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EXPLOIT DETECTION IS A MOVING TARGET

▸ Exploitation is increasingly more sophisticated 

▸ Creativity in exploitation is hard to plan for in the Security Development 
Lifecycle (SDL) 

▸ A well financed attacker armed with 0days has the advantage
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PERFORMANCE MONITORING UNIT

▸ A special unit in microprocessor architectures to enable hardware level 
performance and system information. Often used to optimize hardware and 
software 

▸ The PMU can be programed to record dozens of different hardware “events” 

▸ Traditionally reserved for developers and system architects
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PERFORMANCE MONITORING UNIT FOR SECURITY

▸ “Security Breaches as PMU Deviation: Detecting and Identifying Security 
Attacks Using Performance Counters”, Yuan et al., 2011 

▸ “CFIMon: Detecting Violation of Control Flow Integrity using Performance 
Counters”, Xia et al., 2012 

▸ “kBouncer: Efficient and Transparent ROP Mitigation”, Pappas, 2012 

▸ “Transparent ROP Detection using CPU Performance Counters”, Li & Crouse, 
2014
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BRANCH PREDICTION UNIT

▸ A unit in microprocessor architectures dedicated to improving the prediction of  
branch destinations to increase instruction pipeline efficiency 

▸ Better branch prediction can have a large effect on processor performance 

▸ Misprediction penalties can be many clock cycles due to flushing and filling the 
correct branch into the instruction pipeline 

▸ Indirect branches can be common in C++ applications and predicting them is 
crucial to performance
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CONTROL FLOW INTEGRITY

▸ Enforcement of legitimate control flow in a program 

▸ Traditionally done with compiler generated instrumentation 

▸ Many different implementation of policy enforcement exist but the basic idea is 
to validate each indirect control flow transfer against a static list of trusted 
functions
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ALTERNATIVE CFI IMPLEMENTATIONS

▸ Control Flow Guard (CFG), Microsoft, 2014 

▸ Control-flow Enforcement Technology (CET) , Intel, TBD? 

▸ Return Address Protection/Indirect Control Transfer Protection (RAP/ICTP), PaX 
Team, 2015
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ALTERNATIVE CFI IMPLEMENTATIONS

▸ Control Flow Guard (CFG), Microsoft, 2014 

▸ Control-flow Enforcement Technology (CET) , Intel, TBD? 

▸ Return Address Protection/Indirect Control Transfer Protection (RAP/ICTP), PaX 
Team, 2015 

▸ While these are very strong implementations they require recompilation, 
updated software/kernel/OS, or aren’t cross platform
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SCOPING OUR RESEARCH TO FILL THE GAP

▸ No source code access 

▸ Cross-Platform OS support 

▸ 32 and 64 bit support 

▸ No pre-processing of binaries or CFG reconstruction 

▸ Not specific to a single bug-class or exploit technique such as Use-After-Free 
(UAF) or Return-oriented Programming (ROP) 

▸ Overhead must be acceptable in benchmarks and subjective user experience
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REAL-WORLD VERIFICATION

▸ Approach must be verified using “real” exploits and “real” software 

▸ Cyber Grand Challenge samples 

▸ Research community PoCs 

▸ Metasploit modules 

▸ Exploit Kit samples including previous 0days 

▸ Internally developed exploits
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HARDWARE-ASSISTED CONTROL FLOW INTEGRITY (HA-CFI)

▸ Hijacked indirect branches almost always mispredicted by BPU 

▸ HA-CFI Approach: 

▸ Use Intel PMU to trap all mispredicted indirect branches 

▸ Requires setting counter to -1 

▸ Use ISR for CFI policy: validate indirect branch destinations in real-time 

▸ Initial prototype in Linux
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BUT WONT ALL THOSE INTERRUPTS BE EXPENSIVE?
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INDIRECT BRANCH CFI COMPARISON

