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You care about phishing on social media
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#SNAP_R
Social
Network
Automated
Phishing with
Reconnaissance
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TL;DR

#SNAP_R

Twitter Profiles

Phishing Offense
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ISO: Demo Volunteers
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Tweet%#SNAP_R(before%the%demo%
to%get%an%example%tweet!
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#whoami
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John Seymour
@_delta_zero

Philip Tully
@phtully

Data Scientist at ZeroFOX Senior Data Scientist at ZeroFOX

Ph.D. student at UMBC Ph.D. student at University of Edinburgh & 
Royal Institute of Technology

Researches Malware Datasets Brain Modeling & Artificial Neural Nets
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A Novel Phishing Campaign Design
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Fooling Humans for 50 Years
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! Microsoft AI 
! Deep Neural Network

1966: ELIZA Chatbot 2016: @TayandYou
! Joseph Weizenbaum, MIT
! Parsing & keyword replacement
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InfoSec ML Historically Prioritizes Defense
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Weaponizing Data Science 
for Social Engineering:
Automated E2E Spear Phishing on Twitter

Machine Learning on Offense
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Automated Target Discovery
Automated Social Spear Phishing

Evaluation and Metrics
Results and Demo

Wrap Up
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Weaponizing Data Science 
for Social Engineering:
Automated E2E Spear Phishing on Twitter
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Machine Learning on Offense
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Why Twitter?
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!Bot-friendly API
!Colloquial syntax
!Shortened links
!Trusting culture
! Incentivized data disclosure
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Shoutout
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Where(Do(the(Phishers(Live?(Collecting(Phishers(
Geographic(Locations(from(Automated(Honeypots(

Robbie(Gallagher

We’ve+taken+a+novel+approach+to+automating+the+determination+of+a+
phishers+geographic+location.+With+the+help+of+Markov+chains,+we+
craft+honeypot+responses+to+phishers’+emails+in+an+attempt+to+beat+
them+at+their+own+game.+We’ll+examine+the+underlying+concepts,+
implementation+of+the+system+and+reveal+some+results+from+our+
ongoing+experiment.
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Twitter Profiles

Phishing Offense

Techniques, Tactics and Procedures
!Our ML Tool...

! Shortens payload per unique user 
! Auto-tweets at irregular intervals
! Triages users wrt value/engagement
! Prepends tweets with @mention
! Obeys rate limits

!We added...
! Post non-phishing posts
! Build believable profile
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Design Flow
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is_target(user)

get_timeline(depth)

gen_markov_tweet() gen_nn_tweet()

schedule_tweet_and_sleep() post_tweet_and_sleep()

#SNAP_R

Twitter Profiles

Phishing Offense
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Weaponizing Data Science 
for Social Engineering:
Automated E2E Spear Phishing on Twitter
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Automated Target Discovery
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Triage of High Value Targets on Twitter
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!Accessible personal info
!Historical profile posts
!Heterogeneous data
! Text, images, urls, stats, dates
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Extracting Features from 
GET users/lookup

! Engagement: following/followers
! #myFirstTweet
!Default settings
!Description content
!Account age
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Clustering Predicts High Value Users
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Eric+SchmidtEric+Schmidt
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Selecting the 
Best 
Clustering 
Model
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!Many algorithms
!Many hyperparameters
!Max avg. score � [-1,..,1]
! 0.5-0.7 reasonable structure
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Weaponizing Data Science 
for Social Engineering:
Automated E2E Spear Phishing on Twitter

20

Automated Social Spear Phishing
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Recon and Footprinting for Profiling
! Compute histogram of tweet timings 

(binsize = 1 hour)

! Random minute within max hour to tweet

! Bag of Words on timeline tweets

! Select most commonly occurring non-
stopword

! We seed the neural network with topics that 
the user frequently posts about

21



#SNAP_R

Leveraging Markov Models

! Popular for text generation: 
see /r/SubredditSimulator, 
InfosecTalk TitleBot

! Calculates pairwise frequency of 
tokens and uses that to generate 
new ones

! Based on transition probabilities

! Trained using most recent posts on 
the user’s timeline
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Training a Recurrent Neural Network
! Hosted on Amazon EC2

! Trained on g2.2xlarge 
instance (65¢ per hour)

! Ubuntu (ami-c79b7eac)

! Training set > 2M tweets

! Took 5.5 days to train

! 3 layers, ~500 units/layer
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LSTM+=+Long+Short?Term+Memory
Illustration: Chris Olah (@ch402)
LSTMs: Hochreiter & Schmidhuber, 1997
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Tradeoffs and Caveats
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LSTM Markov Chain
Training Speed Days Seconds

Accuracy High Medium

Availability Public Public

Size Large Small

Caveats • Deeper representation of 
natural language, generalizes 
well

• Retraining required for new 
languages

• Overfits to each user, can 
create temporally irrelevant 
tweets

• Performs poorly on users with 
few tweets

Metric
Model
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Language and Social Network Agnosticism

! Markov models only use content on user’s timeline, which 
means they can automatically generate content in other 
languages

! For neural nets, you’d only need to scrape data from the target 
language and retrain

! Both of these methods can also be applied to other social 
networks
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Weaponizing Data Science 
for Social Engineering:
Automated E2E Spear Phishing on Twitter
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Evaluation and Metrics
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Here’s a malicious URL...
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And, apparently goo.gl lets us shorten it!
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goo.gl also gives us analytics
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Weaponizing Data Science 
for Social Engineering:
Automated E2E Spear Phishing on Twitter
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Results and Demo
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Wild Testing #SNAP_R

3131
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Pilot Experiment
! Via #SNAP_R we sent 90 “phishing” posts 

out to people using #cat
! After 2 hours, we had 17% clickthrough rate
! After 2 days, we had between 30% and 66% 

clickthrough rate

! Inside the Data
! goo.gl showed 27 clickthroughs (30%) came 

from a t.co referrer
! Unknown referrers might be caused by bots
! With unique locations, clickthrough rate may be 

as high as 66%
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Man vs. Machine 2 Hour Bake Off
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Person SNAP_R
Total Targets ~200 819

Tweets/minute 1.67 6.85

Click-throughs 49 275

Observations • Copy/Pasting messages to 
different hashtags

• Arbitrarily scalable with the 
number of machines

Metric
User
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DEMO of #SNAP_R
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Weaponizing Data Science 
for Social Engineering:
Automated E2E Spear Phishing on Twitter
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Wrap Up
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Potential Use Cases

! Social media security awareness

! Social media security education

! Automated internal pentesting

! Social engagement

! Staff Recruiting

36

#SNAP_R

Twitter Profiles

Phishing Offense
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Mitigations ! Of course, we’re white hats here…
! But machine learning is rapidly becoming 

automated, so black hats would have this 
capability soon.

! Protected accounts are immune to 
timeline scraping, which defeats the tool

! Bots can be detected

! Standard mitigations apply:
! Don’t click on links from people you don’t 

know
! Report! Twitter is pretty good at flagging spam 

accounts
! Maybe URL shorteners should be responsible 

for malware?
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Twitter Profiles

Phishing Offense
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Black Hat Sound Bytes

! Machine learning can be used 
offensively to automate spear phishing

! Machine-generated grammar is bad, but 
Twitter users DGAF

! Abundant personal data is publicly 
accessible and effective for social 
engineering
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Twitter Profiles

Phishing Offense
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We’ll also be at the                             booth 
immediately after the presentation!

John Seymour
@_delta_zero

Philip Tully
@phtully?


