
INTO	THE	CORE:	IN-DEPTH	EXPLORATION	OF	
WINDOWS	10	IOT	CORE	

Paul	Sabanal	

IBM	Security	X-Force	Advanced	Research	

sabanapm[at]ph[dot]ibm[dot]com	

@polsab	

	

	

	

Abstract	

The	Internet	of	Things	is	becoming	a	reality,	and	more	and	more	devices	are	being	introduced	into	the	
market	every	day.	With	this,	the	demand	for	technology	that	would	ease	device	management,	improve	
device	security,	and	facilitate	data	analytics	increases	as	well.	

One	such	technology	is	Windows	10	IoT	Core,	Microsoft's	operating	system	aimed	at	small	footprint,	low	
cost	devices.	It	offers	device	servicing	and	manageability,	enterprise	grade	security,	and	-	combined	with	
Microsoft's	Azure	platform	-	data	analytics	in	the	cloud.	Given	these	features,	Microsoft	Windows	10	IoT	
Core	will	likely	play	a	significant	role	in	the	future	of	IoT.	As	such,	understanding	how	this	operating	
system	works	on	a	deep	level	is	becoming	important.	Methods	and	techniques	that	would	aid	in	assessing	
its	security	are	also	becoming	essential.	

In	this	talk	I	will	first	discuss	the	internals	of	the	OS,	including	the	security	features	and	mitigations	that	it	
shares	with	the	desktop	edition.	I	will	then	enumerate	the	attack	surface	of	a	device	running	Windows	10	
IoT	Core	as	well	as	its	potential	susceptibility	to	malware.	I	will	also	talk	about	methods	to	assess	the	
security	of	devices	running	Windows	10	IoT	Core	such	as	static/dynamic	reverse	engineering	and	fuzzing.	I	
will	end	the	talk	with	some	recommendations	on	how	to	secure	a	Windows	10	IoT	Core	device.	

	

1	 Introduction	...	3	

1.1	 Background	..	3	

1.2	 Overview	..	4	

2	 Internals	...	4	

2.1	 Fast	Flash	Update	Image	Format	...	4	

2.2	 Partition	Layout	...	6	

2.3	 Boot	process	..	6	

2.4	 Apps	...	6	

2.5	 Security	..	7	

2.5.1	 What's	not	in	Windows	10	IoT	Core?	...	7	

2.5.2	 ASLR,	DEP,	and	Control	Flow	Guard	...	7	

2.5.3	 Trusted	Platform	Module	(TPM)	..	7	

2.5.4	 Secure	Boot	..	8	

2.5.5	 BitLocker	...	8	

2.5.6	 Windows	Update	..	8	

3	 Attack	Surface	..	9	

3.1	 Network	Services	...	9	

3.1.1	 Windows	Device	Portal	..	9	

3.1.2	 SSH	...	12	

3.1.3	 Windows	File	Sharing	...	12	

3.1.4	 Windows	IoT	Remote	Server	..	12	

3.2	 Device	Drivers	Vulnerabilities	..	13	

3.3	 Malware	Susceptibility	...	13	

4	 Hacking	Windows	10	IoT	Core	...	14	

4.1	 Passive	Device	Discovery	...	14	

4.2	 PowerShell	...	17	

4.3	 Static	analysis	...	18	

4.4	 Dynamic	analysis	..	19	

4.4.1	 Kernel	Debugging	using	WinDbg	..	19	

4.4.2	 Debugging	user	mode	processes	using	WinDbg	..	22	

4.4.3	 Crash	dump	analysis	...	25	

4.5	 Fuzzing	approaches	..	26	

5	 Recommendations	...	28	

5.1	 Segment	your	network	s	..	28	

5.2	 Disable	unnecessary	network	services	..	28	

5.3	 Change	Default	Administrator	Password	...	28	

5.4	 Use	a	device	that	supports	TPM	..	29	

5.5	 Take	advantage	of	available	security	features	...	29	

6	 Conclusion	...	29	

	

1 INTRODUCTION	

1.1 Background	

As	the	Internet	of	Things	are	becoming	more	and	more	prevalent,	the	need	for	technologies	that	would	
make	managing	and	securing	these	devices	better	are	becoming	more	important.	One	of	the	things	that	
would	facilitate	this	is	the	operating	system	running	on	the	device.	While	there	are	currently	operating	
systems	that	are	more	than	capable	of	handling	the	requirements	of	an	IoT	device,	its	simply	not	enough.	
IoT	is	not	just	about	the	device,	it's	also	about	the	service	ecosystem	that	provides	most	of	the	value	and	
functionality	to	the	users.	That's	why	operating	systems	developed	from	the	ground	up	with	IoT	in	mind	
are	going	to	be	valuable.	

A	couple	of	these	IoT-focused	operating	systems	were	announced	last	year	-	Microsoft's	Windows	10	IoT,	
and	Google's	Brillo.	While	at	the	time	of	writing	these	operating	systems	are	not	yet	fully	released,	they	
look	promising	and	are	poised	to	become	more	significant	in	the	future.	

This	also	means	they	are	potentially	interesting	targets	for	security	minded	folks,	attackers	and	defenders	
alike.	

For	a	security	researcher,	investigating	a	new	technology	is	a	significant	part	of	the	job.	Understanding	the	
inner	workings	of	a	complex	technology	such	as	a	new	operating	system,	especially	in	an	exploding	field	
like	IoT,	is	very	exciting.	It	also	goes	without	saying	that	assessing	the	security	of	these	devices	will	
become	an	important	part	of	a	security	researchers	job	in	the	future.	

When	assessing	these	devices,	we	need	to	think	about	their	attack	surface.	Typically	this	would	include	
but	will	not	be	limited	to,	network	communications	between	the	devices	and	its	service	ecosystem,	
network	services	running	on	the	device,	and	the	applications	running	on	the	device.	We	have	to	know	if	it	
communicates	securely	with	the	cloud.	We	have	to	know	what	services	are	running	on	the	devices,	or	if	
they	even	need	to	be	running	at	all.	In	the	event	that	an	attacker	has	gained	access	to	a	device,	we	also	
need	to	know	the	extent	of	damage	they	can	do.	To	do	all	this,	we	need	to	be	able	to	know	the	
techniques	and	methods	of	analyzing	a	device.	Only	after	understanding	and	doing	all	this	can	we	make	
effective	recommendations	to	the	manufacturers	and	users	alike	on	how	to	secure	these	devices.	

1.2 Overview	

There	are	three	editions	of	Windows	10	IoT.	

Edition	 Description	 Target	Devices	

Windows	10	IoT	
Enterprise	

UWP	apps,	Win32	apps,	desktop	shell,	x86,	
advanced	lockdown	

Kiosk,	POS,	ATM,	Medical	devices	

Windows	10	IoT	
Mobile	

UWP	apps,	multiuser	support,	lockdown	
features	

Mobile	POS,	Industry	hand	held	
terminals	

Windows	10	IoT	
Core	

For	low-cost,	low-power	devices.	UWP	apps	
only.	ARM	and	x86	

Smart	home	devices,	IoT	gateway,	
digital	signage	

Windows	10	IoT	Core	was	first	released	by	Microsoft	last	August	2015.	The	last	public	release	was	last	
December	2015.	Since	then	several	Windows	Insider	Preview	builds	were	released	with	a	lot	of	
improvements,	including	support	for	the	Raspberry	Pi	3.	There	is	little	prior	research	on	Windows	10	IoT	
Core	security,	which	is	understandable	since	it	is	still	in	its	infancy.	The	only	research	that	we	are	aware	of	
was	done	by	FFRI1	and	was	presented	at	Code	Blue	2015.	A	lot	has	changed	since	then,	and	this	paper	will	
reflect	those	changes.	