Source Code 
Required

Patching 
Required Overhead CFI Logic Frequency

Binary Rewriting NO YES LOW 100% FOR 
PROTECTED CALLS

Compiler Transformation YES NO LOW 100% FOR 
PROTECTED CALLS

PMU-Assisted NO NO MEDIUM
ONLY WHEN 

MISPREDICTED 
1%-20%
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PROGRAMMING THE PMU
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PROGRAMMING THE PMU

▸ Controlled by several Model Specific Registers (MSRs) 

▸ IA32_PERF_GLOBAL_CTRL : global enable/disable of counters 

▸ IA32_PERFEVTSELx : event to count, mode inclusion bits, interrupt bit 

▸ IA32_PMCx : counter value 

▸ IA32_PERF_GLOBAL_STATUS / IA32_PERF_GLOBAL_OVF_CTRL 

▸ counter overflow status and clear registers 

▸ Additional references: Threads 2014 [Li et al], BH USA 2015 [Herath, Fogh]
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INDIRECT BRANCH - INTEL PMU EVENTS

▸ BR_MISP_RETIRED (PEBS) counts retired only, includes direct and indirect 

▸ BR_MISP_EXEC includes speculative events == branches falsely labeled as 
mispredicted 

▸ Opted to use BR_MISP_RETIRED.NEAR_CALL since more precise and fewer Interrupts

EVENT NAME UMASK CODE DESCRIPTION

BR_MISP_RETIRED.NEAR_CALL 0x02 0xC5 Direct and indirect mispredicted near call instructions retired

BR_MISP_EXEC.TAKEN_INDIRECT_NEAR_CALL 0xA0 0x89 Taken speculative and retired mispredicted indirect calls
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THE INTERRUPT SERVICE ROUTINE
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PMU TRAPS “ON PAPER”
IA32_PMC0: 0xFFFFFFFF  (-1)       Event: 0x5102C5

foo:

-1     0x1000: MOV   rax, [rsi]  
-1     0x1003: MOV   rdi, [rax+0x78]  
-1     0x1007: CALL  rdi  
 

          
 0     0xB890: MOV   rax, rsp  
       0xB893: MOV   [rax+0x20], r9d  

PMU ISR

#ifdef WINDOWS  
  ip = KTRAP_FRAME.RIP;  
#else  
  ip = pt_regs.rip;  
 
//Apply CFI policy to RIP  
do_cfi(ip);

PMI

RIP: 0xB890
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PMU TRAPS IN THE REAL WORLD
IA32_PMC0: 0xFFFFFFFF  (-1)       Event: 0x5102C5

foo:
  
  

-1     0x1000: MOV   rax, [rsi]  
-1     0x1003: MOV   rdi, [rax+0x78]  
-1     0x1007: CALL  rdi  
 

          
 0     0xB890: MOV   rax, rsp  
 0     0xB893: MOV   [rax+0x20], r9d  

PMI

 
Skid = 1 Instruction

PMU ISR

?

RIP: 0xB893
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PMU TRAPS IN THE REAL WORLD

▸ Due to instruction skid after overflow, no guarantee saved IP is address of 
branch destination 

▸ AMD docs state skid could be up to 72 instructions 

▸ We found 1 instruction skid (or none) to be most common on Intel 

▸ Need a more precise way to get branch target address on PMU overflow
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LBR TO THE RESCUE

▸ Intel Last Branch Record (LBR) can provide us precise branch addresses 

▸ Configured and accessed via MSRs: 

▸ IA32_DEBUGCTL : Enable/Disable bit, Freeze on PMI bit 

▸ LBR_SELECT : filter types of branches 

▸ LASTBRANCH_x_FROM_IP / LASTBRANCH_x_TO_IP : LBR stack entries 

▸ LBR_TOS : Offset that points to current top of LBR stack
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LBR TO THE RESCUE

LBR_SELECT = 0x1ED   ( Indirect Calls in ring > 0 )

easy first check in ISR
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PMU TRAPS WITH LBR PRECISION
IA32_PMC0: 0xFFFFFFFF  (-1)       Event: 0x5102C5

foo:
  
  

