
CAPTURING 0DAY EXPLOITS
WITH PERFECTLY PLACED
HARDWARE TRAPS

Cody Pierce . Matt Spisak . Kenneth Fitch

INTRODUCTION

BLACKHAT 2016INTRODUCTION

EXPLOIT DETECTION IS A MOVING TARGET

▸ Exploitation is increasingly more sophisticated

▸ Creativity in exploitation is hard to plan for in the Security Development
Lifecycle (SDL)

▸ A well financed attacker armed with 0days has the advantage

BLACKHAT 2016INTRODUCTION

EARLY PREVENTION TO MAINTAIN THE ADVANTAGE

Software
Identification Memory Organization Return Oriented

Programming

Version Identification Vulnerability
Preparation Payload Execution

OS Identification Vulnerability Trigger COE

Code Execution Persistence

BLACKHAT 2016INTRODUCTION

EARLY PREVENTION TO MAINTAIN THE ADVANTAGE

Software
Identification Memory Organization Return Oriented

Programming

Version Identification Vulnerability
Preparation Payload Execution

OS Identification Vulnerability Trigger COE

Code Execution Persistence

INTRODUCING
HARDWARE ASSISTANCE

BLACKHAT 2016INTRODUCING - HARDWARE ASSISTANCE

CPU CORE

PERFORMANCE
MONITORING UNIT

BRANCH
PREDICTION UNIT

BLACKHAT 2016INTRODUCING - PERFORMANCE MONITORING UNIT

CPU CORE

PERFORMANCE
MONITORING UNIT

BRANCH
PREDICTION UNIT

BLACKHAT 2016INTRODUCING - PERFORMANCE MONITORING UNIT

PERFORMANCE MONITORING UNIT

▸ A special unit in microprocessor architectures to enable hardware level
performance and system information. Often used to optimize hardware and
software

▸ The PMU can be programed to record dozens of different hardware “events”

▸ Traditionally reserved for developers and system architects

BLACKHAT 2016INTRODUCING - PERFORMANCE MONITORING UNIT

CPU CORE

PERFORMANCE
MONITORING UNIT

0x03 LD_BLOCKS

0x0D INT_MISC

0x3C CPU_CLK_UNHALTED

0x48 L1D_PEND_MISS

0x85 ITLB_MISSES

0x89 BR_MISP_EXEC

0xA2 RESOURCE_STALLS

0xAE ITLB.ITLB_FLUSH

0xC0 INST_RETIRED

BLACKHAT 2016INTRODUCING - PERFORMANCE MONITORING UNIT

PERFORMANCE MONITORING UNIT FOR SECURITY

▸ “Security Breaches as PMU Deviation: Detecting and Identifying Security
Attacks Using Performance Counters”, Yuan et al., 2011

▸ “CFIMon: Detecting Violation of Control Flow Integrity using Performance
Counters”, Xia et al., 2012

▸ “kBouncer: Efficient and Transparent ROP Mitigation”, Pappas, 2012

▸ “Transparent ROP Detection using CPU Performance Counters”, Li & Crouse,
2014

BLACKHAT 2016INTRODUCING - BRANCH PREDICTION UNIT

CPU CORE

PERFORMANCE
MONITORING UNIT

BRANCH
PREDICTION UNIT

BLACKHAT 2016INTRODUCING - BRANCH PREDICTION UNIT

BRANCH PREDICTION UNIT

▸ A unit in microprocessor architectures dedicated to improving the prediction of
branch destinations to increase instruction pipeline efficiency

▸ Better branch prediction can have a large effect on processor performance

▸ Misprediction penalties can be many clock cycles due to flushing and filling the
correct branch into the instruction pipeline

▸ Indirect branches can be common in C++ applications and predicting them is
crucial to performance

HOLD FOR VIDEO

BLACKHAT 2016INTRODUCING - HARDWARE ASSISTANCE

CPU CORE

PERFORMANCE
MONITORING UNIT

BRANCH
PREDICTION UNIT

INTERRUPT 0XFE

INTRODUCING
CONTROL FLOW INTEGRITY

BLACKHAT 2016INTRODUCING - CONTROL FLOW INTEGRITY

CONTROL FLOW INTEGRITY

▸ Enforcement of legitimate control flow in a program

▸ Traditionally done with compiler generated instrumentation

▸ Many different implementation of policy enforcement exist but the basic idea is
to validate each indirect control flow transfer against a static list of trusted
functions

BLACKHAT 2016INTRODUCING - CONTROL FLOW INTEGRITY

CONTROL TRANSFER

DESTINATION DESTINATIONDESTINATION

BLACKHAT 2016INTRODUCING - CONTROL FLOW INTEGRITY

CONTROL BRANCH

TERMINATE

CFI POLICY ENFORCEMENT

DESTINATION

BLACKHAT 2016INTRODUCING - CONTROL FLOW INTEGRITY

ALTERNATIVE CFI IMPLEMENTATIONS

▸ Control Flow Guard (CFG), Microsoft, 2014

▸ Control-flow Enforcement Technology (CET) , Intel, TBD?

