
HTTP/2 & QUIC

TEACHING GOOD PROTOCOLS TO DO BAD THINGS

PEOPLE - KATE
• Catherine (Kate) Pearce

• @secvalve

• Sr. Security Consultant
(Customer Focused) at Cisco

• Break & report
• Coach the builders
• Research what’s ahead

• Distinguishing Features:
• Loud, Yellow
• Or is that “Loud Yellow”?

PEOPLE - KATE

CCSA,	https://m.flikr.com/#/photos/4nitsirk

• Plays	with	fire,	will	never	have	a	
better	photo	taken	in	her	life:

• Plays	with	fire,	will	never	have	a	
better	photo	taken	in	her	life:

PEOPLE - VYRUS

• Carl Vincent
• Security Consultant

• Distinguishing Features:
• Hates photos
• Red team guy
• Jack of many trades, in search of more!
• Suffers from a severe compulsion to continually

contemplate the best way to control, and/or
destroy, absolutely everything and everyone in
the room – including the room itself.

TEASER 1

Teaser 1

Wait… firewall was blocking ALL TCP?

Teaser 1

Wait… PFSENSE was blocking ALL
TCP?

Teaser 1

Teaser 1

Teaser 2

What type of traffic is this?

Teaser 2

What type of traffic is this?

Teaser 2

What about this?

What’s going on here?

àLet’s talk about upcoming web
transport protocols

What’s going on here?

àLet’s talk about recent web
transport protocols

INTRO
(WHY IS THE WORLD EXPLODING?)

DRIVERS FOR CHANGE

• Increasing scale of…everything
• Flow size increases
• Flow count increases (e.g. web pages)
• Flow diversity increases (e.g. web pages)

• Mobility
• Multiple connections

DRIVERS FOR CHANGE

• Increasing Scale Everything
• Flow Size increases
• Flow count increases (e.g.

web pages)
• Flow diversity increases

(e.g. web pages)
• Mobility
• Multiple connections

0

2

4

6

8

10

12

14

16

0
200
400
600
800

1,000
1,200
1,400
1,600
1,800

AV
G	
RE

Q
U
ES
T	
SI
ZE
	(K

IB
)

TO
TA

L	
SI
ZE
	(K

IB
)

Total	page	size	and	average	flow	size

Total	Bytes	Median Avg	Flow	Size	(Bytes)

TRENDS CHANGING THE WORLD – PAGE
SIZE

0

5

10

15

20

25

0

20

40

60

80

100

120

N
U
M
BE

R	
O
F	
RE

Q
U
ES
TS

N
U
M
BE

R	
O
F	
DO

M
AI
N
S

Number	of	contacted	domains	and	number	of	total	
requests

Domains	Contacted	(median) medianRequest	Count	Median

Network communication needs better capabilities, but
there’s more than one way to do it

1. HTTP/2 - Multiplexes within TCP

2. QUIC - Ignores TCP to handle it itself

These technologies change the way the internet
behaves

WHY	IS	THIS	HAPPENING?

Familiar	Problems
• Opaque	Technology	Shifts

“New”	Problems
• New	Fragmentation	Attacks
• Blind	Network	Security

WHY	DO	YOU	CARE?

TO BE CLEAR:

These technologies are more culture shock than direct
vulnerabilities / concerns

Personally, we like them, and want them to succeed

Network tools and operators need to be ready

I’m skipping ENORMOUS amounts of detail.

BACKGROUND

(HOW DID WE GET HERE)

PREVIOUS WORK

oMPTCP	
oMPTCP	Implications
oMultipath	Implications
oMultipath	“defences”

WHY NOT CHANGE TCP?

Lessons from MPTCP:

• Slow moving, OS- and hardware-dependent

• Middleboxes limit protocol deployability

• Chicken and egg deployment

CURRENT TCP IS RATHER LIMITED

Doesn’t support use cases for:
• High Availability
• Link Aggregation
• Multihoming
• Mesh networking

Makes a lot of round trips
Blocks stream on retransmits

QUIC & HTTP/2

MPTCP

Future of QUIC?

WHY NOT CHANGE TCP?

WHY NOT CHANGE TCP?

TCP Characteristics:
• Handshake design
• Outside user-space
• End-of-line blocking

WHY NOT CHANGE TCP?

