
Breaking Hardware-Enforced Security
with Hypervisors

Joseph Sharkey, Ph.D.
Chief Technology Officer /

Vice President of Advanced Programs
Siege Technologies

www.siegetechnologies.com

This work was sponsored in part by the Air Force Research
Laboratory (AFRL) and Air Force Office of Scientific Research
(AFOSR) under contracts FA8750-C-0235, FA9550-11-1-0267,
and FA9550-14-C-0019

Presentation Content

• Background on modern hardware-enforced security primitives for
PC platforms

• Compromising Intel TXT with a Hypervisor rootkit

• Compromising AES-NI with a Hypervisor rootkit

• Implications

• Near Term Solutions: What can I do about it?

Trusted Boot (tBoot)

tBoot is open source software that makes use of Intel’s TXT

• Code written and released by Intel engineers

• tBoot is the de facto standard code-base for DRTM
leveraging Intel’s TXT extensions

– Used by GRUB, Xen, VMWare ESXi, etc.

• Launch Control Policies (LCP) handle failed
measurement; are settable by system administrator
– Halt policy prevents boot on invalid measurement

– Continuation policy allows boot, but notifies system of
invalid state

Dynamic Root of Trust Measurement (DRTM)

• Establishment of trusted environment is delayed until some time after platform has booted
– Eliminates the need to trust early boot software, no longer need to reboot to start a chain of trust
– Completely remove BIOS & early bootloaders from the Trusted Computing Base

• Atomic “measure and launch” operation ensures a clean initial state; TPM stores integrity
measurements, and optionally sealed storage and remote attestation

• Most popular for PC platforms; addresses challenges of Static Root of Trust approaches
– Used by tBoot, Xen, VMWare ESXi, etc

DRTM is common
across PC/laptop/server
platforms and is used by

tboot, Xen, Vmware
ESXi, etc.

DRTM Implementations

Intel’s Trusted Execution Technology (TXT)
• A set of hardware extensions and primitives

– Safer Mode Extensions (SMX) in the CPU
– Chipset support including VT-d, TPM v1.2, LPC Bus v1.1

• Provides a secure way to launch a measured
environment
– GETSEC[SENTER] instruction is used to atomically reset

some chipset, TPM state, halt other cores and execute a
trusted code module (SINIT)

– SINIT module can then pass execution to a known/trusted
kernel

AMD’s Secure Virtual Machine (SVM)

• Very similar to Intel’s TXT, small differences

– SKINIT – “Secure Kernel Initialization” instruction

– Chipset extensions and support

Intel’s GETSEC Instruction Leaf Functions

Intel’s TXT Overview

Trusted Platform Module (TPM)

• Platform configuration registers (PCRs)

• Hash accumulator used to track system
configuration

• PCRN’ = SHA-1 (PCRN | Value)

• Computationally infeasible to set PCR to a specified value

• (ext(A), ext(B)) ≠ (ext(B), ext(A))

• Some registers are used for SRTM (0 - 15 and others DRTM (17 – 23), 16 is a
debug PCR

• Services provided by the TPM include:
• Platform Configuration Registers (PCRs)
• Locality based access enforcement
• Sealed Storage
• Remote Attestation

Trusted Platform Module (TPM)

• Sealed Storage

– Binds data to system configuration

– Secrets can only be accessed when
the TPM PCRs are in the proper
state

• Remote Attestation

– Challenge response protocol with
nonce to eliminate replay

– TPM performs a quote operation (reports PCR values) and signs it with a
key held internally (key exchange happens at setup)

Summary of Previously Demonstrated Attacks

• Invisible Things Lab, 2009: Malicious SMM [4]
– System Management Mode (SMM) code is not included in TXT system measurement; malicious SMM

code can subvert the root of trust

– Intel has discussed a solution to address SMM in a TXT environment (STM), but does not yet have any
commercial implementations available for testing or use in trusted platforms [1].