Windows	10	IoT	Core	currently	supports	four	suggested	development	boards:	

Developer	Board	 Architecture	 Details	

Raspberry	Pi	2	 ARM	 4xUSB	2.0,	Ethernet	

Raspberry	Pi	3	 ARM	 4xUSB	2.0,	Ethernet,	Onboard	Wi-fi	and	Bluetooth	

Minnowboard	Max	 x86	 1xUSB	2.0,	1xUSB	3.0,	Ethernet	

Dragonboard	410c	 ARM	 2xUSB	2.0,	Onboard	Wi-fi	and	Bluetooth	

In	addition	to	these	suggested	devices,	Windows	10	IoT	Core	may	also	support	other	devices	that	is	built	
on	the	same	SoC	as	the	above	devices.	Unless	otherwise	stated,	the	OS	version	documented	here	is	
Windows	10	IoT	Core	Insider	Preview	build	14393.	The	devices	used	are	Raspberry	Pis	2	and	3.	

2 INTERNALS	

2.1 Fast	Flash	Update	Image	Format	

Windows	10	IoT	Core	images	use	the	Fast	Flash	Update	(FFU)	image	format.	The	FFU	format	is	
documented	here	2.	Windows	10	IoT	Core	uses	the	V2	version	of	the	format.	You	can	retrieve	its	contents	

																																								 																					

1	"Threat	Analysis	on	Windows	10	IoT	Core	and	Recommended	Security	Measures"	
http://www.ffri.jp/assets/files/research/research_papers/Threat_Analysis_on_Win10_IoT_Core_en.pdf	

2	"FFU	Image	Format"	https://msdn.microsoft.com/windows/hardware/commercialize/manufacture/mobile/ffu-
image-format	

by	using	the	ImgMount3	tool,	which	will	convert	the	FFU	file	into	a	Virtual	Hard	Drive(VHD)	image	and	
mount	it.	

C:\>ImgMount.exe	"c:\Program	Files	(x86)\Microsoft	IoT\FFU\MinnowBoardMax\flash.ffu"	
	
WP8	ROM	Image	Tools	v.1.0.204	
htc	ROM	Image	Editor	(⌐)	2007-2012	AnDim	&	XDA-Developers	
ImgMount	Tool	v.1.0.15	
	
(htcRIE)	Mounting	the	image	file	:	'c:\Program	Files	(x86)\Microsoft	IoT\FFU\MinnowBoar
dMax\flash.ffu'	
Loading	.FFU	image	...	ok	
Creating	virtual	disk	...	ok	
Mounting	MainOS	partition	as	:	'\\flash.mnt\'	...	ok	
(htcRIE)	Successfully	mounted	an	image	file.	
	

If	the	command	was	successful,	the	resulting	VHD	image	will	be	mounted.	

	

Figure	1. Windows	10	IoT	Core	filesystem	mounted	by	ImgMount	

If	you're	not	using	Windows,	there	are	some	alternative	tools	to	do	this.	ffu2img4	and	ffu2dd5	will	both	
convert	the	FFU	image	into	a	raw	image	that	you	can	then	mount	using	the	dd	tool.	I	haven't	use	these	as	
much	though	so	your	mileage	may	vary.	

																																								 																					

3	ImgMount	Tool	v.1.0.15	http://forum.xda-developers.com/showthread.php?t=2066903	

4	FFU2IMG	https://github.com/t0x0/random	

2.2 Partition	Layout	

A	Windows	10	IoT	Core	image	contains	4	partitions.	

Partition	 File	
System	

Mount	
Point	

Contents	

EFI	System	Partition	 FAT	 C:\EFIESP	 Boot	manager,	boot	configurations,	UEFI	
applications	

Crash	dump	
partition	

FAT32	 D:	 Crash	dump	data	

Main	OS	 NTFS	 C:	 OS,	registry	hives,	OEM	applications	

Data	partition	 NTFS	 U:	 Applications,	application	data,	user	data	

The	EFI	system	partition	contains	the	Windows	Boot	Manager	(bootmgfw.efi)	and	the	boot	configuration	
database	(BCD).	The	crash	dump	partition	will	contain	crash	dumps	when	a	crashed	occur	that	caused	the	
device	to	restart.	The	Main	OS	partition	contains	all	the	components	of	the	OS.	The	Data	partition,	which	
is	linked	to	C:\Data,	contains	user	data,	installed	apps,	and	app	data.	

2.3 Boot	process	

The	typical	boot	process	for	Windows	10	IoT	Core	looks	like	this:	

1. The	device	powers	on	and	runs	the	SoC	firmware	bootloader.	

2. The	bootloader	launches	the	UEFI	environment	and	UEFI	applications.	

3. The	UEFI	environment	launches	the	Boot	Manager,	which	can	be	found	in	
C:.\EFIESP\EFI\Microsoft\boot\bootmgfw.efi.	

4. The	Boot	Manager	launches	the	Windows	Boot	Loader,	which	can	be	found	in	
C:\Windows\System32\Boot\winload.efi.	

5. The	Windows	Boot	Loader	launches	the	main	OS.	

2.4 Apps	

Windows	10	IoT	Core	supports	different	types	of	applications.	First	there	are	Universal	Windows	Platform	
(UWP)	apps.	UWP	is	the	common	app	platform	used	in	all	Windows	10	editions.	It	allows	the	developer	to	
theoretically	develop	an	app	that	can	run	on	any	Windows	10	versions	he	may	choose	to	support,	with	
minimal	changes	in	code.	In	Windows	10	IoT	Core	only	one	app	can	run	in	the	foreground	and	is	called	the	
default	app.	You	can	install	several	apps	on	your	device,	but	only	one	can	be	set	as	the	default	app,	and	it	
is	launch	when	the	system	starts.	

Background	applications	are	apps	that	have	no	UI	and	runs	on	the	background.	They	are	launched	at	
device	startup	and	will	continue	to	do	so	indefinitely,	and	will	be	respawned	when	they	crash.	

Windows	10	IoT	Core	also	supports	non-UWP	apps	such	as	console	applications.	In	this	case	you	can	only	
use	C++	and	Win32	GUI	APIs	won't	be	available.	

																																								 																																								 																																								 																																								 																					

5	FFU2DD	https://github.com/alxbse/ffu2dd	

Windows	10	IoT	Core	can	also	be	configured	to	run	on	either	headed	mode	or	headless	mode.	In	headed	
mode	the	default	app	displays	a	UI	and	is	fully	interactive.	For	devices	that	don't	require	any	user	
interaction,	headless	mode	is	more	appropriate.	You	can	set	your	device	to	either	mode	by	following	the	
instructions	here6	

2.5 Security	

In	this	section	we	will	discuss	the	security	features	implemented	in	Windows	10	IoT	Core.	Windows	10	
added	new	security	features	that	offer	significant	improvements	over	earlier	versions.	Unfortunately,	
Windows	10	IoT	Core	does	not	support	all	of	them.	

2.5.1 What's	not	in	Windows	10	IoT	Core?	

It	may	be	possible	that	some	of	these	features	may	be	added	in	the	future,	but	at	the	time	of	writing	
these	are	not	supported:	

• Security	features	that	are	built	on	top	of	Virtualization	Based	Security	(VBS)	such	as	Credential	
Guard,	Device	Guard,	and	Hypervisor	Code	Integrity	(HVCI)	

• Windows	Defender	

• Microsoft	Passport	

2.5.2 ASLR,	DEP,	and	Control	Flow	Guard	

Current	IoT	devices	do	not	usually	implement	or	enable	modern	exploit	mitigations,	and	the	fact	the	
Windows	10	IoT	Core	implements	these	gives	it	an	advantage	over	other	operating	systems.	Executables	
included	by	default	are	compiled	with	ASLR	and	DEP	enabled.	Windows	10	IoT	Core	currently	only	
supports	32-bit	boards,	so	the	ASLR	implementation	will	inherently	have	lower	entropy	compared	to	the	
the	64-bit	implementation.	Control	Flow	Guard7	is	also	enabled	on	the	installed	binaries,	and	can	be	be	
enabled	by	the	developer	on	their	app	by	setting	the	/guard:cf	switch	in	the	build	configuration.	

2.5.3 Trusted	Platform	Module	(TPM)	

The	Trusted	Platform	Module8	(TPM)	is	a	secure	crypto-processor	that	provides	cryptographic	key	
creation	and	storage.	Other	security	features	implemented	in	Windows	10	IoT	Core	such	as	Secure	Boot	
and	BitLocker	will	only	work	when	TPM	is	installed.	