• SCTP?
• Same problems, but

amplified

• Application Layer?
• Http/2 & SPDY

• UDP?
• But it doesn’t do

ANYTHING fancy?
• Exactly – QUIC

If you can’t change TCP, what’s left?

BACKGROUND – THE JOURNEY TO HERE

TCP -> MPTCP -> QUIC

BACKGROUND – THE JOURNEY TO HERE

HTTP -> SPDY -> HTTP/2

SO WHAT?

• Have you realized how many security
tools support these?

• It’s… unfortunate

• MPTCP developed surprisingly fast, then faltered

• QUIC was even QUIC-ker
• Already in use on many Google properties

• Youtube, Google search, and more
• Likely several percent of your traffic

• Http/2 has become real-world even faster

REAL-WORLD PREVALENCE

PROTOCOL PREVALENCE
Servers Clients Key usages

MPTCP ~5000? 50 000 000 Apple iOS (Siri),
OVF OverTheBox

QUIC

HTTP2

PROTOCOL PREVALENCE

1	- https://chrome.googleblog.com/2016/04/chrome-50-releases-and-counting.html
2	- https://www.shodan.io/

Servers Clients Key usages

MPTCP ~5000? 50 000 000 Apple iOS (Siri),
OVF OverTheBox

QUIC ~25000 [2] 1 000 000 000+[1] Google Chrome, Google
Duo, Google Websites

HTTP2

1	- http://isthewebhttp2yet.com/measurements/adoption.html#time

PROTOCOL PREVALENCE
Servers Clients Key usages

MPTCP ~5000? 50 000 000 Apple iOS (Siri),
OVF OverTheBox

QUIC ~25000 [2] 1 000 000 000+[1] Google Chrome, Google
Duo, Google Websites

HTTP2 200 000+
[3] ~2 000 000 000 [4]

Chrome, Edge, Firefox
Twitter, Facebook, Yahoo,
Google

1	- https://chrome.googleblog.com/2016/04/chrome-50-releases-and-counting.html
2	- Shodan
3	- http://isthewebhttp2yet.com/measurements/adoption.html#time
4	- Uncertain,	every	up-to-date	popular	browser	supports	it

REAL-WORLD PREVALENCE

9	of	19	Alexa Top	Sites	support	H2	or	SPDY

ABOUT
(WHAT’S IN FRONT OF US, AND

HOW DO THESE WORK?)

COMMON GOALS

• Improve perceived performance
• Improve latency
• Single connection from client to server

• Overlap with goals and use cases
• Easier to understand QUIC and HTTP/2 together

COMMON FEATURES

•Multiplexed Requests

•Prioritized Requests

•Compression

CURRENT

WHY USE MULTIPLE CONNECTIONS?

