
O-checker: Detection of Malicious Documents through Deviation from File
Format Specifications

Yuhei Otsubo
National Police Agency, Japan

National center of Incident readiness and Strategy for Cybersecurity, Japan
Institute of Information Security, dgs157101@iisec.ac.jp

Mamoru Mimura
JMSDF Command and Staff College

Institute of Information Security

Hidehiko Tanaka
Institute of Information Security

Abstract

Documents containing executable files are often used in
targeted email attacks in Japan. We examine various doc-
ument formats (Rich Text Format, Compound File Bi-
nary and Portable Document Format) for files used in
targeted attacks from 2009 to 2012 in Japan. Almost all
the examined document files contain executable files that
ignore the document file format specifications. There-
fore, we focus on deviations from file format specifi-
cations and examine stealth techniques for hiding ex-
ecutable files. We classify eight anomalous structures
and create a tool named “o-checker” to detect them. O-
checker detects 96.1% of the malicious files used in tar-
geted email attacks in 2013 and 2014. There are far fewer
stealth techniques than vulnerabilities of document pro-
cessors. Additionally, document file formats are more
stable than document processors themselves. Accord-
ingly, we assert that o-checker can continue detecting
malware with a high detection rate for long periods.

1 Introduction

The threat of targeted email attacks has increased in
Japan in recent years. Many Japanese organizations
have received targeted emails, some of which resulted in
leaked confidential information. There were many such
incidents in 2015.

In a targeted email attack, an email requests that the
recipient open an attached file or click on a hyperlink
in the email body. Over 60% of the attachment files in
targeted email attacks occurring in 2014 were document
files [21]. When the attachment file is an executable file,
we can avoid malware by checking the file extension.
However, when the attachment file is a document file,
we cannot determine risk from the file extension alone.

Malicious document files used in targeted email at-
tacks often contain an executable file embedded within
a decoy document file. Figure 1 shows a typical struc-

���������	
������	����

�������	���������	��	�

���������	
������	����

������� ��
�

�����	
������	����

����������	����

�����	��
�

�����	
������	��������������	����

���	���	���������	

������	����

�������	��
�

�����	��
�

�������	��������	�������

Figure 1: Structure and execution process of a malicious
document file.

ture and execution process of a malicious document file.
The left-hand side of Fig. 1 shows a typical structure

for a malicious document file. A malicious document file
mainly consists of four parts: exploit code, shell code, an
executable file, and a decoy document file. Exploit code
is a program designed to exploit a document processor
vulnerability. Shell code is a program designed to cre-
ate an executable file and a decoy document file, and to
launch the executable file.

The right-hand side of Fig. 1 shows a typical execution
process of a malicious document file. The exploit code
is executed when a malicious document file is opened,
leading to execution of the shell code.

Generally, document processors process exploit code,
which targets vulnerabilities in the document processor
itself, but the executable file and decoy document file are
rarely processed by document processors. If these files
are processed, the displayed content is garbled, or the
software leads to strange behavior. The executable file
is thus present in the stored content, but not displayed to
the user. This mismatch between displayed and stored
content is the key detection method in o-checker.

O-checker is a tool for detecting malicious document
files. It does not analyze exploit code, shell code, ex-
ecutable files, or decoy documents. Instead, o-checker

1

Table 1: Summary of Specimens 1.
Type Ext. Num. Avg. Size (KB)
RTF rtf 98 266.5
CFB doc 36 252.2

xls 49 180.4
jtd/jtdc 17 268.5

PDF pdf 164 351.2
Total - 364 291.8

Table 2: Vulnerabilities targeted in 2012 by Specimens 1.
Vulnerability Num. Rate

MS09-67 8 / 130 6.2%
MS10-087 31 / 130 23.4%
MS11-021 2 / 130 1.5%
MS12-027 51 / 130 39.2%

APSB09-04 2 / 130 1.5%
APSB10-02 1 / 130 0.8%
APSB10-07 3 / 130 2.3%
APSB10-21 8 / 130 6.2%
APSB11-07 2 / 130 1.5%
APSB11-08 10 / 130 7.7%
APSB11-30 1 / 130 0.8%
APSB12-03 1 / 130 0.8%
APSB12-18 10 / 130 7.7%
APSB12-22 5 / 130 3.8%

None 2 / 130 1.5%

examines deviation from file format specifications. O-
checker runs quickly and detects malicious document
files containing executable files at a fairly high rate. This
paper describes the detection methods of o-checker and
evaluates its effectiveness.

2 Structure of document files

We analyzed 364 document files gathered from various
Japanese organizations. These specimens were used in
targeted email attacks from 2009 to 2012, and each con-
tained an executable file. We call these 364 specimens
Specimens 1.