• Invisible Things Lab, 2009: TXT Chipset Misconfiguration [2]
– A misconfiguration in chipset VT-d settings leave MLE vulnerable to DMA attack

– Misconfiguration issue was subsequently patched by Intel via an updated sinit software module

• Invisible Things Lab, 2011: Vulnerabilities in TXT AC module [5]
– Buffer overflow in ACPI DMAR table allows attacker to gain code execution inside the signed

executable

– Bug was patched by Intel via updated SINIT module release

• Johannes Winter, 2009, 2011: TPM hardware attacks
– Showed an attacker can monitor [6] and/or manipulate TPM bus communications [3]

SENTER Emulation Attack with Hypervisor Rootkit

• Approach: Launch thin hypervisor before tBoot (e.g. via GRUB loader)
– Intercept and emulate the GETSEC[SENTER] & other SMX instructions
– Intercept and emulate TPM interaction to fake local attestation
– Intercept and emulate TXT heap, private memory regions, etc.

• Results: Proof of Concept constructed against tBoot
– tBoot thinks (and reports) that the system successfully boots into a trusted state
– Undermines the security of tBoot DRTM with any policy, including the most restrictive “halt” policy

SENTER emulation
attack virtualizes the
DRTM establishment

process, and lies
about the state of the

system

SENTER Emulation Attack Discussion

• Load a custom thin hypervisor rootkit first and then run tBoot inside
the virtual machine container
– Trap SMX instructions (e.g. GETSEC[SENTER])

• Emulate those instruction's, using the pseudo-code provided by Intel
in the Developer’s Manual

• Modified as desired of course 
– AC module can either be skipped or run in the virtualized environment

so the chipset is reinitialized to the specification
• Again, modify/filter operations as desired of course 

– Shadow memory is used to emulate TPM and provide falsified PCR
measurements

• No matter what policy tBoot is configured with (since GETSEC[SENTER] isn’t run, any Launch Control
Policy can be ignored by the rootkit), it continues to boot and the txt-stat command reports “TXT
measured launch: TRUE”

– System thinks it is in a trusted state, even though a rogue hypervisor is running underneath the kernel!

– Dumping PCR values from within Linux shows the same exact state as when TXT succeeds
• Because it isn’t actually talking to the real TPM; it is talking to the hypervisor rootkit virtualized TPM

Should this type of attack succeed?

• According to the documentation, NO!
– TXT should prevent the launch of a measured

environment if a system can not be measured and
verified

• Intel’s show-case example states that TXT is
capable of detecting the presence of a
hypervisor rootkit
– This is only possible when sealed storage or

remote attestation is used

– tBoot (written & maintained by Intel developers as
a TXT reference implementation) does not use
sealed storage or remote attestation out-of-the-
box!...it is left for the user to implement

11
* Whitepaper: Evolution of Integrity Checking with Intel® Trusted Execution Technology: an Intel IT Perspective
http://www.intel.com/content/dam/doc/white-paper/intel-it-security-trusted-execution-technology-paper.pdf

*

Fundamental Problem

• DRTM implementations require a single atomic instruction to be executed to
initiate the root of trust
– How can you trust an untrusted system to execute even 1 single assembly

instruction safely?

• Both AMD and Intel implementations of DTRM allow a hypervisor to gain
execution whenever a guest tries to execute a root-of-trust instructions
– This prevents a guest operating system from ousting its underlying hypervisor by

setting up an MLE of its own

– UNFORTUNATLEY, this design also allows an attacker to setup a thin-hypervisor at
boot time and virtualize/emulate all TXT instructions and TPM interactions

Fundamental Tradeoff:
Allow attacker to kick-out trusted hypervisor by executing GETSEC[SENTER]; OR

Provide the mechanisms necessary for hypervisor rootkit to emulated GETSEC[SENTER]

AES-NI Instructions

• Improve performance of cryptographic operations by adding support directly
into the CPU (more than an order of magnitude faster in some cases!)