MULTIPLEXING

A Single Connection
Contains N Streams

DATA	FLOWS

TRANSPORT: HTTP VS HTTP/2

TCP	Connection

Http1/1

HTTP/2	
Connection

Http1/1

HTTP/2	
Stream

Http1/1

HTTP/2	
Stream

Http1/1

HTTP/2	
Stream

H2

TLS	Session

Browser

Wire

Http1/1

TCP	
Connection

TLS	Session

Http1/1

TCP	
Connection

TLS	Session

Http1/1

TCP	
Connection

TLS	Session

Http1/1

TCP	
Connection

TLS	Session

Browser

Wire

Classic	HTTP

HTTP/2	
Stream

TCP	Connection

CONCEPTUALLY

Http1/1

HTTP/2	
Stream

HTTP/2	
Connection

Http1/1

HTTP/2	
Stream

Http1/1

HTTP/2	
Stream

Http1/1

HTTP/2	
Stream

H2C

TCP	Connection

Http1/1

HTTP/2	
Stream

HTTP/2	
Connection

Http1/1

HTTP/2	
Stream

Http1/1

HTTP/2	
Stream

Http1/1

HTTP/2	
Stream

H2

TLS	Session

TRANSPORT: HTTP/2 VS QUIC

Http1/1

HTTP/2	
Stream

HTTP/2	
Connection

Http1/1

HTTP/2	
Stream

Http1/1

HTTP/2	
Stream

Http1/1

HTTP/2	
Stream

QUIC	
Connection

QUIC
TCP	Connection

Http1/1

HTTP/2	
Stream

HTTP/2	
Connection

Http1/1

HTTP/2	
Stream

Http1/1

HTTP/2	
Stream

Http1/1

HTTP/2	
Stream

H2

TLS	Session
TLS	

Session
QUIC	
Stream

QUIC	
Stream

QUIC	
Stream

QUIC	
Stream

UDP	
Connection

QUIC	
Packet

QUIC	
Packet

QUIC	
Packet

QUIC	
Packet

Note:	QUIC	Manages	H2	Streams	
if	it	is	the	transport

ABOUT	– APPLICATION	PROTOCOLS

oHTTP
o~20 years old
oUniplex
oText Based
oRuns over TCP

oHTTP/2
oTransport encapsulates

HTTP to add:
oBinary Framing
oMultiplexed Requests
oPrioritized Requests
oCompression
oServer Pushed Streams

H2 STRUCTURE

Frame Header

Transport Layer
FRAME 1

Frame Payload

Frame Header
FRAME 2

Frame Payload

Frame Header
FRAME n

Frame Payload

H2 STRUCTURE

Frame Header

Transport Layer

FRAME 1

Frame
Payload

Frame Type Field 1

Frame Type Field n
Frame Type Field n

Frame Header
FRAME n

Frame
Payload

Frame Type Field 1

Frame Type Field n
Frame Type Field n

H2 STRUCTURE
Transport Layer

Frame Header
FRAME 1

Frame
Payload

Frame Type Field 1

Frame Type Field n
Frame Type Field n

Frame Header
FRAME n

Frame
Payload

Frame Type Field 1

Frame Type Field n
Frame Type Field n

Frame Header
FRAME n

Frame
Payload

Frame Type Field 1

Frame Type Field n
Frame Type Field n

Frame Header
FRAME n

Frame
Payload

Frame Type Field 1

Frame Type Field n
Frame Type Field n

Frame Header
FRAME n

Frame
Payload

Frame Type Field 1

Frame Type Field n
Frame Type Field n

Stream 1

FRAME 1

FRAME n

FRAME n

FRAME n FRAME n
Stream 2

FRAME nFRAME n

FRAME n FRAME n

FRAME n Stream n

ABOUT – HTTP/2
• Http2 composed of:

• One connection per origin with a number of bidirectional, binary framed,
streams per connection

• Each stream has an identifier – 31-bit unsigned int, ALWAYS incrementing,
never reused, odd for client initiated, even for server initiated

• “message” analogous to HTTP request/response, composed of a
sequence of frames

See https://hpbn.co/http2/

HTTP/2 CONNECTION SETUP

• Connection Establishment
• Upgrade

• Upgraded connections treat the first HTTP 1.1 as stream id 0x01, and switch
to H2 framing once it is done…

• Alt-svc
• ALPN

• H2, H2c => H2 over TLS and H2 clear-text respectively

• Note:
• TLS with NPN <= Not supported, replaced by ALPN

HTTP/2 CONNECTION SETUP

• Prior Knowledge (Client-> Server):
• “The client connection preface starts with a sequence of 24

octets, which in hex notation is:
0x505249202a20485454502f322e300d0a0d0a534d0d0a0d0a

That is, the connection preface starts with the string "PRI *
HTTP/2.0\r\n\r\nSM\r\n\r\n“
https://tools.ietf.org/html/rfc7540#section-3.5

HTTP/2 CONNECTION SETUP

• No Prior Knowledge:
• (http) Upgrade Header in client request (with a base64 SETTINGS

payload), responds with an HTTP 101 “switching protocols”
HTTP/1.1 101 Switching Protocols
Connection: Upgrade
Upgrade: h2c”

• (https) TLS with ALPN h2, or upgrade header with h2

• Note:
H2, H2c => h2 over tls and h2 cleartext respectively
TLS with NPN <= Not supported, replaced by ALPN
Upgraded connections treat the first http 1.1 as stream id 0x01, and switch to H2 framing once it is
done…

H2 FRAMES
• Fixed-length header

• Variable Length Content

• Type defined by an 8-bit type code.
Current Types:
• DATA [Data+Padding]
• HEADERS
• PRIORITY
• RST_STREAM
• SETTINGS
• PUSH_PROMISE
• PING
• GOAWAY
• WINDOW_UPDATE
• CONTINUATION