Type	 Description	

Firmware	TPM	 TPM	implemented	in	the	SoC	

Discrete	TPM	 Chip	module	that	can	be	attached	to	a	board	

Software	TPM	 Software	emulated	TPM	used	in	development	

																																								 																					

6	"Headed	and	Headless	mode"	https://developer.microsoft.com/en-us/windows/iot/win10/headlessmode	

7	"Control	Flow	Guard"	https://msdn.microsoft.com/en-us/library/windows/desktop/mt637065(v=vs.85).aspx	

8	"TPM	on	Windows	IoT	Core"	https://developer.microsoft.com/en-us/windows/iot/win10/tpm	

There	are	three	types	of	TPMs.	Firmware	TPM	is	enabled	in	the	Dragonboard	410c	and	Minnowboard	
Max(firmware	version	0.8	or	higher),	but	it's	not	available	on	Raspberry	Pis.	On	devices	that	do	not	
support	firmware	TPM,	you	can	use	Discrete	TPMs,	which	can	be	attached	on	your	chosen	board.	
Software	TPM	only	provides	the	software	interface	for	your	app	and	does	not	actually	provide	any	
security.	It	allows	you	to	develop	your	application	on	a	device	without	TPM	(like	the	Raspberry	Pi),	but	
then	deploy	it	later	on	a	device	with	TPM	without	having	to	change	your	code.	

The	instructions	to	setup	TPM	on	Windows	10	IoT	Core	devices	can	be	found	here9.	You	can	also	configure	
TPM	on	the	Windows	Device	Portal's	"TPM	configuration"	tab.	

2.5.4 Secure	Boot	

Secure	Boot	is	a	feature	that	prevents	a	device	from	being	tampered	with	during	boot	time.	It	stops	the	
system	for	running	binaries	that	are	not	digitally	signed	by	the	specified	authority.	It	is	designed	to	protect	
the	system	from	rootkits,	bootkits,	and	other	low-level	malware.	Secure	Boot	on	Windows	10	IoT	Core	
requires	TPM	to	be	installed.	Instructions	to	enable	Secure	Boot	on	Windows	10	IoT	Core	can	be	found	
here10.	

2.5.5 BitLocker	

Windows	10	IoT	Core	implements	a	lightweight	version	of	BitLocker11.	Bitlocker	allows	automatic	
encryption	of	the	user	and	system	files	on	the	OS	drive.	Bitlocker	on	Windows	10	IoT	Core	requires	TPM	
to	be	installed.	Instructions	to	enable	BitLocker	on	Windows	10	IoT	Core	can	be	found	here12.	

2.5.6 Windows	Update	

One	of	the	most	pressing	problems	in	IoT	security	is	the	device	firmware	update	problem.	Vendors	usually	
do	not	implement	automatic	update	functionality	and	updates	have	to	be	done	manually.	Traditionally,	
device	firmware	update	is	not	considered	an	simple	process,	often	involving	several	steps	such	as	
downloading	the	firmware	update	from	the	vendor's	website,	connect	to	the	device's	web	management	
interface,	upload	the	firmware	update,	restart	the	device,	etc.	In	some	cases	it	may	even	involve	pressing	
some	button	combination	or	some	sort	of	unusual	procedure	just	to	put	the	device	in	firmware	update	
mode.	For	most	users,	this	is	just	too	much	effort	and	they	will	tend	to	put	off	applying	updates.	This	
leaves	the	device	in	a	known	insecure	state	until	the	update	is	applied.	

Another	issue	is	how	to	manage	the	updates	of	a	lot	of	devices.	A	home	of	the	future	can	potentially	have	
dozens,	maybe	hundreds	of	IoT	devices	installed	and	monitoring	which	devices	need	updates	and	doing	
the	update	itself	would	be	impossible	to	manage.	

																																								 																					

9	"Setup	TPM	on	Supported	Platforms"	https://developer.microsoft.com/en-us/windows/iot/win10/SetupTPM.htm	

10	"Enabling	Secure	Boot	and	BitLocker	Device	Encryption	on	Windows	10	IoT	Core"	
https://developer.microsoft.com/en-us/windows/iot/win10/sb_bl	

11	"BitLocker	Overview"	https://technet.microsoft.com/en-us/itpro/windows/keep-secure/bitlocker-overview	

12	"Enabling	Secure	Boot	and	BitLocker	Device	Encryption	on	Windows	10	IoT	Core"	
https://developer.microsoft.com/en-us/windows/iot/win10/sb_bl	

Windows	Update	solves	this	problem	for	devices	running	Windows	10	IoT	Core,	as	it	was	added	in	an	
Insider	Preview	Build	earlier	this	year.	Updates	occur	automatically,	and	it	can't	be	disabled	easily.	If	you	
want	to	disable,	or	want	to	have	scheduled	updates,	you	have	to	avail	of	the	Pro	edition	of	Windows	10	
IoT	Core.	You	can	check	for	updates	using	the	Windows	Device	Portal's	"Windows	Update"	tab.	

3 ATTACK	SURFACE	

In	this	section,	we	will	enumerate	the	different	potential	entry	points	an	attacker	can	leverage	to	gain	
access	to	a	Windows	10	IoT	Core	device.	Note	that	in	this	paper	we	will	only	talk	about	the	attack	surface	
exposed	by	the	device	or	OS	itself.	The	attack	surface	will	be	bigger	if	you	factor	in	the	device's	
connectivity	with	IoT	platforms	and	services	such	as	Microsoft	Azure.	However,	it	is	outside	of	the	scope	
of	this	paper,	and	would	warrant	a	whole	paper	to	itself.	

3.1 Network	Services	

Using	Nmap,	we	can	see	the	open	services	on	a	freshly	installed	Windows	10	IoT	Core	device.	

Starting	Nmap	7.12	(https://nmap.org)	at	2016-07-13	01:33	Malay	Peninsula	Standard	Ti
me	
Nmap	scan	report	for	10.0.1.108	
Host	is	up	(0.020s	latency).	
Not	shown:	996	closed	ports	
PORT					STATE	SERVICE	
22/tcp			open		ssh	
135/tcp		open		msrpc	
445/tcp		open		microsoft-ds	
8080/tcp	open		http-proxy	
MAC	Address:	B8:27:EB:B5:A9:E0	(Raspberry	Pi	Foundation)	
	
Nmap	done:	1	IP	address	(1	host	up)	scanned	in	3.24	seconds	

3.1.1 Windows	Device	Portal	

Every	edition	of	Windows	10	provides	a	web	interface	that	you	can	use	to	manage	and	configure	your	
device	remotely	called	Windows	Device	Portal.	It's	enabled	by	default	in	Windows	10	IoT	Core	and	runs	
upon	device	startup.	You	can	access	it	by	connecting	to	http://<device	ip>:8080.	The	files	for	the	Windows	
Device	Portal	can	be	found	in	C:\Windows\WebManagement\www	on	the	device.	

Here's	a	summary	of	the	tabs	currently	available.	

Utility	 Function	

Home	 Device	information,	change	device	name/password,	timezone	settings	

Apps	 Install/uninstall	of	apps	

App	File	Explorer	 File	explorer	for	installed	apps	locations	

Processes	 Running	processes	list,	process	memory	usage,	and	process	termination	

Performance	 Real	time	graphical	display	of	CPU	and	I/O	usage	

Debugging	 Starting	VS	remote	debugger,	downloading	of	live	kernel	and	process	dumps	

ETW	 Event	tracing	

Perf	Tracing	 Trace	logging	of	CPU,	disk,	and	memory	usage	

Devices	 Device	manager	for	peripherals	attached	to	the	device	

Bluetooth	 Bluetooth	device	search	

Audio	 Device	speaker	and	microphone	volume	adjustments	

Networking	 WiFi	configuration	

Windows	Update	 Last	update	timestamp,	check	for	updates	

IoT	Onboarding	 Internet	Connection	Sharing	settings,	SoftAP	settings,	AllJoyn	onboarding	settings	

TPM	Configuration	 TPM	installation,	configuration,	and	provisioning	

Remote	 Enable	Windows	IoT	Remote	Server	

Let's	talk	about	some	of	the	more	interesting	ones.	The	Apps	tab	allows	you	to	install/uninstall	an	app	on	
the	device.	It	also	shows	a	list	of	the	currently	installed	apps	and	their	status.	You	can	also	use	this	tab	to	
set	an	app	as	the	default	app.	