▸ Return Address Protection/Indirect Control Transfer Protection (RAP/ICTP), PaX
Team, 2015

BLACKHAT 2016INTRODUCING - CONTROL FLOW INTEGRITY

ALTERNATIVE CFI IMPLEMENTATIONS

▸ Control Flow Guard (CFG), Microsoft, 2014

▸ Control-flow Enforcement Technology (CET) , Intel, TBD?

▸ Return Address Protection/Indirect Control Transfer Protection (RAP/ICTP), PaX
Team, 2015

▸ While these are very strong implementations they require recompilation,
updated software/kernel/OS, or aren’t cross platform

BLACKHAT 2016INTRODUCING - PERFECTLY PLACED TRAPS

SCOPING OUR RESEARCH TO FILL THE GAP

▸ No source code access

▸ Cross-Platform OS support

▸ 32 and 64 bit support

▸ No pre-processing of binaries or CFG reconstruction

▸ Not specific to a single bug-class or exploit technique such as Use-After-Free
(UAF) or Return-oriented Programming (ROP)

▸ Overhead must be acceptable in benchmarks and subjective user experience

BLACKHAT 2016INTRODUCING - PERFECTLY PLACED TRAPS

REAL-WORLD VERIFICATION

▸ Approach must be verified using “real” exploits and “real” software

▸ Cyber Grand Challenge samples

▸ Research community PoCs

▸ Metasploit modules

▸ Exploit Kit samples including previous 0days

▸ Internally developed exploits

CFI APPROACH

BLACKHAT 2016CFI APPROACH

HARDWARE-ASSISTED CONTROL FLOW INTEGRITY (HA-CFI)

▸ Hijacked indirect branches almost always mispredicted by BPU

▸ HA-CFI Approach:

▸ Use Intel PMU to trap all mispredicted indirect branches

▸ Requires setting counter to -1

▸ Use ISR for CFI policy: validate indirect branch destinations in real-time

▸ Initial prototype in Linux

BLACKHAT 2016CFI APPROACH

OUR INITIAL APPROACH

PMU 
INTERRUPT

SERVICE ROUTINE

…

IA32_PMC0 = -1
IA32_PERFEVTSEL0 = MISP INDIRECT CALL

…

KERNEL

CORE 1

CORE 2

CORE N

…

PERFORMANCE MONITORING UNIT

IA32_PMC0 = -1
IA32_PERFEVTSEL0 = MISP INDIRECT CALL

IA32_PMC0 = -1
IA32_PERFEVTSEL0 = MISP INDIRECT CALL

PMU 
INTERRUPT

SERVICE ROUTINE

PMU 
INTERRUPT

SERVICE ROUTINE

DATA COLLECTION
CLIENT

USER MODE

PYTHON POST-
PROCESSING

BLACKHAT 2016CFI APPROACH

BUT WONT ALL THOSE INTERRUPTS BE EXPENSIVE?

BLACKHAT 2016CFI APPROACH

INDIRECT BRANCH CFI COMPARISON

Source Code
Required

Patching
Required Overhead CFI Logic Frequency

Binary Rewriting NO YES LOW 100% FOR
PROTECTED CALLS

Compiler Transformation YES NO LOW 100% FOR
PROTECTED CALLS

PMU-Assisted NO NO MEDIUM
ONLY WHEN

MISPREDICTED 
1%-20%

BLACKHAT 2016CFI APPROACH

PROGRAMMING THE PMU

PMU 
INTERRUPT

SERVICE ROUTINE

…

IA32_PMC0 = -1
IA32_PERFEVTSEL0 = MISP INDIRECT CALL

…

KERNEL

CORE 1

CORE 2

CORE N

…

PERFORMANCE MONITORING UNIT

IA32_PMC0 = -1
IA32_PERFEVTSEL0 = MISP INDIRECT CALL

IA32_PMC0 = -1
IA32_PERFEVTSEL0 = MISP INDIRECT CALL

PMU 
INTERRUPT

SERVICE ROUTINE

PMU 
INTERRUPT

SERVICE ROUTINE

DATA COLLECTION
CLIENT

USER MODE

PYTHON POST-
PROCESSING

BLACKHAT 2016CFI APPROACH

PROGRAMMING THE PMU

▸ Controlled by several Model Specific Registers (MSRs)