-1     0x1000: MOV   rax, [rsi]  
-1     0x1003: MOV   rdi, [rax+0x78]  
-1     0x1007: CALL  rdi  
 

          
 0     0xB890: MOV   rax, rsp  
 0     0xB893: MOV   [rax+0x20], r9d  

PMI

PMU ISR

//Get LBR TO  
tos = rdmsr(LBR_TOS);  
lbr_to = rdmsr(LBR_TO + tos)  
 
//Apply CFI policy to LBR to  
do_cfi(lbr_to);

RIP: 0xB893

0x59BC5CE5 0x75DFC3FB

0x1234 0x1000

0x8000000000001007 0xB890

0x59BC61C3 0x75DFC452

LBR FROM

TOS

LBR TO
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COLLECTING ALL THE DATA
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VALIDATING APPROACH W/ CYBER GRAND CHALLENGE SAMPLES

vrp@ubuntu:~$ miniperf -p 8491 -i 1 -e 0x51a089  
     Monitoring process: CROMU_00044 (8491)  
 
     80007F51FCF6DDBD 7F51FCF9D5F0  
     80007F51FCF9F62B 7F51FCF9E570  
     80007F51FCF9E734 7F51FCF9E7C0  
     80007F51FCF9E4D9 7F51FCF9CFC0  
     80007F51FCF9E69D 7F51FCF9D5D0  
     80007F51FCF6DDBD 7F51FCF9D5F0  
     80007F51FCF9F62B 7F51FCF9E570  
     80007F51FCF9E734 7F51FCF9E7C0  
      
     …  
     80007F51FCF9D69E 7F51FCF9E7C0  
     80007F51FCF9E4D9 7F51FCF9CFC0  
     80000000004032B2 41414141  
 
 

403294:   callq  <_ZN10CUserEntry20GetLastUnreadMessageEv>  
403299:   mov    %rax,-0x30(%rbp)  
40329d:   mov    -0x30(%rbp),%rax  
4032a1:   mov    (%rax),%rax  
4032a4:   add    $0x10,%rax  
4032a8:   mov    (%rax),%rax  
4032ab:   mov    -0x30(%rbp),%rdx  
4032af:   mov    %rdx,%rdi  
4032b2:   callq  *%rax

// Display last unread message  
pCur = pUser->GetLastUnreadMessage();  
printf( "From: @s\n", pCur->GetFrom().c_str() );
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INDIRECT BRANCH ANALYSIS - CVE-2014-0556
ACTIONSCRIPT TRIGGER HIJACKED CALL SITE

     ByteArray.readBytes()    0x33D438:   jmp rax
     ByteArray.readBytes()    0x33D3BC:   call qword ptr [rax]
     ByteArray.readMultiByte()    0x33D1D6:   call qword ptr [rax]
     ByteArray.readMultiByte()    0x33D343:   call qword ptr [rax+0x10]
     ByteArray.readMultiByte()    0x33D1A7:   call qword ptr [rax+0x10]
     ByteArray.readMultiByte()    0x405358:   call qword ptr [rax+0x8]
     ByteArray.writeBytes()    0x33D4A8:   jmp rax
     ByteArray.writeBytes()    0x33D0E7:   call qword ptr [rax+0x10]
     ByteArray.writeMultiByte()    0x33CFFB:   call qword ptr [rax+0x10]
     ByteArray.writeMultiByte()    0x40805A:   call qword ptr [rcx]
     ByteArray.writeUTF()    0x33CE48:   call qword ptr [rax]
     ByteArray.writeUTFBytes()    0x33D0B8:   call qword ptr [rax]
     ByteArray.writeObject()    0x33D05E:   call qword ptr [rax+0x10]
     ByteArray.writeObject()    0x40477A:   jmp rax
     ByteArray.readObject()    0x33CDCE:   call qword ptr [rax+0x10]
     ByteArray.readObject()    0x40482B:   jmp rax