Table 1 shows a summary of Specimens 1. The spec-
imens consist of three file formats: Rich Text Format
(RTF; rtf files), Compound File Binary (CFB; doc, xls,
or jtd/jtdc files), and Portable Document Format (PDF;
pdf files).

Among Specimens 1, 130 document files were used in
2012. Table 2 shows the vulnerabilities targeted by these
130 files. The most frequently targeted vulnerability was
MS12-027. The total in the Rate column (rightmost col-
umn of Table 2) is more than 100% because some of the
specimens targeted multiple vulnerabilities.

Table 3: Rate of each anomalous structure.
Type Anomalous structures Num. Rate
RTF AS1 97 / 98 99.0%
CFB AS2 79 / 102 77.5%

AS3 92 / 102 90.2%
AS4 99 / 102 97.1%
AS5 98 / 102 96.1%

AS2, AS3, AS4, or AS5 100 / 102 98.0%
PDF AS6 81 / 164 49.4%

AS7 72 / 164 43.9%
AS8 104 / 164 63.4%

AS6, AS7, or AS8 163 / 164 99.4%

Although there are various vulnerabilities of document
processors [7, 5, 6, 3, 4], the stealth techniques for hid-
ing executable files were simple. In the case of RTF or
CFB files, almost all the positions of the contained exe-
cutable files were the end of the file. In the case of PDF
files, almost all the positions were the end of the file or
the inside of a stream. On the other hand, the contained
executable files were usually encrypted to avoid detec-
tion based on pattern matching. Therefore, we examined
the specimens for deviations from file format specifica-
tions. The examination revealed eight anomalous struc-
tures (AS).

• RTF: AS1

• CFB: AS2, AS3, AS4, and AS5

• PDF: AS6, AS7, and AS8

Table 3 shows that we could classify almost all the spec-
imens according to the eight anomalous structures.

The following sections describe the eight anomalous
structures.

2.1 RTF
2.1.1 Structure

This section describes an overview of the RTF specifica-
tion.

RTF, which was developed by Microsoft, is a file for-
mat used to display documents [16]. A standard RTF file
consists only of 7-bit ASCII characters. RTF consists of
control words, control symbols, and groups.

Figure 2 shows an example of RTF code. Braces ({
and }) define a group, and groups can be nested. A back-
slash starts a RTF control code. A valid RTF document
contains a group that starts with the \rtf control code.
The first character of RTF code is {. The end of file
marker (EOF) is }, corresponding to the first {. Doc-
ument processors usually do not process data after the
EOF.

2

{\rtf

Hello,\par

{\b world}!\par

}

Figure 2: Example of an RTF file.

2.1.2 Anomalous Structures

AS1:Attached data after EOF

An EOF should be located at the end of the file. How-
ever, the RTF files in the specimens often had an EOF in
the middle of the file, after which an executable file was
embedded.

2.2 CFB
2.2.1 Structure

This section describes the CFB specification.
CFB, which was developed by Microsoft, is a struc-

tured storage compound file implementation [14], also
known as OLE (Object Linking and Embedding [15]) or
COM (Component Object Model [12]). DOC (used by
Microsoft Word), XLS (used by Microsoft Excel) and
PPT (used by Microsoft PowerPoint) files have a CFB
file format. OOXML [10] (DOCX, XLSX, and PPTX)
files are usually zip containers that are encrypted follow-
ing the CFB file format. JTD and JTDC files too follow
a CFB file format. These are used in the Japanese Word
Processor “Ichitaro,” which is developed by JustSystems.
“Ichitaro” is widely used in Japan, making it a common
target when a vulnerability is found.

A CFB file is a single file that contains a nested hier-
archy of storages and streams. Figure 3 shows the CFB
file hierarchy, which is analogous to a file system hier-
archy; storages are analogous to directories, and streams
are analogous to files.

Figure 4 shows a CFB structure. A CFB file is divided
into a 512-byte header and equal-length sectors. Subse-
quent sectors are identified by a 32-bit non-negative in-
teger called the sector number. A stream is divided and
stored into sectors.

A group of sectors can form a sector chain, a linked
list of sectors forming a logical byte array. In a sector
chain, a sector number is used to identify the next sector
in the chain. “−1” and “−2” are special sector numbers.
“−1” is used to represent free sectors, and “−2” is used
to represent chain termination. The left side of Fig. 4
shows two sector chains. A sector chain (blue) starts at
sector #2, and ends at sector #8. Another sector chain
(red) starts at sector #5, and ends at sector #7.

Sector chains are defined in a FAT (File Allocation Ta-
ble). DE (Directory Entry) manages the name, size, and

������������	

������	�
 ������	 �

������	��

���	����

���	��� ���	���

Figure 3: CFB hierarchy.