▸ IA32_PERF_GLOBAL_CTRL : global enable/disable of counters

▸ IA32_PERFEVTSELx : event to count, mode inclusion bits, interrupt bit

▸ IA32_PMCx : counter value

▸ IA32_PERF_GLOBAL_STATUS / IA32_PERF_GLOBAL_OVF_CTRL

▸ counter overflow status and clear registers

▸ Additional references: Threads 2014 [Li et al], BH USA 2015 [Herath, Fogh]

BLACKHAT 2016CFI APPROACH

INDIRECT BRANCH - INTEL PMU EVENTS

▸ BR_MISP_RETIRED (PEBS) counts retired only, includes direct and indirect

▸ BR_MISP_EXEC includes speculative events == branches falsely labeled as
mispredicted

▸ Opted to use BR_MISP_RETIRED.NEAR_CALL since more precise and fewer Interrupts

EVENT NAME UMASK CODE DESCRIPTION

BR_MISP_RETIRED.NEAR_CALL 0x02 0xC5 Direct and indirect mispredicted near call instructions retired

BR_MISP_EXEC.TAKEN_INDIRECT_NEAR_CALL 0xA0 0x89 Taken speculative and retired mispredicted indirect calls

BLACKHAT 2016CFI APPROACH

THE INTERRUPT SERVICE ROUTINE

PMU 
INTERRUPT

SERVICE ROUTINE

…

IA32_PMC0 = -1
IA32_PERFEVTSEL0 = MISP INDIRECT CALL

…

KERNEL

CORE 1

CORE 2

CORE N

…

PERFORMANCE MONITORING UNIT

IA32_PMC0 = -1
IA32_PERFEVTSEL0 = MISP INDIRECT CALL

IA32_PMC0 = -1
IA32_PERFEVTSEL0 = MISP INDIRECT CALL

PMU 
INTERRUPT

SERVICE ROUTINE

PMU 
INTERRUPT

SERVICE ROUTINE

DATA COLLECTION
CLIENT

USER MODE

PYTHON POST-
PROCESSING

BLACKHAT 2016CFI APPROACH

PMU TRAPS “ON PAPER”
IA32_PMC0: 0xFFFFFFFF (-1) Event: 0x5102C5

foo:

-1 0x1000: MOV rax, [rsi]  
-1 0x1003: MOV rdi, [rax+0x78]  
-1 0x1007: CALL rdi  
 

  
 0 0xB890: MOV rax, rsp  
 0xB893: MOV [rax+0x20], r9d  

PMU ISR

#ifdef WINDOWS  
 ip = KTRAP_FRAME.RIP;  
#else  
 ip = pt_regs.rip;  
 
//Apply CFI policy to RIP  
do_cfi(ip);

PMI

RIP: 0xB890

BLACKHAT 2016CFI APPROACH

PMU TRAPS IN THE REAL WORLD
IA32_PMC0: 0xFFFFFFFF (-1) Event: 0x5102C5

foo:

-1 0x1000: MOV rax, [rsi]  
-1 0x1003: MOV rdi, [rax+0x78]  
-1 0x1007: CALL rdi  
 

  
 0 0xB890: MOV rax, rsp  
 0 0xB893: MOV [rax+0x20], r9d  

PMI

 
Skid = 1 Instruction

PMU ISR

?

RIP: 0xB893

BLACKHAT 2016CFI APPROACH

PMU TRAPS IN THE REAL WORLD

▸ Due to instruction skid after overflow, no guarantee saved IP is address of
branch destination

▸ AMD docs state skid could be up to 72 instructions

▸ We found 1 instruction skid (or none) to be most common on Intel

▸ Need a more precise way to get branch target address on PMU overflow

BLACKHAT 2016CFI APPROACH

LBR TO THE RESCUE

▸ Intel Last Branch Record (LBR) can provide us precise branch addresses

▸ Configured and accessed via MSRs:

▸ IA32_DEBUGCTL : Enable/Disable bit, Freeze on PMI bit

▸ LBR_SELECT : filter types of branches

▸ LASTBRANCH_x_FROM_IP / LASTBRANCH_x_TO_IP : LBR stack entries

▸ LBR_TOS : Offset that points to current top of LBR stack

BLACKHAT 2016CFI APPROACH

LBR TO THE RESCUE

LBR_SELECT = 0x1ED (Indirect Calls in ring > 0)

easy first check in ISR

BLACKHAT 2016CFI APPROACH

PMU TRAPS WITH LBR PRECISION
IA32_PMC0: 0xFFFFFFFF (-1) Event: 0x5102C5

foo:

-1 0x1000: MOV rax, [rsi]  
-1 0x1003: MOV rdi, [rax+0x78]  
-1 0x1007: CALL rdi  
 

  
 0 0xB890: MOV rax, rsp  
 0 0xB893: MOV [rax+0x20], r9d  

PMI

PMU ISR

//Get LBR TO  
tos = rdmsr(LBR_TOS);  
lbr_to = rdmsr(LBR_TO + tos)  
 
//Apply CFI policy to LBR to  
do_cfi(lbr_to);

RIP: 0xB893

0x59BC5CE5 0x75DFC3FB

0x1234 0x1000

0x8000000000001007 0xB890

0x59BC61C3 0x75DFC452

LBR FROM

TOS

LBR TO

BLACKHAT 2016CFI APPROACH

COLLECTING ALL THE DATA

PMU 
INTERRUPT

SERVICE ROUTINE

…

IA32_PMC0 = -1
IA32_PERFEVTSEL0 = MISP INDIRECT CALL

…

KERNEL

CORE 1

CORE 2

CORE N

…

PERFORMANCE MONITORING UNIT

IA32_PMC0 = -1
IA32_PERFEVTSEL0 = MISP INDIRECT CALL

IA32_PMC0 = -1
IA32_PERFEVTSEL0 = MISP INDIRECT CALL

PMU 
INTERRUPT

SERVICE ROUTINE

PMU 
INTERRUPT

SERVICE ROUTINE

DATA COLLECTION
CLIENT

USER MODE

PYTHON POST-
PROCESSING

LAST BRANCH RECORD

BLACKHAT 2016CFI APPROACH

VALIDATING APPROACH W/ CYBER GRAND CHALLENGE SAMPLES

vrp@ubuntu:~$ miniperf -p 8491 -i 1 -e 0x51a089  
 Monitoring process: CROMU_00044 (8491)  
 
 80007F51FCF6DDBD 7F51FCF9D5F0  
 80007F51FCF9F62B 7F51FCF9E570  
 80007F51FCF9E734 7F51FCF9E7C0  
 80007F51FCF9E4D9 7F51FCF9CFC0  
 80007F51FCF9E69D 7F51FCF9D5D0  
 80007F51FCF6DDBD 7F51FCF9D5F0  
 80007F51FCF9F62B 7F51FCF9E570  
 80007F51FCF9E734 7F51FCF9E7C0  
  
 …  
 80007F51FCF9D69E 7F51FCF9E7C0  
 80007F51FCF9E4D9 7F51FCF9CFC0  
 80000000004032B2 41414141  
 
 

403294: callq <_ZN10CUserEntry20GetLastUnreadMessageEv>  
403299: mov %rax,-0x30(%rbp)  
40329d: mov -0x30(%rbp),%rax  
4032a1: mov (%rax),%rax  
4032a4: add $0x10,%rax  
4032a8: mov (%rax),%rax  
4032ab: mov -0x30(%rbp),%rdx  
4032af: mov %rdx,%rdi  
4032b2: callq *%rax

// Display last unread message  
pCur = pUser->GetLastUnreadMessage();  
printf("From: @s\n", pCur->GetFrom().c_str());

BLACKHAT 2016CFI APPROACH

INDIRECT BRANCH ANALYSIS - CVE-2014-0556
ACTIONSCRIPT TRIGGER HIJACKED CALL SITE

 ByteArray.readBytes() 0x33D438: jmp rax
 ByteArray.readBytes() 0x33D3BC: call qword ptr [rax]
 ByteArray.readMultiByte() 0x33D1D6: call qword ptr [rax]
 ByteArray.readMultiByte() 0x33D343: call qword ptr [rax+0x10]
 ByteArray.readMultiByte() 0x33D1A7: call qword ptr [rax+0x10]
 ByteArray.readMultiByte() 0x405358: call qword ptr [rax+0x8]
 ByteArray.writeBytes() 0x33D4A8: jmp rax
 ByteArray.writeBytes() 0x33D0E7: call qword ptr [rax+0x10]
 ByteArray.writeMultiByte() 0x33CFFB: call qword ptr [rax+0x10]
 ByteArray.writeMultiByte() 0x40805A: call qword ptr [rcx]
 ByteArray.writeUTF() 0x33CE48: call qword ptr [rax]
 ByteArray.writeUTFBytes() 0x33D0B8: call qword ptr [rax]
 ByteArray.writeObject() 0x33D05E: call qword ptr [rax+0x10]
 ByteArray.writeObject() 0x40477A: jmp rax
 ByteArray.readObject() 0x33CDCE: call qword ptr [rax+0x10]
 ByteArray.readObject() 0x40482B: jmp rax