▸ Ubuntu 14.04.3 LTS x64 
Pepper Flash 14.0.0.177 

▸ Moved to real-world 
Linux x64 POC, but 
missed hijack due to JMP 

▸ Tweaked ActionScript 
POC from Chris Evans to 
generate additional data: 

▸ 16 unique hijack 
points 

▸ Call / JMP Analysis
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INDIRECT BRANCH - CALL VS JMP

▸ Hijackable indirect JMP slightly more common in Linux binaries 

▸ Indirect JMPs often used for switch statements 

▸ For this talk we will focus exclusively on indirect CALLs

27%

73%

CALL JMP

2%

98%

13%

87%

12%

88%
jscript9.dll Flash.ocx libpepflashplayer.so libxul.so

x64 x64
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WHAT IS A VALID INDIRECT BRANCH?

5%
20%

66%

2%8%

Non MISP Exports Relocations
JIT code page Callbacks

Firefox

167,755,264
Branches collected

Dromaeo JavaScript Benchmark 
dromaeo.com

http://dromaeo.com
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OUR FINAL DESIGN
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IA32_PERFEVTSEL0 = MISP INDIRECT CALL

PMU 
INTERRUPT 

SERVICE ROUTINE

PMU 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SERVICE ROUTINE
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OF VALID BRANCH 

TARGETS
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WHITELIST GENERATION

▸ Only after we were able to validate all 160M branches from ELF did we even 
explore real-time whitelist query 

▸ Generate list on each image load in protected processes 

▸ Overall approach is same on ELF and PE: 

▸ Find all code pointer addresses present in loaded image 

▸ Code pointer considered if relative or absolute address points to .text 

▸ Primarily focus on Exports, Relocations, and “Callbacks”



IMPLEMENTATION 
CHALLENGES
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KEY CHALLENGES

▸ Receiving PMU Interrupts 

▸ Clearing PMU Interrupts 

▸ Thread Tracking
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RECEIVING PMU INTERRUPTS ON WINDOWS

▸ Modifying the Interrupt Descriptor Table (IDT) for the PMU interrupt will not 
work for x64 due to PatchGuard 

▸ While investigating how Windows handles PMI, we discovered a non-exported 
kernel routine in hal.dll 

▸ HalpSetSystemInformation()

▸ InformationClass of HalProfileSourceInterruptHandler 

▸ Reachable through HalDispatchTable export
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RECEIVING PMU INTERRUPTS ON WINDOWS
NT_STATUS _HalpSetSystemInformation(HAL_SET_INFORMATION_CLASS InformationClass, ULONG BufferSize, 
PVOID *Buffer) { 
 // ... 

 if(InformationClass == HalProfileSourceInterruptHandler) { 
  if(BufferSize != 4) 
   return STATUS_INFO_LENGTH_MISMATCH; 

  if(HalpFeatureBits & 1 == 0) 
   return STATUS_INVALID_DEVICE_REQUEST; 

  if(ProfilingProcessId == 0) { 
   _HalpPerfInterruptHandler = Buffer[0]; 
   if(Buffer[0] != NULL) 
    ProfilingProcessId = PsGetCurrentProcessId(); 

  } else { 
   if(PsGetCurrentProcessId() != ProfilingProcessId) 
    return STATUS_INVALID_DEVICE_REQUEST; 
   _HalpPerfInterruptHandler = Buffer[0]; 
   ProfilingProcessId = (Buffer[0] ? ProfilingProcessId : 0); 
  } 

  return STATUS_SUCCESS; 
 } 

 // ... 
} 
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RECEIVING PMU INTERRUPTS ON WINDOWS

▸ Pass in the interrupt handler function and it will be called when a PMI occurs 

NTSTATUS status; 
PVOID buffer[1]; 

buffer[0] = profileSourceInterruptHandler; 
status = HalpSetSystemInformation(HalProfileSourceInterruptHandler, 
                                  sizeof(PVOID), 
                                  buffer); 