Length	(24)

Type	(8)

Stream	Identifier	(31)

Flags	(8)

R

Frame	Payload	…

ABOUT – HTTP/2

Header Compression
• Compressed with HPACK (Huffman encoding),

using:
• A static table of common entries
• A dynamic table of other items

ABOUT – HTTP/2

HTTP/2 Pitfalls?
• Connection reuse

“ Connections that are made to an origin server, either directly or
through a tunnel created using the CONNECT method (Section 8.3),
MAY be reused for requests with multiple different URI authority
components.”

• Server push

ABOUT – QUIC

• Takes the things from HTTP/2 and adds the network layer as well

• QUIC Connections combine encryption and connection
handshakes

QUIC
(QUICK UDP INTERNET CONNECTIONS)

UDP transport protocol
- Google championed

successor to SPDY
- Latency optimized
- Reliable, multiplexed
- Always encrypted

Open	Source

User	Space	
-No	OS	requirements
- Fast-evolving

ABOUT – QUIC

QUIC Also Adds:

• 0-RTT
• Padding
• FEC (currently disabled)
• Multipath (proposed in future)

• ONE QUIC Connection
Contains

• N Streams

QUIC	DATA	FLOWS

• ONE QUIC Packet
Contains

• 0-1 Frame Packets
Each containing

• N frames

QUIC	PACKET	STRUCTURE

UDP

QUIC Public Header

QUIC Frame Packet

QUIC Frame 1

UDP Packet

AEAD Data
QUIC Private Header

UDP Packet

QUIC Packet

Frame Packet

Frame

FrameQUIC Frame 2

QUIC Frame n

Frame

U
ne

nc
ry

pt
ed

Au
th

en
tic

at
ed

En
cr

yp
te

d
Au

th
en

tic
at

ed

QUIC SETUP (BROWSER)

• HTTP Header Advertisements
• Alt-svc:

• RFC 7838
• alt-svc quic="www.google.com:443"; p="1";

ma=600,quic=":443"; p="1"; ma=600
• Alternate-protocol

• Old/deprecated

ABUSING
(WHAT CAN A NEFARIOUS ACTOR DO?)

SO WHY ARE THESE INTERESTING OR
DANGEROUS?

• Http/2:
• Always encrypted
• Binary framing
• Compression

• Must parse to analyze

• Much more complex state
• Many side channels

• QUIC:
• Encrypted, verified back to previous

connections
• User space

• Doesn’t require a socket

• Difficult to fingerprint
• VERY few tools available
• More reliable than TCP over UDP

ABUSING – THE OBVIOUS

oImplementation	flaws
oBinary	framing
oOften	implemented	in	unmanaged	code
o…

oProtocol	ambiguities
oMANY	implementations
oFast-evolving
oScattered	documentation

ABUSING – NEW PROTOCOLS BYPASS
MONITORS

oIDS	/	Proxies

DEMO 1

H2

QUIC

H2

QUIC

ABUSING – NEW PROTOCOLS AND OLD
TOOLS

[Quick Aside – GoLang payload injection tool by Vyrus
used in these demos]

DEMO 2

ABUSING – NEW PROTOCOLS, NEW
ATTACKS

• Easy: Port-based QUIC Masquerading
• Simple: Side channels and Scrambling
• Moderate: Protocol-Embedded stego (e.g. DNS TXT field)
• Complex: Polyglots
• Extreme: Steganographic Polyglots
• Insane: Steganographic Multiplexed Polyglots

ABUSING – NEW PROTOCOLS, NEW
ATTACKS

oFragmentation	&	agility
oMulti-connection
oMulti-path
oMulti-stream

CURRENT

WHY USE MULTIPLE CONNECTIONS?