The	Processes	tab	shows	a	list	of	the	running	processes	on	the	device.	It	also	shows	the	process	owner,	
session	id,	CPU	usage,	and	memory	usage.	You	can	also	terminate	a	process	from	this	tab.	There	is	also	a	
box	where	you	can	enter	a	command	and	have	it	run	on	the	device.	

The	Debugging	tab	contains	operations	related	to	debugging	and	crash	dumping.	Here	you	can	click	a	
button	to	start	the	Visual	Studio	Remote	Debugger	when	you	want	to	debug	your	app	running	on	the	
device	from	Visual	Studio.	There	are	also	buttons	that	allow	you	to	download	live	kernel	and	processes	
dumps.	We	look	more	into	crash	dumps	in	the	Dynamic	Analysis	section.	

The	Windows	Update	tab	shows	the	latest	update	information	and	a	button	to	check	if	an	update	for	the	
device's	OS	is	available.	

In	the	TPM	Configuration	tab	you	can	select	which	type	of	TPM	you	want	to	enable.	Depending	on	the	
device,	you	can	select	from	firmware	TPMs,	various	discrete	TPMs,	and	software	TPM.	

The	Remote	tab	allows	you	to	enable	the	Windows	IoT	Remote	Server.	We	will	discuss	more	about	this	
feature	below.	

While	the	Windows	Device	Portal	is	useful	for	device	management,	it	can	be	a	security	liability	if	not	
configured	properly.	In	Windows	10	IoT	Core,	the	default	Administrator	password	is	hardcoded	on	the	
device.	You	can	login	to	the	Windows	Device	Portal	using	the	default	Administrator	credentials	(User	
name:	Administrator,	Password:	p@ssw0rd).	If	you	did	not	bother	to	change	the	default	password,	your	
device	is	susceptible	to	unauthorized	access.	For	example,	an	attacker	can	use	Shodan13	to	search	for	
devices	running	an	HTTP	server	on	port	8080	that	returns	a	banner	containing	the	string	"Windows	Device	
Portal".	That	Shodan	search	will	yield	a	result	similar	to	this:	

																																								 																					

13	Shodan	https://www.shodan.io/	

	

Figure	2. Shodan	results	when	searching	for	the	Windows	Device	Portal	banner	

Now	the	attacker	can	connect	to	the	device	and	attempt	to	login	using	the	default	Administrator	
credentials.	

The	Windows	Device	Portal	also	uses	Basic	Authentication	by	default,	so	anyone	who	is	sniffing	on	the	
network	can	easily	steal	the	credentials.	We	can	fix	by	using	HTTPS	for	the	Windows	Device	Portal	instead	
of	HTTP.	To	do	so,	connect	to	the	device	through	remote	PowerShell	or	SSH	and	run	the	following	
commands:	

#	Enable	HTTPS	
Reg	add	HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\IoT\webmanagement	
/v	UseHttps	/t	REG_DWORD	/d	1	/f	
#	Set	HTTPS	port	
Reg	add	HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\IoT\webmanagement	

/v	HttpsPort	/t	REG_DWORD	/d	<PORT>	/f	
#	Restart	service	
net	stop	webmanagement	&	net	start	webmanagement	

The	functionality	of	the	Windows	Device	Portal	is	built	on	a	set	of	REST	APIs	that	you	can	use	to	control	
and	configure	your	devices	programmatically.	As	far	as	we	know,	there	are	currently	no	tools	available	to	
control	or	configure	multiple	devices	at	once,	so	this	API	is	especially	useful	when	writing	your	own	tools	
to	do	so.	There's	some	documentations	available	here14,	but	a	more	updated	version	can	be	found	by	
going	to	<device	ip>:8080/restdocumentation.htm,	or	better	yet	by	reading	the	JavaScript	source	code	in	
C:\Windows\WebManagement\www\iot\js	folder	on	the	device.	

3.1.2 SSH	

Windows	10	IoT	Core	allows	remote	administration	and	configuration	through	SSH,	and	it	is	enabled	by	
default.	SSH	login	also	uses	the	default	Administrator	credentials,	so	if	the	user	neglected	to	change	this,	
an	attacker	can	easily	gain	access.	It	can	also	be	susceptible	to	password	guessing	and	brute-force	attacks.	

3.1.3 Windows	File	Sharing	

Windows	File	Sharing	starts	at	boot	time,	and	you	only	need	the	IP	address	of	the	device	and	user	
credentials	to	access	it.	It	is	also	susceptible	to	the	aforementioned	default	login	credentials	attack.	

3.1.4 Windows	IoT	Remote	Server	

Windows	IoT	Remote	Server	is	a	feature	that	allows	the	UI	of	the	UWP	application	running	on	the	device	
to	be	viewed	remotely	through	a	client	application	running	on	a	tablet	mobile	phone,	or	PC.	You	can	
enable	Windows	IoT	Remote	Server	by	checking	the	enable	box	in	the	Remote	tab	of	the	Windows	Device	
Portal.	Once	enabled,	the	file	NanoRDPServer.exe	will	be	executed	on	the	device	and	will	start	listening	
on	port	8000	for	incoming	connections.	

	

Figure	3. Remote	Server	tab	in	the	Windows	Device	Portal	

																																								 																					

14	"Device	Portal	core	API	reference"	https://msdn.microsoft.com/en-us/windows/uwp/debug-test-perf/device-
portal-api-core	

To	use	this	remote	display	feature,	you	need	to	install	the	Windows	IoT	Remote	Client	app	that	can	be	
downloaded	from	the	Windows	Store.	However,	this	feature	does	not	use	any	authentication,	so	anyone	
who	knows	the	IP	address	of	the	device	can	connect	to	it	using	the	remote	client	and	remotely	control	
your	device.	

3.2 Device	Drivers	Vulnerabilities	

Device	driver	vulnerabilities	are	another	potential	attack	vector	on	Windows	10	IoT	Core	devices.	IoT	
devices	obviously	need	connectivity	with	other	devices	in	order	to	be	useful.	To	facilitate	this	devices	
would	need	to	use	built-in	or	external	peripherals,	and	these	peripherals	require	device	drivers	to	
operate.	These	device	drivers	may	contain	vulnerabilities	that	could	give	an	attacker	remote	access	to	the	
device	if	successfully	exploited.	

Drivers	for	wireless	connectivity,	such	as	for	Wifi,	Bluetooth,	Zwave,	Zigbee	etc,	are	viable	targets.	One	
advantage	of	targeting	drivers	is	that	successfully	exploiting	them	will	often	result	in	kernel	level	privilege.	

3.3 Malware	Susceptibility	

Malware	threats	against	Windows	10	IoT	Core	devices	is	indeed	possible.	As	we	have	shown	above,	login	
credentials	that	are	hardcoded	and	are	not	changed	after	install	makes	your	devices	susceptible	to	
attacks.	This	is	how	current	IoT	malware	typically	infect	an	IoT	device	and	we	think	that	it	will	still	be	one	
of	the	most	common	infection	method	used	by	malware	in	the	future.	

Another	possible	infection	method	is	the	exploitation	of	vulnerabilities	on	the	network	services	running	
on	the	device.	This	may	not	be	as	common	as	the	login	credentials	method	but	there	are	malware	that	
does	this	against	embedded	Linux	devices.	

Another	possible	way	that	a	Windows	10	IoT	Core	device	may	be	compromised	by	a	malware	is	through	
lateral	infection	coming	from	an	already	infected	machine.	There	are	several	ways	in	which	a	malware	can	
gain	access	to	a	Windows	10	IoT	Core	device	on	the	same	network.	