▸ Calling (from the same process) with a NULL pointer deregisters the handler 

NTSTATUS status; 
PVOID buffer[1]; 

buffer[0] = NULL; 
status = HalpSetSystemInformation(HalProfileSourceInterruptHandler, 
                                  sizeof(PVOID), 
                                  buffer);
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CLEARING PMU INTERRUPTS ON WINDOWS

▸ Another issue encountered involved unmasking PMU interrupts from the 
handler 

▸ PMU interrupts are delivered by the APIC 

▸ In order to acknowledge an interrupt has been handled and to receive future 
interrupts, a register in the APIC needs to be written 

▸ How this is accomplished depends on the APIC interface used, which differs 
between Windows versions



BLACKHAT 2016IMPLEMENTATION CHALLENGES

CLEARING PMU INTERRUPTS ON WINDOWS

▸ Existed since Pentium 4 

▸ Windows 7 

▸ APIC Registers are accessed through 
mapped physical memory 

▸ Register access accomplished using 
physical memory mapped into kernel 
virtual memory via MmMapIoSpace

▸ Introduced in Nehalem microarch 

▸ Windows 8/8.1 

▸ APIC Registers are accessed via MSRs 

▸ Interface can be accessed with a 
single __writemsr intrinsic 

    __writemsr(LVT_x2APIC_PMI, 0xFE)

xAPIC x2APIC
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RECEIVING PMU INTERRUPTS ON LINUX

▸ Setting this up on Linux is even simpler 

▸ Register for a Non-Maskable Interrupt (NMI) handler 

register_nmi_handler(NMI_LOCAL, 
    our_nmi_handler, 
    NMI_FLAG_FIRST, 
    “hacfi_pmi"); 

unregister_nmi_handler(NMI_LOCAL, "hacfi_pmi"); 
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THREAD TRACKING

▸ We don’t want to monitor the entire system 

▸ Monitoring can be restricted to a few “high threat” executables 

▸ The PMU doesn’t know anything about thread or process context
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THREAD TRACKING ON WINDOWS

▸ Not so straightforward 

▸ Windows has no (explicit) mechanism for executing arbitrary code at thread 
context switches 

▸ Without some sort of callback when a thread quantum starts execution, we 
don’t know when to turn on the PMU counters 

▸ This is a problem
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ASYNCHRONOUS PROCEDURE CALLS TO THE RESCUE

▸ “When an APC is queued to a thread, the system issues a software interrupt. 
The next time the thread is scheduled, it will run the APC function.” - Microsoft 

▸ Perfect! We could just use APCs to get callbacks, and re-queue a new on 
whenever we finish the previous 

▸ Not quite that simple, since we don’t track all threads and don’w know when a 
monitored quantum has ended 

▸ Also, scheduling an APC for the current thread, from an APC handler, leads to 
an endless APC loop due to the software interrupt
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OUR APC SOLUTION

1. Schedule a kernel APC for every thread we want to track 

2. Configure PMU to trap all mispredicted branches 

3. When we see an interrupt for the wrong thread, schedule a new APC for the 
previous thread on the processor (or all tracked threads that don’t have one 
currently queued) 

4. Repeat
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OUR APC SOLUTION

CALC.EXE' IEXPLORE.EXE' CALC.EXE' IEXPLORE.EXE' CALC.EXE' FIREFOX.EXE'

Time'

Disable'PMU' Enable'PMU' Disable'PMU' Enable'PMU' Disable'PMU' Enable'PMU'

Interrupts'

APC' APC' APC'

Context'Switch'
Detected'
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THREAD TRACKING ON LINUX

▸ Very straightforward 

▸ preempt_notifier_init gives us a simple callback registration for when a thread is 
preempted 

static struct preempt_notifier notifier; 
static struct preempt_ops hacfi_preempt_ops = { 
    .sched_in = hacfi_notifier_sched_in, 
    .sched_out = hacfi_notifier_sched_out 
}; 

static void hacfi_notifier_sched_in(struct preempt_notifier *notifier, int cpu); 

static void hacfi_notifier_sched_out(struct preempt_notifier *notifier, 
      struct task_struct *next); 

preempt_notifier_init(&notifier, &hacfi_preempt_ops);





RESULTS
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ANALYSIS OF RESULTS

▸ Performance Overhead 

▸ Exploit Detection efficacy testing
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PERFORMANCE

▸ We expect there to be a lot of mispredicted branches leading to excessive 
interrupts 

▸ There is also a minor fixed overhead for each quantum from the APC 

▸ We need to test and see if this is feasible…
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HOW MANY PMU INTERRUPTS ARE WE TALKING ABOUT?