• Use XMM (128-bit) / YMM (256-bit) CPU registers
• Round keys & data are provided directly as a parameter to the instructions

XMM/YMM registers provide the round keys as well as the data
to encrypt/decrypt

Applications
using default

crypto libraries
(e.g. libcrypt &

wincrypt)
inherently use

AES-NI when it is
available

whether they
realize it or not

Compromising AES-NI: Summary

• Leverage design features of x86/64 architecture to
undermine AES-NI

• Hypervisor configures the CPU to generate an exception
anytime an AES-NI is executed

• Hypervisor catches the exceptions, logs information

• This generic approach is not tailored to a specific piece of software, and is not
noticeable to the OS

Use hypervisor to man-in-the-middle AES-NI operations, extracting
both the encryption key as well as plain text data

Inducing VMExits

• Unlike GETSEC, the hardware does not directly
provide a way to force all AES-NI instructions to
trap to the hypervisor
– Need to get creative 
– All AES-NI instructions use XMM/YMM registers,

and can therefore generate “Exceptions Type 4”

• Force all AES-NI instructions to trap to the
hypervisor
– Configure the CPU to trip one of the entries in the

table to the right
– Set VMCS to route the appropriate exception (#UD

or #NM) to the hypervisor
– Configure Hypervisor to catch the exception

Exceptions Type 4, from the Instruction
Set Reference Manual

Inducing VMExits (continued…)

CR4.OSXSAVE/

CR4.OSXFXSR

• Setting these bits forces all instructions using SSE/AVX to cause exceptions

– When both bits are used together ensures legacy SSE instructions and VEX
prefix generate traps

• Allows the desired events (AES-NI) to be seen by the hypervisor, but also
many other instructions

– Hypervisor must look at the opcode that causes the trap to filter out which ones are
AES-NI and which are not

Detailed Results Discussion

Successfully used hypervisor to man-in-the-middle AES-NI operations,
extracting both the encryption key as well as plain text

Hypervisor Output OpenSSL Output

…
…

…

While OpenSSL is encrypting &
decrypting data, the hypervisor

sees all the cryptographic
operations, and readily

identifies the key and plain text

AES-NI Interception: What’s the Catch?

• The hypervisor is able to extract the keys and grab clear text data
in real time in a generic way that isn’t implementation dependent
– Surely the hypervisor could also set a breakpoint on specific library

functions, but that approach would be more tailored to a specific
implementation

• BUT…The devil is in the details
– Our initial implementation incurs non-

negligible performance impact (system is
usable, but noticeably slower)

– Implementation could be optimized,
perhaps with some simplifying assumptions

Who is affected?

• A variety of systems

– Laptops, desktops, workstations, servers

• Especially those relying on TXT for trusted boot & AES-NI for encryption

– Cloud computing infrastructure

• What if someone compromises the trusted hypervisor (e.g. via VM breakout; or
malicious employee, etc.), bypasses the DRTM, and starts sniffing AES-NI
operations? They can compromise SSL, VPN, disk encryption, etc. – many of the
technologies that are supposed to keep you “safe” in the cloud

– Not Operating System specific – these issues are inherent in the
architecture and can be realized on any OS

Will I know if I’m affected?

• Probably not
– Many sysadmins (and even software developers writing the code!) don’t

know if they are relying on AES-NI currently
• Generally because they rely on library calls and don’t know how the library

implementation is done. Most libraries now use AES-NI by default when it is
available.

– TXT is quite complex; key elements for a single implementation a
modern PC platform is defined by nine specifications and encompasses
hardware implementations from at least three hardware vendors and
eight software components
• Staggering complexity leaves the system administrator responsible to make

configuration decisions for options that are not completely understood

NEAR-TERM SOLUTIONS:
HOW CAN WE PROTECT OURSELVES?

I want to encrypt data in the cloud – is it hopeless?!