One	scenario	is	for	the	malware	to	sniff	on	the	network	and	look	for	traffic	to	the	Windows	Device	Portal.	
Since	by	default	it	uses	Basic	HTTP	Authentication,	the	credentials	

For	example,	a	malware	has	infected	a	machine	that	was	used	to	login	to	a	PowerShell	session	on	a	
Windows	10	IoT	Core	device.	In	this	case	the	attacker	doesn't	need	to	know	the	login	credentials	for	the	
device	beforehand.	Using	a	tool	like	mimikatz15	will	yield	the	following	results:	

C:\>mimikatz.exe	
	
		.#####.			mimikatz	2.1	(x64)	built	on	Jul	11	2016	00:32:57	
	.##	^	##.		"A	La	Vie,	A	L'Amour"	
	##	/	\	##		/*	*	*	
	##	\	/	##			Benjamin	DELPY	`gentilkiwi`	(benjamin@gentilkiwi.com)	
	'##	v	##'			http://blog.gentilkiwi.com/mimikatz													(oe.eo)	
		'#####'																																					with	20	modules	*	*	*/	

																																								 																					

15	"Mimikatz:	A	little	tool	to	play	with	Windows	security"	https://github.com/gentilkiwi/mimikatz	

	
mimikatz	#	privilege::debug	
Privilege	'20'	OK	
	
mimikatz	#	sekurlsa::ssp	
	
Authentication	Id	:	0	;	247557	(00000000:0003c705)	
Session											:	Interactive	from	1	
User	Name									:	polsab	
Domain												:	DESKTOP-39HUL88	
Logon	Server						:	(null)	
Logon	Time								:	7/20/2016	6:15:59	PM	
SID															:	S-1-5-21-4294890806-594742593-2658599142-1001	
								ssp	:	
									[00000000]	
									*	Username	:	Administrator	
									*	Domain			:	10.0.1.108	
									*	Password	:	diwata	
	

In	this	instance,	we've	logged	in	to	the	Administrator	account	on	the	device	with	IP	address	10.0.1.108	
using	the	password	"diwata",	and	mimikatz	can	get	this	info	from	the	infected	machine's	RAM.	

4 HACKING	WINDOWS	10	IOT	CORE	

In	this	section,	we	will	discuss	the	various	techniques	that	we	can	use	when	trying	to	assess	the	security	of	
a	Windows	10	IoT	Core	device.	

4.1 Passive	Device	Discovery	

Windows	10	IoT	Core	devices	advertise	their	presence	in	the	network	by	sending	out	multicast	UDP	
packets.	This	is	how	the	IoT	Dashboard	is	able	to	list	the	running	devices	in	the	local	network.	

	

Figure	4. IoT	Dashboard	displaying	the	discovered	devices	

We	can	also	do	this	by	listening	for	multicast	datagrams	sent	by	the	devices	and	parsing	the	data	payload.	
The	datagrams	are	sent	to	the	multicast	group	239.0.0.22	and	multicast	port	6	and	contains	the	device	
name,	IP	address,	OS	version,	MAC	address,	BIOS	serial,	device	type,	and	device	architecture.	

	

Figure	5. Multicast	datagrams	

The	fixed	length	data	contains	the	device	information.	All	strings	are	in	Unicode.	

Offset	 Description	

0	 Device	name	

0x42	 IP	address	

0x64	 MAC	address	

0x96	 BIOS	serial	number	

0xe6	 Device	Type	

0x14a	 OS	version	

0x1ae	 Device	architecture	

4.2 PowerShell	

One	of	most	useful	built-in	features	in	Windows	10	IoT	Core	is	remote	device	administration	and	
configuration	using	PowerShell.	However,	PowerShell	is	not	just	useful	for	system	administration.	It	is	also	
a	powerful	tool	to	use	in	security	assessments.	There	are	a	lot	of	existing	PowerShell	modules	-	both	built-
in	and	from	third-party	developers	-	that	could	assist	in	reversing	and	penetration	testing.	Not	all	of	them	
will	work	in	Windows	10	IoT	Core,	but	some	of	those	that	we	have	used	are	CimSweep16	for	remotely	
gathering	device	information,	AutoRuns17	to	list	autorun	entries.	

Here's	an	example	using	CimSweep	to	list	Autostart	entries:	

PS	C:\WINDOWS\system32>	$CimSessionPi2	=	New-CimSession	-ComputerName	10.0.1.110	-Crede
ntial	Administrator	
PS	C:\WINDOWS\system32>	Get-CSRegistryAutoStart	-CimSession	$CimSessionPi2	
	
Path											:	HKLM\SOFTWARE\Microsoft\Windows	NT\CurrentVersion\Winlogon	
AutoRunEntry			:	Shell	
ImagePath						:	IotShell.exe	
Category							:	Logon	
PSComputerName	:	10.0.1.110	
	
Path											:	HKLM\SOFTWARE\Microsoft\Windows	NT\CurrentVersion\Winlogon	
AutoRunEntry			:	Userinit	
ImagePath						:	userinit.exe	
Category							:	Logon	
PSComputerName	:	10.0.1.110	
	
Path											:	HKLM\SOFTWARE\Microsoft\Windows	NT\CurrentVersion\Winlogon	
AutoRunEntry			:	VMApplet	
ImagePath						:	SystemPropertiesPerformance.exe	/pagefile	
Category							:	Logon	
PSComputerName	:	10.0.1.110	
	
Path											:	HKLM\SYSTEM\CurrentControlSet\Control\Session	Manager	
AutoRunEntry			:	BootExecute	
ImagePath						:	autocheck	autochk	*	
Category							:	BootExecute	
PSComputerName	:	10.0.1.110	
<snip>	

Alternatively,	you	can	also	use	AutoRuns	which	can	show	you	more	autoruns	entries.	However,	you	can	
only	run	it	on-device.	

																																								 																					

16	CimSweep	https://github.com/PowerShellMafia/CimSweep	

17	AutoRuns	Powershell	Module	https://github.com/p0w3rsh3ll/AutoRuns	

To	enable	remote	PowerShell	sessions,	follow	the	steps	outlined	here18	

4.3 Static	analysis	

There	is	going	to	be	little	difference	in	reversing	a	console	application	compiled	for	Windows	10	IoT	Core	
versus	one	compiled	for	the	desktop,	but	there	are	some	things	to	take	note	when	reversing	Windows	
Apps	aka	Universal	Windwos	Platform	(UWP)19	apps.	Installed	Windows	apps	can	be	found	in	the	Data	
partition	(U: \,	also	linked	with	C:\Data),	specifically	in	the	U:\Programs\WindowsApps	folder.	App	
installation	folders	will	contain	at	least	the	following:	

Filename	 Description	

<app_name>.exe	 App	startup	stub	

<app_name>.dll	 App	code	

AppManifest.xml	 UWP	app	package	manifest	

AppBlockMap.xml	 Cryptographic	block	hashes	for	files	in	package	

AppxSignature.p7x	 App	package	digital	signature	file	

In	addition	to	the	above	files,	other	DLLs	and	XBF(binary	XAML)	files	used	by	the	application	may	be	found	
in	the	app	folder.	There's	also	an	assets	folder	that	contains	resources	like	images	and	fonts	that	the	app	
uses.	The	<app_name>.exe	file	is	simply	a	stub	that	calls	the	main	exported	function	in	the	file	
<app_name>.dll.	This	DLL	contains	the	application,	.NET	Framework,	and	third-party	library	codes.	

Here's	how	<app_name>.exe	looks	like:	

	

Figure	6. App	startup	stub	

																																								 																					

18	"Using	PowerShell	to	connect	and	configure	a	device	running	Windows	10	IoT	Core"	
https://developer.microsoft.com/en-us/windows/iot/win10/samples/powershell	

19	"Guide	to	Universal	Windows	Platform	(UWP)	apps"	https://msdn.microsoft.com/en-us/windows/uwp/get-
started/universal-application-platform-guide	

All	UWP	binaries	are	compiled	to	native	code	using	.NET	Native20	so	all	reversing	will	be	done	against	x86	
or	ARM	code	depending	on	the	target	device.	The	code	will	be	compiled	from	the	same	source	so	one	
advantage	of	this	is	that	you	can	choose	which	architecture	you're	more	comfortable	reversing,	and	then	
choose	the	version	of	the	binary	compiled	for	that	architecture	by	installing	it	on	a	device	that	runs	on	
that	architecture.	Another	thing	to	consider	is	that	while	we	can	deal	with	code	written	in	C++	like	we've	
always	done,	if	the	code	was	written	originally	in	C#	or	Visual	Basic,	it	would	be	different.	Binaries	written	
in	.NET	languages	are	compiled	into	IL	(intermediate	language)	code	and	we	can	decompile	them	using	
.NET	decompilers	like	ILSpy21	or	.NET	Reflector	22.	With	UWP	apps	they	are	now	compiled	into	native	code	
so	we	can't	use	those	decompilers	anymore	so	we	have	to	deal	with	the	idiosyncrasies	in	the	resulting	
native	code	due	to	the	conversion	done.	