MULTIPLEXING

MULTIPATH / MULTICONNECTION

ABUSING – NEW PROTOCOLS, NEW
ATTACKS

• And if we combine multiplexing and
multiconnection/path…

ABUSING – NEW PROTOCOLS, NEW
ATTACKS

oFragmentation & agility
oMulti-connection
oMulti-path
oMulti-stream

MULTIPATH MULTIPLEXED

ABUSING – NEW PROTOCOLS, NEW
ATTACKS

oCross-path fragmentation

oCross-path agility

oMulti-stream fragmentation

oMulti-stream agility

ABUSING – NEW PROTOCOLS, NEW
ATTACKS

• Forward Error Correction
• REMOVED AT PRESENT -

https://groups.google.com/a/chromium.org/d/msg/proto-
quic/Z5qKkk2XZe0/yzAqOgNWHgAJ
https://docs.google.com/document/d/1Hg1SaLEl6T4rEU9j-
isovCo8VEjjnuCPTcLNJewj7Nk/edit

• Fake Packet Injection (False Checksums)
• Dropping/Corrupting packets

ANALYZING &
DEFENDING

(WHAT DO WE DO WHEN WE SEE
THESE THINGS)

ANALYZING & DEFENDING – DETECT CLIENT
TRAFFIC

- HTTP/2	Client
- ALPN
- Upgrade	headers

- QUIC	Client	Traffic
- UDP	Ports	80	and	443
- Bidirectional	patterns	of	communications	
- No	static	identifier	in	header,	you	have	to	parse	it

- QUIC	Detector

DEMO 3

ANALYZING & DEFENDING – DETECT
SERVERS

- HTTP/2 Server
- ALPN
- Upgrade Headers

- QUIC Server Traffic
- UDP Ports 80 and 443
- QUIC Scanner…

DEMO 4

ANALYZING & DEFENDING - BLOCK
- H2

- Transparent	proxies
- Don’t	support	HTTP2	outbound
- Rewrite	or	remove	upgrade	headers

- HTTPS	ALPN
- HTTP/H2	on	nonstandard	ports	(80,	443,	8080,	8443)

- QUIC
- UDP	Ports	80	and	443
- Application/policy	Settings	(Chrome)
- Fingerprinted/detected/parsed	QUIC

ANALYZING & DEFENDING - ANALYSE
- H2

- Wireshark
- Chrome
- H2i
- Nghttp
- curl

- QUIC
- Wireshark
- Chrome

ANALYZING HTTP/2
IN WIRESHARK

Use an
SSLKEYLOGFILE

The dissector’s
pretty good

ANALYZING HTTP/2
IN WIRESHARK

Use an
SSLKEYLOGFILE

The dissector’s
pretty good

ANALYZING HTTP/2
IN CHROME

chrome://net-
internals/#http2

ANALYZING HTTP/2 IN CHROMEDev	tools

ANALYZING HTTP/2 IN CHROMEDev	tools

ANALYZING HTTP/2 IN CHROME-HTTP2-LOG-PARSER

ANALYZING HTTP/2 IN H2I

ANALYZING HTTP/2 IN NGHTTP

ANALYZING HTTP/2 IN CURL

• Chrome:	

• chrome://net-internals/#quic

DEBUGGING	QUIC

• Chrome:	

chrome://net-internals/#http2

ANALYZING	QUIC

• Wireshark:

QUIC	dissector	=>

ANALYZING	QUIC

ANALYZING & DEFENDING - INSPECT
- H2

- Doable if they aren’t changing the implementation
- Look for non-typical behavior

- Non-monotonous or non-increasing stream IDs
- Strange content sent over control streams

- QUIC
- Difficult due to crypto setup, likely requires new tools

CONCLUSIONS
(WHAT	DOES	IT	MEAN?)

CONCLUSIONS	– FUTURE	WORK

- Other protocols

- Web RTC

- Extended application layer multiplexing

- Multipath QUIC, QUIC FEC

CONCLUSIONS	- SUMMARY

- Tools MUST keep up with tech

- If tools can’t, then people must be aware

- Even if tools and people are away, playtime is
over.