• Initial experimentation indicates significant performance implications
imposed by this hypervisor approach

– Could make it less practical for wide-scale use

– Although implementation optimizations might be able to overcome this
challenge

• To be safe, you can always use a software-only implementation of
AES (not relying on the AES-NI instructions) to avoid compromise

– This would make it harder for a hypervisor rootkit to identify AES operations

Hide in the Noise

VS

• Hypervisor rootkit has the privilege to see all guest operations, but must
somehow find what its looking for within all the bits & bytes of the system
(“semantic gap”)
– This semantic gap is the biggest challenge for hypervisor rootkits, and we can take

advantage of it!

Using AES-NIUsing a software AES implementation

Sealed Storage!!

• The attack succeeds when sealed storage and remote attestation
are not implemented
– Attack bypasses a default installation of tBoot that does not leverage sealed

storage or remote attestation
• There aren’t even optional tBoot configurations to use sealed storage.

– There are Linux command line utilities to seal/unseal secrets against the TPM,
but you are on your own to script something out using them

• CONCLUSION: Sealed storage should not be optional!!
– If something unique is locked (sealed) in the TPM, the attacker can lie about

PCR state but will ultimately fail to produce the secret value during an unseal
operation

Sealed storage and remote attestation are the
ONLY mechanisms that provide trusted mechanisms to report state

Sealed Storage: Challenges

• Even if sealed storage is used, there are some pitfalls to be aware of:
– Make sure you don’t rely on a sealed secret that can be predicted or possibly

obtained by an attacker at runtime
• If so, the attacker can report the predicted/captured value during an emulated TPM unseal

operation, without ever actually having had access to the TPM!!

– Make sure you extend PCRs after unsealing your secrets
• Otherwise an attacker can just re-unseal your secrets at runtime!

– Ensure your sealed secret doesn’t stay resident outside of the TPM at runtime
– Be careful how you verify the sealed secrets at boot time

• EXAMPLE: Use disk encryption, seal the key in the TPM, and assume we are safe if our disk gets
mounted properly (if TPM unseal fails we won’t be able to decrypt the disk)

• PITFALL: Attacker at runtime can grab the disk key from memory, and then just report it in the
right place/time during boot

If an attacker can predict or obtain/access your sealed secrets, then they can emulate the
unseal operation, bypassing even the protections afforded by sealed storage!!

Sealed storage: Recommendations

• You really need to seal a value that is displayed to the user ONLY to
verify trusted state during boot
– Can be text, a photo, etc. – something the system displays to the user early in

the boot process
– After the user acknowledges the “secret” (e.g. hits enter to continue) the

secrets need to be scrubbed, the PCRs extended, and then the system can
continue boot

• Remote attestation can be used to accomplish this for a
server/headless configuration
– Rather than attesting state to the user, state is attested to a remote server
– The same process as above should be utilized: Perform attestation, scrub

secrets, extend PCRs, continue boot

Thank You!

Questions / Comments?

References:

• [1] http://invisiblethingslab.com/resources/misc09/Quest%20To%20The%20Core%20(public).pdf

• [2] http://invisiblethingslab.com/resources/misc09/Another%20TXT%20Attack.pdf

• [3] Johannes Winter, “A Hijacker's Guide to the LPC bus”, https://online.tugraz.at/tug_online/voe_main2.getvolltext?pCurrPk=59565

• [4] http://invisiblethingslab.com/resources/misc09/smm_cache_fun.pdf

• [5] http://www.invisiblethingslab.com/resources/2011/Attacking_Intel_TXT_via_SINIT_hijacking.pdf

• [6] Johannes Winter, “Eavesdropping Trusted Platform Module Communication”

Joseph Sharkey
@sharkey_joe

https://www.linkedin.com/in/joseph-sharkey-45aa0b8

http://invisiblethingslab.com/resources/misc09/Quest To The Core (public).pdf
http://invisiblethingslab.com/resources/misc09/Another TXT Attack.pdf
https://online.tugraz.at/tug_online/voe_main2.getvolltext?pCurrPk=59565
http://invisiblethingslab.com/resources/misc09/smm_cache_fun.pdf
http://www.invisiblethingslab.com/resources/2011/Attacking_Intel_TXT_via_SINIT_hijacking.pdf