4.4 Dynamic	analysis	

Now	we'll	take	look	at	how	to	dynamically	analyze	a	Windows	10	Core	binary	using	a	debugger.	

4.4.1 Kernel	Debugging	using	WinDbg	

To	dynamically	reverse	kernel-level	code	such	as	device	drivers,	we	need	to	do	kernel	debugging	using	
WinDbg.	The	general	instructions	to	do	this	can	be	found	here23.	

Let's	use	the	Raspberry	Pi	3	as	an	example.	We	will	be	using	a	Shikra24	as	our	USB-to-UART	adapter	but	
feel	free	to	use	any	of	other	ones	like	the	Bus	Pirate25.	You	can	get	the	pin	mappings	for	the	Shikra	here26	
and	for	the	Raspberry	Pi	2	&	3	here27.	

First,	connect	the	Shikra's	TX	pin	to	the	Raspberry	Pi's	RX	pin,	and	the	Shikra's	RX	pin	to	the	Raspberry	Pi's	
TX	pin.	Connect	the	ground	pins	for	both	as	well.	

																																								 																					

20	"Compiling	Apps	with	.NET	Native"	https://msdn.microsoft.com/en-us/library/dn584397(v=vs.110).aspx	

21	ILSpy	.NET	Decompiler	http://ilspy.net/	

22	.NET	Reflector	http://www.red-gate.com/products/dotnet-development/reflector/	

23	"Debugging	Windows	10	IoT	Core	Devices	Using	WinDbg"	https://developer.microsoft.com/en-
us/windows/iot/win10/windbg	

24	"Using	Shikra	To	Attack	Embedded	Systems"	http://www.xipiter.com/musings/using-the-shikra-to-attack-
embedded-systems-getting-started	

25	Bus	Pirate	http://dangerousprototypes.com/docs/Bus_Pirate	

26	"Shikra	pinouts"	http://www.xipiter.com/uploads/2/4/4/8/24485815/shikra_documentation.pdf	

27	"Raspberry	Pi	2	&	3	Pin	Mappings"	https://developer.microsoft.com/en-
us/windows/iot/win10/samples/pinmappingsrpi2	

	

Figure	7. Connecting	the	Shikra	to	a	Raspberry	Pi	3's	UART	pins	

Next,	connect	to	your	device	using	remote	PowerShell	or	SSH.	You	will	then	need	to	enable	serial	
debugging	and	turn	on	turn	on	debugging	with	the	following	commands:	

#	Enable	serial	debugging	
bcdedit	-dbgsettings	serial	
#	Turn	on	debugging	
bcdedit	-debug	on	
	

You	can	find	out	the	COM	port	used	by	your	USB-to-serial	adapter	by	using	the	Device	Manager,	or	by	
running	the	following	PowerShell	command:	

Get-WMIObject	Win32_pnpentity	|	?	Name	-like	"*Serial*COM*"	

Here's	a	sample	output:	

__GENUS																					:	2	
__CLASS																					:	Win32_PnPEntity	
__SUPERCLASS																:	CIM_LogicalDevice	
__DYNASTY																			:	CIM_ManagedSystemElement	
__RELPATH																			:	Win32_PnPEntity.DeviceID="FTDIBUS\\VID_0403+PID_6014+5&32
78CBC5&0&3\\0000"	
__PROPERTY_COUNT												:	26	
__DERIVATION																:	{CIM_LogicalDevice,	CIM_LogicalElement,	CIM_ManagedSystem
Element}	
__SERVER																				:	DESKTOP-39HUL88	
__NAMESPACE																	:	root\cimv2	
__PATH																						:	\\DESKTOP-39HUL88\root\cimv2:Win32_PnPEntity.DeviceID="FT
DIBUS\\VID_0403+PID_6014+5&3278CBC5&0&3\\0000"	
Availability																:	
Caption																					:	USB	Serial	Port	(COM3)	
ClassGuid																			:	{4d36e978-e325-11ce-bfc1-08002be10318}	
CompatibleID																:	
ConfigManagerErrorCode						:	0	
ConfigManagerUserConfig					:	False	
CreationClassName											:	Win32_PnPEntity	
Description																	:	USB	Serial	Port	
DeviceID																				:	FTDIBUS\VID_0403+PID_6014+5&3278CBC5&0&3\0000	
ErrorCleared																:	
ErrorDescription												:	
HardwareID																		:	{FTDIBUS\COMPORT&VID_0403&PID_6014}	
InstallDate																	:	
LastErrorCode															:	
Manufacturer																:	FTDI	
Name																								:	USB	Serial	Port	(COM3)	
PNPClass																				:	Ports	
PNPDeviceID																	:	FTDIBUS\VID_0403+PID_6014+5&3278CBC5&0&3\0000	
PowerManagementCapabilities	:	
PowerManagementSupported				:	
Present																					:	True	
Service																					:	FTSER2K	
Status																						:	OK	
StatusInfo																		:	
SystemCreationClassName					:	Win32_ComputerSystem	
SystemName																		:	DESKTOP-39HUL88	
PSComputerName														:	DESKTOP-39HUL88	

In	the	above	example,	the	USB-to-serial	adapter	uses	COM3.	You	can	now	remotely	debug	the	device	
from	your	machine	by	running	the	following	command	(Make	sure	you	are	using	the	x86	version	of	
WinDbg):	

#	PORT	is	the	COM	port	number	used	by	your	USB-to-serial	adapter	
windbg.exe	-k	com:port=<PORT>,baud=921600	

If	all	goes	well	you	will	see	WinDbg	spawned	like	this:	

Microsoft	(R)	Windows	Debugger	Version	10.0.10586.567	X86	
Copyright	(c)	Microsoft	Corporation.	All	rights	reserved.	

Opened	\\.\com3	
Waiting	to	reconnect...	

Restart	the	Raspberry	Pi	and	you	will	see	this:	

Connected	to	Windows	10	14393	ARM	(NT)	Thumb-2	target	at	(Sun	Jul	24	19:32:43.111	2016	
(UTC	+	8:00)),	ptr64	FALSE	
Kernel	Debugger	connection	established.	
Symbol	search	path	is:	srv*	
Executable	search	path	is:	
***	ERROR:	Symbol	file	could	not	be	found.		Defaulted	to	export	symbols	for	ntkrnlmp.ex
e	-	
	
Windows	10	Kernel	Version	14393	MP	(1	procs)	Free	ARM	(NT)	Thumb-2	
Built	by:	14393.0.armfre.rs1_release.160715-1616	
Machine	Name:	
Kernel	base	=	0x80c1b000	PsLoadedModuleList	=	0x80e07c78	
System	Uptime:	0	days	0:00:00.000	
Break	instruction	exception	-	code	80000003	(first	chance)	

*																																																																													*	
*			You	are	seeing	this	message	because	you	pressed	either																				*	
*							CTRL+C	(if	you	run	console	kernel	debugger)	or,																							*	
*							CTRL+BREAK	(if	you	run	GUI	kernel	debugger),																										*	
*			on	your	debugger	machine's	keyboard.																																						*	
*																																																																													*	
*																			THIS	IS	NOT	A	BUG	OR	A	SYSTEM	CRASH																							*	
*																																																																													*	
*	If	you	did	not	intend	to	break	into	the	debugger,	press	the	"g"	key,	then			*	
*	press	the	"Enter"	key	now.		This	message	might	immediately	reappear.		If	it	*	
*	does,	press	"g"	and	"Enter"	again.																																										*	
*																																																																													*	

***	ERROR:	Symbol	file	could	not	be	found.		Defaulted	to	export	symbols	for	ntkrnlmp.ex
e	-	
nt!DbgBreakPointWithStatus:	
80c40d90	defe					__debugbreak	

4.4.2 Debugging	user	mode	processes	using	WinDbg	

Debugging	user	mode	processes	is	a	bit	easier	than	kernel-mode	debugging.	You	only	need	a	network	
connection	to	your	device.	We	are	going	to	use	dbgsrv.exe	(which	can	be	found	on	the	device's	
C:\Windows\System32\Debuggers	folder)	on	the	device	and	Windbg	on	the	debugging	host	machine.	First	
we	need	to	make	dbgsrv.exe	listen	on	a	port	on	the	device	so	we	can	connect	to	it.	On	the	device,	run	the	
following	command	using	PowerShell	or	SSH:	

#	PORT	is	the	local	port	you	want	dbgsrv	to	listen	on	
dbgsrv.exe	-t	tcp:port=<PORT>	

In	Windbg	running	on	the	debugging	host,	go	to	File	>	Connect	to	Remote	Stub	and	enter	the	IP	address	of	
you	device	and	your	chosen	port	in	the	format	shown,	then	click	OK:	

	

Go	to	File	>	Attach	to	a	Process	and	select	the	process	you	want	to	attach	to:	

	

Microsoft	(R)	Windows	Debugger	Version	10.0.10586.567	X86	
Copyright	(c)	Microsoft	Corporation.	All	rights	reserved.	
	