▸ Ubuntu 14.04.3 LTS x64 
Pepper Flash 14.0.0.177

▸ Moved to real-world
Linux x64 POC, but
missed hijack due to JMP

▸ Tweaked ActionScript
POC from Chris Evans to
generate additional data:

▸ 16 unique hijack
points

▸ Call / JMP Analysis

BLACKHAT 2016CFI APPROACH

INDIRECT BRANCH - CALL VS JMP

▸ Hijackable indirect JMP slightly more common in Linux binaries

▸ Indirect JMPs often used for switch statements

▸ For this talk we will focus exclusively on indirect CALLs

27%

73%

CALL JMP

2%

98%

13%

87%

12%

88%
jscript9.dll Flash.ocx libpepflashplayer.so libxul.so

x64 x64

BLACKHAT 2016CFI APPROACH

WHAT IS A VALID INDIRECT BRANCH?

5%
20%

66%

2%8%

Non MISP Exports Relocations
JIT code page Callbacks

Firefox

167,755,264
Branches collected

Dromaeo JavaScript Benchmark 
dromaeo.com

http://dromaeo.com

BLACKHAT 2016CFI APPROACH

OUR FINAL DESIGN

PMU 
INTERRUPT

SERVICE ROUTINE

…

IA32_PMC0 = -1
IA32_PERFEVTSEL0 = MISP INDIRECT CALL

…

KERNEL

CORE 1

CORE 2

CORE N

…

hacfi.sys / hacfi.ko

PERFORMANCE MONITORING UNIT

IA32_PMC0 = -1
IA32_PERFEVTSEL0 = MISP INDIRECT CALL

IA32_PMC0 = -1
IA32_PERFEVTSEL0 = MISP INDIRECT CALL

PMU 
INTERRUPT

SERVICE ROUTINE

PMU 
INTERRUPT

SERVICE ROUTINE

WHITELIST
OF VALID BRANCH

TARGETS

BLACKHAT 2016CFI APPROACH

WHITELIST GENERATION

▸ Only after we were able to validate all 160M branches from ELF did we even
explore real-time whitelist query

▸ Generate list on each image load in protected processes

▸ Overall approach is same on ELF and PE:

▸ Find all code pointer addresses present in loaded image

▸ Code pointer considered if relative or absolute address points to .text

▸ Primarily focus on Exports, Relocations, and “Callbacks”

IMPLEMENTATION
CHALLENGES

BLACKHAT 2016IMPLEMENTATION CHALLENGES

KEY CHALLENGES

▸ Receiving PMU Interrupts

▸ Clearing PMU Interrupts

▸ Thread Tracking

BLACKHAT 2016IMPLEMENTATION CHALLENGES

RECEIVING PMU INTERRUPTS ON WINDOWS

▸ Modifying the Interrupt Descriptor Table (IDT) for the PMU interrupt will not
work for x64 due to PatchGuard

▸ While investigating how Windows handles PMI, we discovered a non-exported
kernel routine in hal.dll

▸ HalpSetSystemInformation()

▸ InformationClass of HalProfileSourceInterruptHandler

▸ Reachable through HalDispatchTable export

BLACKHAT 2016IMPLEMENTATION CHALLENGES

RECEIVING PMU INTERRUPTS ON WINDOWS
NT_STATUS _HalpSetSystemInformation(HAL_SET_INFORMATION_CLASS InformationClass, ULONG BufferSize,
PVOID *Buffer) {
 // ...

 if(InformationClass == HalProfileSourceInterruptHandler) {
 if(BufferSize != 4)
 return STATUS_INFO_LENGTH_MISMATCH;

 if(HalpFeatureBits & 1 == 0)
 return STATUS_INVALID_DEVICE_REQUEST;

 if(ProfilingProcessId == 0) {
 _HalpPerfInterruptHandler = Buffer[0];
 if(Buffer[0] != NULL)
 ProfilingProcessId = PsGetCurrentProcessId();

 } else {
 if(PsGetCurrentProcessId() != ProfilingProcessId)
 return STATUS_INVALID_DEVICE_REQUEST;
 _HalpPerfInterruptHandler = Buffer[0];
 ProfilingProcessId = (Buffer[0] ? ProfilingProcessId : 0);
 }

 return STATUS_SUCCESS;
 }

 // ...
}

BLACKHAT 2016IMPLEMENTATION CHALLENGES

RECEIVING PMU INTERRUPTS ON WINDOWS

▸ Pass in the interrupt handler function and it will be called when a PMI occurs

NTSTATUS status;
PVOID buffer[1];

buffer[0] = profileSourceInterruptHandler;
status = HalpSetSystemInformation(HalProfileSourceInterruptHandler,
 sizeof(PVOID),
 buffer);