BRIEF	TAKEAWAYS	- SOUNDBYTES

• Technology is moving faster and faster:
• Increasingly driven by large vendors, not

standards bodies
• Network security technology is surprisingly

unaware of many application layer
techniques

• Get ready for userspace network stacks

• Get ready for a lot more context heavy,
encrypted, and multiplexed
communications

Soundbytes
• HTTP/2 and QUIC provide enhanced user

experience, making sites load faster and
smoother than ever before

• HTTP2 is already bigger than IPv6, QUIC is
already Bigger than MPTCP

• > 1 billion devices using these technologies

• These protocols complicate network security
• Designed to be more private than the legacy

Internet

• Security tools do not understand them
• Even if security tools understand them, they offer so

much more complexity that an attacker can hide in

QUESTIONS

Twitter: @secvalve
katpearc@cisco.com

Catherine (Kate) Pearce

carvince@cisco.com

Carl Vincent

REFERENCES 1 – MPTCP
• [MPTCP-A] – Pearce, C and Thomas, P - Multipath TCP: Pwning Today’s Networks with Tomorrow’s Protocols -

https://www.blackhat.com/docs/us-14/materials/us-14-Pearce-Multipath-TCP-Breaking-Todays-Networks-With-
Tomorrows-Protocols.pdf (slides) and https://www.blackhat.com/docs/us-14/materials/us-14-Pearce-Multipath-
TCP-Breaking-Todays-Networks-With-Tomorrows-Protocols-WP.pdf (Paper)

• [MPTCP-B] – Pearce, C - Multipath Madness, MPTCP, and Beyond - feat HTTP evasive fragmentation –
Hushcon East 2015, Kiwicon 9 - https://kiwicon.org/the-con/talks/#e206

• [MPTCP-C] – Pearce, C & Zeadally, S - Ancillary Impacts of Multipath TCP on Current and Future Network
Security - http://www.computer.org/csdl/mags/ic/2015/05/mic2015050058-abs.html

• [MPTCP-D] Barré, S., Paasch, C. & Bonaventure, O., 2011. Multipath TCP: from theory to practice. Netw. 2011,
pp.1–42. Available at: http://link.springer.com/chapter/10.1007/978-3-642-20757-0_35
http://datatracker.ietf.org/doc/draft-barre-mptcp-impl/ .

• [MPTCP-E] Bonaventure, O., 2012. An overview of Multipath TCP. ; login Mag. …, pp.17–23. Available at:
http://dial.academielouvain.be/handle/boreal:114081 .

• [MPTCP-F] Raiciu, C. et al., 2012. How hard can it be? designing and implementing a deployable multipath TCP.
NSDI, (1). Available at: https://www.usenix.org/system/files/conference/nsdi12/nsdi12-final125.pdf .

REFERENCES 2 – HTTP/2
• [HTTP2-A] Akamai HTTP/2 Demo - https://http2.akamai.com/demo
• [HTTP2-B] HTTP/2 - http://http2.github.io/http2-spec/
• [HTTP2-C] caniuse HTTP/2 - http://caniuse.com/#feat=http2
• [HTTP2-D] chrome platform status - https://www.chromestatus.com/features/5152586365665280
• [HTTP2-E] IE platform status - https://dev.windows.com/en-us/microsoft-edge/platform/status/http2
• [HTTP2-F] RFC 7540 - Hypertext Transfer Protocol Version 2 (HTTP/2) - https://tools.ietf.org/html/rfc7540
• [HTTP2-G] http/2 spec - http://http2.github.io/http2-spec/index.html
• [HTTP2-H] HTTP2 – Daniel Steinberg - https://daniel.haxx.se/http2/http2-v1.2.pdf
• [HTTP2-I] HTTP2 Explained – Daniel Steinberg - http://www.sigcomm.org/sites/default/files/ccr/papers/2014/July/0000000-0000017.pdf
• [HTTP2-J] Scapy-http2 - https://github.com/alexmgr/scapy-http2
• [HTTP2-k] HTTP/2 For Web Application Developers – nginx - https://www.nginx.com/wp-

content/uploads/2015/09/NGINX_HTTP2_White_Paper_v4.pdf
• [HTTP2-L] Attacking HTTP2 Implementations - https://yahoo-security.tumblr.com/post/134549767190/attacking-http2-implementations

and http://www.slideshare.net/JohnVillamil/attacking-http2-implementations-1
• [HTTP2-M] Sans Infosec Handlers Diary Blog – RFC 7540 – HTTP/2 Protocol - https://isc.sans.edu/diary/RFC+7540+-