***	wait	with	pending	attach	
Symbol	search	path	is:	srv*	
Executable	search	path	is:	
ModLoad:	01110000	011db000			C:\windows\system32\WebManagement.exe	
ModLoad:	77400000	77565000			C:\windows\SYSTEM32\ntdll.dll	

ModLoad:	77270000	773fe000			C:\windows\System32\KERNELBASE.dll	
ModLoad:	76fc0000	771cb000			C:\windows\System32\combase.dll	
ModLoad:	76e60000	76f0e000			C:\windows\System32\ucrtbase.dll	
ModLoad:	76cb0000	76d2c000			C:\windows\system32\msvcrt.dll	
ModLoad:	76f10000	76fbe000			C:\windows\System32\RPCRT4.dll	
ModLoad:	76e20000	76e58000			C:\windows\System32\kernel32legacy.dll	
ModLoad:	76dd0000	76e1a000			C:\windows\System32\bcryptPrimitives.dll	
ModLoad:	77230000	7726c000			C:\windows\System32\sechost.dll	
ModLoad:	76460000	76489000			C:\windows\system32\IPHLPAPI.DLL	
ModLoad:	76490000	764ea000			C:\windows\system32\WS2_32.dll	
<snip...>	
(69c.280):	Break	instruction	exception	-	code	80000003	(first	chance)	
ntdll!DbgBreakPoint:	
77422740	defe					__debugbreak	
0:005>	!peb	
PEB	at	00928000	
				InheritedAddressSpace:				No	
				ReadImageFileExecOptions:	No	
				BeingDebugged:												Yes	
				ImageBaseAddress:									01110000	
				Ldr																							774eb9e0	
				Ldr.Initialized:										Yes	
				Ldr.InInitializationOrderModuleList:	00c41738	.	00c4fcd0	
				Ldr.InLoadOrderModuleList:											00c41810	.	00c4fcc0	
				Ldr.InMemoryOrderModuleList:									00c41818	.	00c4fcc8	
												Base	TimeStamp																					Module	
									1110000	57898ebe	Jul	16	09:32:46	2016	C:\windows\system32\WebManagement.exe	
								77400000	57898ba5	Jul	16	09:19:33	2016	C:\windows\SYSTEM32\ntdll.dll	
								77270000	57898c4c	Jul	16	09:22:20	2016	C:\windows\System32\KERNELBASE.dll	
								76fc0000	57898c6d	Jul	16	09:22:53	2016	C:\windows\System32\combase.dll	
								76e60000	57898b83	Jul	16	09:18:59	2016	C:\windows\System32\ucrtbase.dll	
								76cb0000	57898fad	Jul	16	09:36:45	2016	C:\windows\system32\msvcrt.dll	
								76f10000	57898cd8	Jul	16	09:24:40	2016	C:\windows\System32\RPCRT4.dll	
								76e20000	57898eb7	Jul	16	09:32:39	2016	C:\windows\System32\kernel32legacy.dll	
								76dd0000	57898f49	Jul	16	09:35:05	2016	C:\windows\System32\bcryptPrimitives.dll	
								77230000	57898f0a	Jul	16	09:34:02	2016	C:\windows\System32\sechost.dll	
								76460000	57898c40	Jul	16	09:22:08	2016	C:\windows\system32\IPHLPAPI.DLL	
								76490000	57898eaf	Jul	16	09:32:31	2016	C:\windows\system32\WS2_32.dll	
<snip...>	
0:005>	u	$exentry	
***	ERROR:	Module	load	completed	but	symbols	could	not	be	loaded	for	WebManagement.exe	
WebManagement+0xa6631:	
011b6630	e92d4800	push								{r11,lr}	
011b6634	46eb					mov									r11,sp	
011b6636	f000fb65	bl										WebManagement+0xa6d04	(011b6d04)	
011b663a	e8bd4800	pop									{r11,lr}	
011b663e	f7ffbf25	b.w									WebManagement+0xa648c	(011b648c)	
011b6642	0000					movs								r0,r0	
011b6644	f24c6c64	mov									r12,#0xC664	
011b6648	f2c01c1c	movt								r12,#0x11C	
	

4.4.3 Crash	dump	analysis	

Crash	dumps	can	be	found	in	the	C:	\CrashDump	folder	on	the	device,	but	you	can	also	generate	live	
dumps	for	the	kernel	or	any	user-mode	process	by	using	the	Windows	Device	Portal's	Debugging	tab.	

	

Figure	8. Debugging	tab	of	the	Windows	Device	Portal	

As	an	example,	let's	download	a	live	process	of	dump	the	user	mode	process	WebManagement.exe.	Click	
on	the	icon	on	the	left	side	of	the	process	name	to	download	the	dump	to	your	browser's	Download	
folder.	From	WinDbg	go	to	File	>	Open	Crash	Dump,	and	you're	good	to	go.	

Microsoft	(R)	Windows	Debugger	Version	10.0.10586.567	X86	
Copyright	(c)	Microsoft	Corporation.	All	rights	reserved.	
	
	
Loading	Dump	File	[d:\winiot\WebManagement.exe-LiveUM-2016-07-24-12-36-09.dmp]	
User	Mini	Dump	File:	Only	registers,	stack	and	portions	of	memory	are	available	
	
Symbol	search	path	is:	srv*	
Executable	search	path	is:	
Windows	10	Version	14376	MP	(4	procs)	Free	ARM	(NT)	Thumb-2	
Product:	WinNt,	suite:	SingleUserTS	
Built	by:	10.0.14376.0	(rs1_release.160624-1700)	
Machine	Name:	
Debug	session	time:	Mon	Jul	25	03:36:09.000	2016	(UTC	+	8:00)	
System	Uptime:	not	available	
Process	Uptime:	1	days	4:48:37.000	
..	
........	

Loading	unloaded	module	list	
.	
Cannot	read	PEB32	from	WOW64	TEB32	ffffffff	-	Win32	error	0n30	
Unable	to	load	image	C:\Windows\System32\ntdll.dll,	Win32	error	0n2	
***	WARNING:	Unable	to	verify	timestamp	for	ntdll.dll	
ntdll!NtWaitForSingleObject+0x6:	
***	WARNING:	Unable	to	verify	timestamp	for	KERNELBASE.dll	
77320ab6	4770					bx										lr	{KERNELBASE!WaitForSingleObjectEx+0xc0	(76fedf30)}	
0:000>	|	
.		0				id:	698	examine	name:	C:\Windows\System32\WebManagement.exe	
0:000>	!peb	
PEB	at	032f8000	
				InheritedAddressSpace:				No	
				ReadImageFileExecOptions:	No	
				BeingDebugged:												No	
				ImageBaseAddress:									00a00000	
				Ldr																							773eb9e0	
				Ldr.Initialized:										Yes	
				Ldr.InInitializationOrderModuleList:	034a1730	.	034ae758	
				Ldr.InLoadOrderModuleList:											034a1808	.	034ae748	
				Ldr.InMemoryOrderModuleList:									034a1810	.	034ae750	
												Base	TimeStamp																					Module	
										a00000	576dee48	Jun	25	10:36:56	2016	C:\windows\system32\WebManagement.exe	
								77300000	576deb18	Jun	25	10:23:20	2016	C:\windows\SYSTEM32\ntdll.dll	
								76f20000	576debe7	Jun	25	10:26:47	2016	C:\windows\System32\KERNELBASE.dll	
								770b0000	576debda	Jun	25	10:26:34	2016	C:\windows\System32\combase.dll	
								76ce0000	576deb16	Jun	25	10:23:18	2016	C:\windows\System32\ucrtbase.dll	
								76e30000	576ded32	Jun	25	10:32:18	2016	C:\windows\System32\RPCRT4.dll	
								76de0000	576dee1b	Jun	25	10:36:11	2016	C:\windows\System32\kernel32legacy.dll	
								76d90000	576deeaa	Jun	25	10:38:34	2016	C:\windows\System32\bcryptPrimitives.dll	
	