▸ Calling (from the same process) with a NULL pointer deregisters the handler

NTSTATUS status;
PVOID buffer[1];

buffer[0] = NULL;
status = HalpSetSystemInformation(HalProfileSourceInterruptHandler,
 sizeof(PVOID),
 buffer);

BLACKHAT 2016IMPLEMENTATION CHALLENGES

CLEARING PMU INTERRUPTS ON WINDOWS

▸ Another issue encountered involved unmasking PMU interrupts from the
handler

▸ PMU interrupts are delivered by the APIC

▸ In order to acknowledge an interrupt has been handled and to receive future
interrupts, a register in the APIC needs to be written

▸ How this is accomplished depends on the APIC interface used, which differs
between Windows versions

BLACKHAT 2016IMPLEMENTATION CHALLENGES

CLEARING PMU INTERRUPTS ON WINDOWS

▸ Existed since Pentium 4

▸ Windows 7

▸ APIC Registers are accessed through
mapped physical memory

▸ Register access accomplished using
physical memory mapped into kernel
virtual memory via MmMapIoSpace

▸ Introduced in Nehalem microarch

▸ Windows 8/8.1

▸ APIC Registers are accessed via MSRs

▸ Interface can be accessed with a
single __writemsr intrinsic

 __writemsr(LVT_x2APIC_PMI, 0xFE)

xAPIC x2APIC

BLACKHAT 2016IMPLEMENTATION CHALLENGES

RECEIVING PMU INTERRUPTS ON LINUX

▸ Setting this up on Linux is even simpler

▸ Register for a Non-Maskable Interrupt (NMI) handler

register_nmi_handler(NMI_LOCAL,
 our_nmi_handler,
 NMI_FLAG_FIRST,
 “hacfi_pmi");

unregister_nmi_handler(NMI_LOCAL, "hacfi_pmi");

BLACKHAT 2016IMPLEMENTATION CHALLENGES

THREAD TRACKING

▸ We don’t want to monitor the entire system

▸ Monitoring can be restricted to a few “high threat” executables

▸ The PMU doesn’t know anything about thread or process context

BLACKHAT 2016IMPLEMENTATION CHALLENGES

THREAD TRACKING ON WINDOWS

▸ Not so straightforward

▸ Windows has no (explicit) mechanism for executing arbitrary code at thread
context switches

▸ Without some sort of callback when a thread quantum starts execution, we
don’t know when to turn on the PMU counters

▸ This is a problem

BLACKHAT 2016IMPLEMENTATION CHALLENGES

ASYNCHRONOUS PROCEDURE CALLS TO THE RESCUE

▸ “When an APC is queued to a thread, the system issues a software interrupt.
The next time the thread is scheduled, it will run the APC function.” - Microsoft

▸ Perfect! We could just use APCs to get callbacks, and re-queue a new on
whenever we finish the previous

▸ Not quite that simple, since we don’t track all threads and don’w know when a
monitored quantum has ended

▸ Also, scheduling an APC for the current thread, from an APC handler, leads to
an endless APC loop due to the software interrupt

BLACKHAT 2016IMPLEMENTATION CHALLENGES

OUR APC SOLUTION

1. Schedule a kernel APC for every thread we want to track

2. Configure PMU to trap all mispredicted branches

3. When we see an interrupt for the wrong thread, schedule a new APC for the
previous thread on the processor (or all tracked threads that don’t have one
currently queued)

4. Repeat

BLACKHAT 2016IMPLEMENTATION CHALLENGES

OUR APC SOLUTION

CALC.EXE' IEXPLORE.EXE' CALC.EXE' IEXPLORE.EXE' CALC.EXE' FIREFOX.EXE'

Time'

Disable'PMU' Enable'PMU' Disable'PMU' Enable'PMU' Disable'PMU' Enable'PMU'

Interrupts'

APC' APC' APC'

Context'Switch'
Detected'

BLACKHAT 2016IMPLEMENTATION CHALLENGES

THREAD TRACKING ON LINUX

▸ Very straightforward

▸ preempt_notifier_init gives us a simple callback registration for when a thread is
preempted

static struct preempt_notifier notifier;
static struct preempt_ops hacfi_preempt_ops = {
 .sched_in = hacfi_notifier_sched_in,
 .sched_out = hacfi_notifier_sched_out
};

static void hacfi_notifier_sched_in(struct preempt_notifier *notifier, int cpu);

static void hacfi_notifier_sched_out(struct preempt_notifier *notifier,
 struct task_struct *next);

preempt_notifier_init(¬ifier, &hacfi_preempt_ops);