MISPREDICTED INDIRECT CALLS DURING OCTANE

SANDY BRIDGE IVY BRIDGE HASWELL

8,058,444

14,678,76413,557,147
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PERFORMANCE OVERHEAD

Benchmark Baseline HA-CFI EMET

PassMark PerformanceTest  
score: 940

9% 
score: 855

3% 
score: 910

Dromaeo JavaScript 
w/ Internet Explorer

 
325 runs/s

22% 
253 runs/s

32% 
220 runs/s

*TESTING PERFORMED ON AN INTEL HASWELL CPU
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EXPLOIT DETECTION TESTING

▸ We needed exploits to test…. 

▸ We wanted exploits of recent CVEs for Adobe Flash, Internet Explorer, and 
Microsoft Office 

▸ To Metasploit!
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EXPLOIT DETECTION TESTING - METASPLOIT
VULNERABILITY TARGET DETECTION RATE

CVE-2014-0497 Flash Player 11.7.700.202 100%

CVE-2014-0515 Flash Player 11.7.700.275 100%
CVE-2014-0556 Flash Player 14.0.0.145 100%
CVE-2014-0569 Flash Player 15.0.0.167 100%
CVE-2014-8440 Flash Player 15.0.0.189 100%
CVE-2015-0311 Flash Player 16.0.0.235 100%
CVE-2015-0313 Flash Player 16.0.0.296 100%
CVE-2015-0359 Flash Player 17.0.0.134 100%
CVE-2015-3090 Flash Player 17.0.0.169 90%
CVE-2015-3105 Flash Player 17.0.0.188 100%
CVE-2015-3113 Flash Player 18.0.0.160 100%
CVE-2015-5119 Flash Player 15.0.0.189 100%
CVE-2015-5122 Flash Player 18.0.0.194 100%
CVE-2014-1761 Microsoft Word 2010 100%
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EXPLOIT DETECTION TESTING

▸ Metasploit results were great, but what about the bad guys? 

▸ The techniques used in an exploit matter as much or more than the actual 
vulnerability itself 

▸ We don’t think Metasploit is a great testbed for HA-CFI, due to lack of diversity 
in exploitation approach 

▸ So we turned to VirusTotal and Exploit Kit samples collected in the wild
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EXPLOIT DETECTION TESTING - VIRUSTOTAL

▸ VirusTotal enabled us to test on real-world malware including previously 0day exploits 

▸ Decided that samples from some of the more popular exploit kits would be a good 
basis for testing 

▸ Using actual exploits from ‘the wild’ should provide a good sample of exploitation 
techniques 

▸ We chose 48 unique samples for our testbed

7
Exploit Kits

48
Samples

20
Unique CVEs
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EXPLOIT DETECTION TESTING - VIRUSTOTAL

▸ We analyzed each sample and bucketed them into three separate categories 
according to exploitation technique 

▸ ROP Technique - Uses standard Return Oriented Programming techniques 

▸ ROPless Technique A - Flash exploitation technique invoking a wrapper routine 
of VirtualProtect to make shellcode executable 

▸ ROPless Technique B - Similar to A, but via hijacking Method.apply() in 
ActionScript to find and invoke VirtualProtect directly (Vitaly Toropov)
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EXPLOIT KIT DETECTION - HA-CFI VS EMET

CODE EXECUTION 
TECHNIQUE # SAMPLES HA-CFI  

DETECTION RATE
EMET 

DETECTION RATE

ROP 37 95% 100%

ROPless  
Technique A 1 100% 0%

ROPless  
Technique B 10 100% 0%
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EXPLOIT KIT DETECTION - BY BUG CLASS