+http2+protocol/19799
• [HTTP2-N] http2fuzz – HTTP2 Fuzzer Written in golang - https://github.com/c0nrad/http2fuzz
• [HTTP2-O] Tools for debugging, testing and using HTTP/2 - https://blog.cloudflare.com/tools-for-debugging-testing-and-using-http-2/
• [HTTP2-P] HTTP/2 Considerations and Tradeoffs - https://insouciant.org/tech/http-slash-2-considerations-and-tradeoffs/
• [HTTP2-Q] Shodan – Tracking HTTP/2 Adoption - https://blog.shodan.io/tracking-http2-0-adoption/

REFERENCES 3 - QUIC
• [QUIC-A] Hamilton, R; Iyengar, J; Swett, I; Wilk, A - “QUIC: A UDP-Based Secure and Reliable Transport for HTTP/2 - draft-tsvwg-quic-protocol-02” - https://tools.ietf.org/html/draft-tsvwg-

quic-protocol-02

• [QUIC-B] Chromium Source Tree for QUIC - https://chromium.googlesource.com/chromium/src/+/master/net/quic

• [QUIC-C] Playing with QUIC - https://www.chromium.org/quic/playing-with-quic

• [QUIC-D] QUIC: next generation multiplexed transport over UDP - https://www.youtube.com/watch?v=hQZ-0mXFmk8

• [QUIC-E] QUIC FAQ For Geeks - https://docs.google.com/document/d/1lmL9EF6qKrk7gbazY8bIdvq3Pno2Xj_l_YShP40GLQE/edit?pref=2&pli=1

• [QUIC-F] QUIC Design Document - https://docs.google.com/document/d/1RNHkx_VvKWyWg6Lr8SZ-saqsQx7rFV-ev2jRFUoVD34/edit?pref=2&pli=1

• [QUIC-G] Pearce, C – Multipathed, Multiplexed, Multilateral Transport Protocols - Decoupling transport protocols from what's below – 2016 Asia Pacific Regional Internet Conference on
Operational Technologies (APRICOT 2016) https://conference.apnic.net/data/41/cpearce-multipath-_-apricot-3_1456107769.pdf

• [QUIC-H] Pearce, C – Transport Futures: Moving Targets and Multi-dimensional Fragmentation - Multipathed, Multiplexed and Multilateral Network Security - Australian Cyber Security
Conference 2016 - http://acsc2016.com.au/program/?IntCatId=27&IntContId=7741#futures

• [QUIC-I] Block QUIC Protocol, Squid Knowledgebase - http://wiki.squid-cache.org/KnowledgeBase/Block%20QUIC%20protocol

• [QUIC-J] libquic - https://github.com/devsisters/libquic

• [QUIC-K] goquic - https://github.com/devsisters/goquic

• [QUIC-L] Fortinet Technical Note: How To Block/Disable QUIC - http://kb.fortinet.com/kb/documentLink.do?externalID=FD36680

• [QUIC-M] Nancy Sepuran, Faster Protocols and the Future of Next-Generation Firewalls - http://www.endtoend.com/faster-protocols-future-next-generation-firewalls/

• [QUIC-N] - https://www.chromestatus.com/features#quic

• [QUIC-O] On the Security of TLS 1.3 and QUIC Against Weaknesses in PKCS#1 v1.5 Encryption - Jaeger, T et al. -
https://www.nds.rub.de/media/nds/veroeffentlichungen/2015/08/21/Tls13QuicAttacks.pdf

• [QUIC-P] (Slides) On the Security of TLS 1.3 (and QUIC) Against Weaknesses in PKCS#1 v1.5 Encryption - https://www.internetsociety.org/sites/default/files/T8-jager.pdf

• [QUIC-Q] QUIC and TLS – Adam Langley - https://www.ietf.org/proceedings/92/slides/slides-92-saag-5.pdf

• [QUIC-R] QUIC Crypto - https://docs.google.com/document/d/1g5nIXAIkN_Y-7XJW5K45IblHd_L2f5LTaDUDwvZ5L6g/edit

REFERENCES 4 - OTHER

• [Other-1] TLS 1.3 SPEC - https://tlswg.github.io/tls13-spec/

• [Other-2] Tim Taubert - MORE PRIVACY, LESS LATENCY

• Improved Handshakes in TLS version 1.3 - https://timtaubert.de/blog/2015/11/more-privacy-less-latency-improved-
handshakes-in-tls-13/