RESULTS

BLACKHAT 2016RESULTS

ANALYSIS OF RESULTS

▸ Performance Overhead

▸ Exploit Detection efficacy testing

BLACKHAT 2016RESULTS

PERFORMANCE

▸ We expect there to be a lot of mispredicted branches leading to excessive
interrupts

▸ There is also a minor fixed overhead for each quantum from the APC

▸ We need to test and see if this is feasible…

BLACKHAT 2016RESULTS

HOW MANY PMU INTERRUPTS ARE WE TALKING ABOUT?

MISPREDICTED INDIRECT CALLS DURING OCTANE

SANDY BRIDGE IVY BRIDGE HASWELL

8,058,444

14,678,76413,557,147

BLACKHAT 2016RESULTS

PERFORMANCE OVERHEAD

Benchmark Baseline HA-CFI EMET

PassMark PerformanceTest  
score: 940

9% 
score: 855

3% 
score: 910

Dromaeo JavaScript 
w/ Internet Explorer

 
325 runs/s

22% 
253 runs/s

32%
220 runs/s

*TESTING PERFORMED ON AN INTEL HASWELL CPU

BLACKHAT 2016RESULTS

EXPLOIT DETECTION TESTING

▸ We needed exploits to test….

▸ We wanted exploits of recent CVEs for Adobe Flash, Internet Explorer, and
Microsoft Office

▸ To Metasploit!

BLACKHAT 2016RESULTS

EXPLOIT DETECTION TESTING - METASPLOIT
VULNERABILITY TARGET DETECTION RATE

CVE-2014-0497 Flash Player 11.7.700.202 100%

CVE-2014-0515 Flash Player 11.7.700.275 100%
CVE-2014-0556 Flash Player 14.0.0.145 100%
CVE-2014-0569 Flash Player 15.0.0.167 100%
CVE-2014-8440 Flash Player 15.0.0.189 100%
CVE-2015-0311 Flash Player 16.0.0.235 100%
CVE-2015-0313 Flash Player 16.0.0.296 100%
CVE-2015-0359 Flash Player 17.0.0.134 100%
CVE-2015-3090 Flash Player 17.0.0.169 90%
CVE-2015-3105 Flash Player 17.0.0.188 100%
CVE-2015-3113 Flash Player 18.0.0.160 100%
CVE-2015-5119 Flash Player 15.0.0.189 100%
CVE-2015-5122 Flash Player 18.0.0.194 100%
CVE-2014-1761 Microsoft Word 2010 100%

BLACKHAT 2016RESULTS

EXPLOIT DETECTION TESTING

▸ Metasploit results were great, but what about the bad guys?

▸ The techniques used in an exploit matter as much or more than the actual
vulnerability itself

▸ We don’t think Metasploit is a great testbed for HA-CFI, due to lack of diversity
in exploitation approach

▸ So we turned to VirusTotal and Exploit Kit samples collected in the wild

BLACKHAT 2016RESULTS

EXPLOIT DETECTION TESTING - VIRUSTOTAL

▸ VirusTotal enabled us to test on real-world malware including previously 0day exploits

▸ Decided that samples from some of the more popular exploit kits would be a good
basis for testing

▸ Using actual exploits from ‘the wild’ should provide a good sample of exploitation
techniques

▸ We chose 48 unique samples for our testbed

7
Exploit Kits

48
Samples

20
Unique CVEs

BLACKHAT 2016RESULTS

EXPLOIT DETECTION TESTING - VIRUSTOTAL

▸ We analyzed each sample and bucketed them into three separate categories
according to exploitation technique

▸ ROP Technique - Uses standard Return Oriented Programming techniques

▸ ROPless Technique A - Flash exploitation technique invoking a wrapper routine
of VirtualProtect to make shellcode executable

▸ ROPless Technique B - Similar to A, but via hijacking Method.apply() in
ActionScript to find and invoke VirtualProtect directly (Vitaly Toropov)