BUG CLASS # CVE’S # SAMPLES HA-CFI  
DETECTION RATE

Out-of-bounds Write 3 6 83.3%

Buffer Overflow 3 6 83.3%

Integer Overflow 2 6 100%

Use-After-Free 4 14 100%

Double Free 2 4 100%

Type Confusion 3 6 100%

Race Condition 1 4 100%

Uninitialized Memory 1 1 100%
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CLASSIC ROP TECHNIQUE

jscript9 + A7541 ; JavascriptOperators::OP_SetElementI  
   call edi 

jscript9 + 3BE32  
   xchg eax,esp  ; stack pivot gadget  
   retn

jscript9 + 4B0B5  
   mov [ecx+0xC],ax  ; CoE help  
   retn

jscript9 + 3BE33  
   retn

kernel32 + 42C15  
 VirtualProtectStub  ; mark shellcode +X

▸ CVE-2015-2419 : Double-free in jscript9 (MS15-065) 

▸ Magnitude EK Sample

HA-CFI blocks the initial hijack. 
RIP in ISR = jscript9 + 3BE32

StackPivot detected on VirtualProtect



HA-CFI
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ROPLESS TECHNIQUE #1

▸ CVE-2014-0515 : Heap overflow in Adobe Flash (patch in 13.0.0.206) 

▸ Found in many Exploit kits and watering hole attacks 

▸ ROPless technique re-uses VirtualProtect wrapper function in Flash image 

▸ 2 control flow hijacks: one to VP wrapper, second one to shellcode 

▸ Bypasses anti-ROP checks since VP invoked somewhat legitimately
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ROPLESS TECHNIQUE #1

▸ CVE-2014-0515 : Heap overflow in Adobe Flash (patch in 13.0.0.206)

Flash32_12_0_0_77 + 3BD636  
   push 1  
   push dword ptr [eax-8]  
   push dword ptr [eax-4]  
   call virtual_protect_wrapper  
   add  esp,0xC  
   retn

Flash32_12_0_0_77 + 25783D  
  call dword ptr [eax+0x14]

FileReference.cancel()

FileReference.cancel()
Shellcode

HA-CFI detects and blocks the initial hijack. 
IP at time of interrupt = Flash32_12_0_0_77 + 3BD636

This branch is also mispredicted



HA-CFI
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FUTURE WORK

▸ Hypervisor support to enable hardware features in virtual machines 

▸ Last Branch Record (LBR) is not fully supported in popular hypervisors 

▸ Performance Monitoring Interrupts (PMI) on overflow is supported in many 
hypervisors 

▸ We wrote a patch for Xen to enable HA-CFI but it crashes randomly, anyone 
want to help? 

▸ Just-In-Time code pages are hard to validate with our current whitelist approach



CONCLUSION
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EXPLOIT DEFENSE

▸ Exploit defense needs to detect and prevent exploitation at the earliest phase 

▸ Compile-time solutions are powerful, but there is room for run-time defense 
too 

▸ Defenses focused exclusively on techniques such as Return-oriented 
Programming can be easily circumvented as new methods get adopted 

▸ Exploits will continue to “look normal” to bypass prevention checks
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HARDWARE ASSISTED CONTROL FLOW INTEGRITY

▸ CFI is a powerful first step in ensuring only trusted code paths can be executed 

▸ Many vulnerabilities must hijack control-flow to achieve code execution 

▸ Hardware can be leveraged for strong CFI policy enforcement of applications 
at run-time 

▸ Many new hardware features are emerging that can be used for exploit 
defense
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CFI ENFORCEMENT

▸ CFI policies can be more complex 

▸ Powerful features of the PMU interrupt on branches for prevention are the high 
IRQL and complete access to context information 

▸ We have more ideas in the works to detect additional events and apply policies 
to detect abnormal read, writes, and cases where attackers stay within our 
whitelist
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