4.5 Fuzzing	approaches	

Fuzzing	is	one	of	the	most	effective	ways	in	finding	vulnerabilities	in	software.	It's	a	no	brainer	to	attempt	
to	this	on	Windows	10	IoT	Core	as	well.	Unfortunately	due	to	the	lack	of	existing	tools	for	this	OS	the	
approach	we	have	been	doing	is	far	from	efficient	-	spawning	processes	using	a	debugger,	no	coverage	
measurement,	etc.	Remote	control	(device	restart,	process	start/stop,	crash	dump	collection)	is	done	
through	the	Windows	Device	Portal's	REST	APIs.	It's	basically	fuzzing	like	its	2007.	Also	the	device's	low	
CPU	power	severely	limits	the	rate	of	fuzzing	iterations	we	can	do.	

	

Figure	9. The	author's	lackluster	fuzz	cluster	

One	interesting	approach	would	be	corpus	driven	fuzzing28.	We	believe	this	will	be	effective	especially	
when	fuzzing	a	UWP	app	which	it	is	possible	to	get	hold	hold	of	a	build	for	the	Windows	10	desktop	e.g.	
from	the	Windows	Store.	Basically	we	don't	fuzz	on	the	device.	We	fuzz	the	app	using	the	desktop	version	
using	whatever	means	of	instrumentation	to	measure	code	coverage	and	we	collect	the	corpora	
(samples)	that	resulted	in	wider	code	coverage	as	measured	by	the	instrumentation.	After	collecting	the	
best	ones,	we	can	then	apply	these	corpora	on	the	app	running	on	the	device	without	having	to	
instrument	it.	All	we	have	to	then	is	collect	the	crashes	and	analyze	them	for	exploitability.	This	way	we	
can	at	least	ease	the	load	on	the	CPU	and	won't	need	as	much	tooling.	

																																								 																					

28	"The	Art	of	Fuzzing	Without	Fuzzing"	https://github.com/bnagy/slides/blob/master/fuzzing_without_pub.pdf	

Of	course,	this	approach	won't	be	applicable	if	you	want	to	fuzz	drivers	for	peripherals,	or	fuzz	apps	that	
interact	with	hardware.	In	those	cases	you	have	to	do	on-device	fuzzing.	However,	there	are	some	
promising	developments	recently	that	may	make	the	situation	better.	One	of	those	is	the	release	of	
WinAFL29.	WinAFL	is	a	Windows	fork	of	the	very	popular	fuzzer	AFL30.	While	AFL	uses	compile-time	
instrumentation,	WinAFL	uses	DynamoRIO	for	dynamic	instrumentation	to	measure	coverage.	The	
challenge	right	now	is	to	make	DynamoRIO	work	on	an	ARM	device	like	the	Raspberry	Pi.	This	is	currently	
an	ongoing	project	that	we	have	embarked	and	hopefully	we	will	have	something	to	show	for	the	effort	in	
the	near	future.	

5 RECOMMENDATIONS	

Let's	summarize	the	various	ways	we	can	minimize	the	risks	against	Windows	10	IoT	Core	devices.	

5.1 Segment	your	network	s	

Segregating	your	IoT	devices	from	your	traditional	computing	devices	such	as	laptops	and	servers	is	highly	
recommended.	This	is	especially	effective	in	cases	where	one	of	your	machines	have	been	compromised,	
and	the	attacker	is	looking	to	laterally	move	through	network.	This	will	also	effective	in	isolating	incidents	
and	conducting	cleanups.	

5.2 Disable	unnecessary	network	services	

Network	services	that	are	not	used	in	production	should	be	disabled.	Services	that	are	enabled	by	default	
in	Windows	IoT	Core	include	SSH	and	Windows	File	Sharing.	To	disable	file	sharing	on	startup,	run	the	
following	command	using	SSH	or	PowerShell:	

reg	add	HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\services\lanmanserver	/v	Start	/t	R
EG_DWORD	/d	0x3	/f	

5.3 Change	Default	Administrator	Password	

The	Administrator	password	is	hardcoded	in	the	Windows	10	IoT	Core	image.	Default	login	credentials	
that	the	user	failed	to	change	is	still	the	most	common	way	in	which	a	malware	infects	an	IoT	devices.	
Changing	the	default	password	immediately	after	install	will	go	a	long	way	in	avoiding	unauthorized	
access.	You	can	change	the	default	Administrator	password	by	using	the	following	command	using	SSH	or	
PowerShell:	

net	user	Administrator	<new	password>	

																																								 																					

29	"A	fork	of	AFL	for	fuzzing	Windows	binaries"	https://github.com/ivanfratric/winafl	

30	American	Fuzzy	Lop	(AFL)	http://lcamtuf.coredump.cx/afl/	

5.4 Use	a	device	that	supports	TPM	

Using	Raspberry	Pis	for	hobby	projects	is	fine,	but	if	you	are	going	to	build	a	device	that	is	going	to	be	
used	in	more	sensitive	situations	e.g.	home	security,	you	should	be	using	boards	that	support	TPM.	Your	
choices	for	now	should	be	between	a	Minnowboard	Max	and	a	Dragonboard	410c,	or	use	a	discrete	TPM	
with	a	Raspberry	Pi.	

5.5 Take	advantage	of	available	security	features	

So	now	you're	using	a	board	with	TPM.	Make	sure	you	enable	and	setup	security	features	such	as	Secure	
Boot	and	BitLocker.	

6 CONCLUSION	

In	this	paper,	we	laid	out	the	various	attack	surfaces	that	may	be	taken	advantage	of	by	attackers	to	gain	
access	to	a	Windows	10	IoT	Core	device.	We	also	enumerated	techniques	to	get	you	started	in	analyzing	
Windows	10	IoT	Core	devices.	Built-in	features	like	PowerShell	and	the	many	security-related	tools	
written	in	it	helps	a	great	deal	in	assessing	the	security	of	a	device.	We	also	learned	that	leaving	device	
configurations	at	its	default	settings,	among	other	things,	are	a	sure	fire	way	to	leave	your	device	
susceptible	to	attacks,	and	we	gave	some	recommendations	on	how	to	avoid	this.	

Windows	10	IoT	Core	is	still	in	its	early	stage,	but	we	believe	that	once	its	matures	it	will	become	a	more	
viable	alternative	to	the	other	IoT	focused	OSes	that	currently	exist.	Aside	from	the	many	features	this	OS	
offers	-	including	the	security	features	we	discussed	earlier	in	this	paper	-	what	makes	this	OS	attractive	is	
that	there	are	a	lot	of	enterprises	and	developers	already	invested	in	Microsoft	technologies,	and	they	can	
leverage	the	knowledge	and	expertise	they	already	have	in	developing	the	IoT	devices	of	the	future.	As	
such,	we	expect	Windows	10	IoT	Core	to	become	one	of	the	major	IoT	OSes	in	the	future.	This	would	also	
mean	that	this	OS	will	be	a	more	attractive	target	for	attackers,	and	it	is	our	hope	that	to	counter	this,	
more	people	will	engage	in	security	research	targeting	this	OS,	and	that	this	paper	has	somehow	help	
encouraged	it.	

Finally,	any	corrections,	questions,	or	comments	regarding	this	paper	are	very	much	appreciated.	The	
author	can	be	reached	at	sabanapm[at]ph[dot]ibm[dot]com.	