BLACKHAT 2016RESULTS

EXPLOIT KIT DETECTION - HA-CFI VS EMET

CODE EXECUTION
TECHNIQUE # SAMPLES HA-CFI  

DETECTION RATE
EMET 

DETECTION RATE

ROP 37 95% 100%

ROPless  
Technique A 1 100% 0%

ROPless  
Technique B 10 100% 0%

BLACKHAT 2016RESULTS

EXPLOIT KIT DETECTION - BY BUG CLASS

BUG CLASS # CVE’S # SAMPLES HA-CFI  
DETECTION RATE

Out-of-bounds Write 3 6 83.3%

Buffer Overflow 3 6 83.3%

Integer Overflow 2 6 100%

Use-After-Free 4 14 100%

Double Free 2 4 100%

Type Confusion 3 6 100%

Race Condition 1 4 100%

Uninitialized Memory 1 1 100%

CASE STUDIES

BLACKHAT 2016CASE STUDIES

CLASSIC ROP TECHNIQUE

jscript9 + A7541 ; JavascriptOperators::OP_SetElementI  
 call edi

jscript9 + 3BE32  
 xchg eax,esp ; stack pivot gadget  
 retn

jscript9 + 4B0B5  
 mov [ecx+0xC],ax ; CoE help  
 retn

jscript9 + 3BE33  
 retn

kernel32 + 42C15  
 VirtualProtectStub ; mark shellcode +X

▸ CVE-2015-2419 : Double-free in jscript9 (MS15-065)

▸ Magnitude EK Sample

HA-CFI blocks the initial hijack. 
RIP in ISR = jscript9 + 3BE32

StackPivot detected on VirtualProtect

HA-CFI

BLACKHAT 2016CASE STUDIES

ROPLESS TECHNIQUE #1

▸ CVE-2014-0515 : Heap overflow in Adobe Flash (patch in 13.0.0.206)

▸ Found in many Exploit kits and watering hole attacks

▸ ROPless technique re-uses VirtualProtect wrapper function in Flash image

▸ 2 control flow hijacks: one to VP wrapper, second one to shellcode

▸ Bypasses anti-ROP checks since VP invoked somewhat legitimately

BLACKHAT 2016CASE STUDIES

ROPLESS TECHNIQUE #1

▸ CVE-2014-0515 : Heap overflow in Adobe Flash (patch in 13.0.0.206)

Flash32_12_0_0_77 + 3BD636  
 push 1  
 push dword ptr [eax-8]  
 push dword ptr [eax-4]  
 call virtual_protect_wrapper  
 add esp,0xC  
 retn

Flash32_12_0_0_77 + 25783D  
 call dword ptr [eax+0x14]

FileReference.cancel()

FileReference.cancel()
Shellcode

HA-CFI detects and blocks the initial hijack. 
IP at time of interrupt = Flash32_12_0_0_77 + 3BD636

This branch is also mispredicted

HA-CFI

BLACKHAT 2016FUTURE WORK

FUTURE WORK

▸ Hypervisor support to enable hardware features in virtual machines

▸ Last Branch Record (LBR) is not fully supported in popular hypervisors

▸ Performance Monitoring Interrupts (PMI) on overflow is supported in many
hypervisors

▸ We wrote a patch for Xen to enable HA-CFI but it crashes randomly, anyone
want to help?

▸ Just-In-Time code pages are hard to validate with our current whitelist approach

CONCLUSION

BLACKHAT 2016CONCLUSION

EXPLOIT DEFENSE

▸ Exploit defense needs to detect and prevent exploitation at the earliest phase

▸ Compile-time solutions are powerful, but there is room for run-time defense
too

▸ Defenses focused exclusively on techniques such as Return-oriented
Programming can be easily circumvented as new methods get adopted

▸ Exploits will continue to “look normal” to bypass prevention checks

BLACKHAT 2016CONCLUSION

HARDWARE ASSISTED CONTROL FLOW INTEGRITY

▸ CFI is a powerful first step in ensuring only trusted code paths can be executed

▸ Many vulnerabilities must hijack control-flow to achieve code execution

▸ Hardware can be leveraged for strong CFI policy enforcement of applications
at run-time

▸ Many new hardware features are emerging that can be used for exploit
defense

BLACKHAT 2016CONCLUSION

CFI ENFORCEMENT

▸ CFI policies can be more complex

▸ Powerful features of the PMU interrupt on branches for prevention are the high
IRQL and complete access to context information

▸ We have more ideas in the works to detect additional events and apply policies
to detect abnormal read, writes, and cases where attackers stay within our
whitelist

BLACKHAT 2016CONCLUSION

SPECIAL THANKS

▸ Aaron Lamb, Endgame

▸ Gabriel Landau, Endgame

▸ Andrea Limbago, Endgame

▸ Kafeine, malware.dontneedcoffee.com

▸ Fellow researchers and vendors working on exploit defense

http://malware.dontneedcoffee.com

QUESTIONS?

