afforded by sealed storage!!




(®) Sealed storage: Recommendations

* You really need to seal a value that is displayed to the user ONLY to
verify trusted state during boot

— Can be text, a photo, etc. — something the system displays to the user early in
the boot process

— After the user acknowledges the “secret” (e.g. hits enter to continue) the
secrets need to be scrubbed, the PCRs extended, and then the system can
continue boot

 Remote attestation can be used to accomplish this for a
server/headless configuration

— Rather than attesting state to the user, state is attested to a remote server

— The same process as above should be utilized: Perform attestation, scrub
secrets, extend PCRs, continue boot



@ Thank You!

Questions / Comments?

Joseph Sharkey
@sharkey_joe
https://www.linkedin.com/in/joseph-sharkey-45aa0b8

References:

[1] http://invisiblethingslab.com/resources/misc09/Quest%20To%20The%20Core%20(public).pdf

[2] http://invisiblethingslab.com/resources/misc09/Another%20TXT%20Attack.pdf

[3] Johannes Winter, “A Hijacker's Guide to the LPC bus”, https://online.tugraz.at/tug online/voe main2.getvolltext?pCurrPk=59565
[4] http://invisiblethingslab.com/resources/misc09/smm cache fun.pdf

[5] http://www.invisiblethingslab.com/resources/2011/Attacking Intel TXT via SINIT hijacking.pdf

[6] Johannes Winter, “Eavesdropping Trusted Platform Module Communication”



http://invisiblethingslab.com/resources/misc09/Quest To The Core (public).pdf
http://invisiblethingslab.com/resources/misc09/Another TXT Attack.pdf
https://online.tugraz.at/tug_online/voe_main2.getvolltext?pCurrPk=59565
http://invisiblethingslab.com/resources/misc09/smm_cache_fun.pdf
http://www.invisiblethingslab.com/resources/2011/Attacking_Intel_TXT_via_SINIT_hijacking.pdf