������

����	
��������	������

��������	����

�����	

�����	

����	�����

�����	�

�

�

�

�

�

��������	�� � ��

!�

!�

�

"

!�

#

��������	����

�����

$ ����

�����

�����	$���%	�&'

��(�%	�)�*#	+���'%	�

�����	$���%	�&'

��(�%	�)��#	+���'%	�

����,�	$���%	���

��(�%	! +���'%	!

����	
��������	�����

�����	�#

�����	�-

�����	
"

-

!�

!�

Figure 4: CFB structure.

parent-child relation of each stream or storage. The po-
sition of the FAT and the DE are defined in the header.

2.2.2 Anomalous Structures

AS2: Anomalous file size

The file size should equal 512 (the header size) plus a
multiple of the sector size. We define Sizefile as the file
size and Sizesector as the sector size. The following equa-
tion should thus hold:

(Sizefile −512) mod Sizesector = 0. (1)

In the CFB files in the specimens, the size of the em-
bedded executable file rarely equals a multiple of the sec-
tor size, because the executable file is forcibly included
in the CFB file. Therefore, Eq. (1) is usually not estab-
lished.

AS3: Data not referenced by the FAT

As we mentioned, sector numbers are 32-bit (4-byte)
non-negative integers. Therefore, one sector correspond-
ing to the FAT can manage Sizesector ÷ 4 sectors. We
define CountFAT as the number of sectors corresponding
to the FAT and SizeFAT as the maximum size of sectors
managed by the FAT. The SizeFAT is obtained by the fol-
lowing equation:

SizeFAT = CountFAT ×Sizesector ÷4. (2)

3

�����������	�

��	����

	���

�	�
	�

�����

�	����

�����

�����	����

�����

���	�����

�	����������

�������

�	����������

���	�����

	����	�

����������	

���	����

	���

�������	��

�	������������

����������

���	��

�	�����������

�������	��

��		��	�����
��	������	�

���	

Figure 5: Example of a sector hierarchy.

All sectors are managed by the FAT. Therefore, the
difference between the file size and 512 (the header size)
should be less than or equal to SizeFAT. The following
formula should thus hold:

Sizefile −512 ≤ SizeFAT. (3)

In CFB files in the specimens, the executable file
is forcibly included into document files, ignoring FAT
rules, so the file size exceeds SizeFAT and Eq. (3) does
not hold.

AS4: Free sector in the last sector

Free sectors are not generally processed by document
processors, allowing use of free sectors to store hidden
data. Specific locations for free sectors are not defined.
We analyzed various CFB files not containing executable
files, and found no CFB files whose last sector is a free
sector, which should be in the middle of a CFB file. In the
CFB files in the specimens, however, last sectors were
free sectors.

AS5: Unaccounted-for sectors

A CFB file consists of six sector types, namely FAT, DI-
FAT (Double-Indirect FAT), miniFAT, DE, stream, and
free sector. The DIFAT manages sectors corresponding
to the FAT. MiniFAT sectors manage streams whose size
is less than a constant size, defined in the header.

A CFB file can be regarded as a hierarchy of sectors
(Fig. 5), with the header as the hierarchy root. Generally,
all sectors are located within this sector hierarchy.

We can usually classify sectors according to their type,
but in CFB files in the specimens, sectors containing the
executable file appear outside the hierarchy.

%PDF-1.1

1 0 obj … endobj

�

5 0 obj … endobj

xref

0 5

0000000000 65535 f

0000000012 00000 n

�

0000000632 00000 n

trailer

<< … >>

statxref

756

%%EOF

���������	�
���

����

�����������������
���

��
����

��������������������

Figure 6: Structure of a PDF file.

2.3 PDF

2.3.1 Structure

This section provides an overview of the PDF specifica-
tion.

PDF, which is developed by Adobe Systems, is a file
format for document display. The PDF specification was
officially released as an open standard on July 1, 2008,
and is now published by the International Organization
for Standardization as ISO 32000-1:2008 [9]. Adobe
Systems has extended the PDF specification as part of
its “Adobe Extensions” [1].

A conforming PDF file should be constructed of four
elements (Fig. 6):

• Comments, which have no semantics (except for
%PDF-n.m and %%EOF)

• A body containing the objects that make up the doc-
ument contained in the file

• A cross-reference table containing information
about indirect objects in the file

• A trailer giving the location of the cross-reference
table and of certain special objects within the file
body

The trailer of a PDF file enables a conforming reader
to quickly find the cross-reference table and certain spe-
cial objects. The last line of the file should contain only
the end-of-file marker, %%EOF. The two preceding lines
should contain, once per line and in order, the keyword
startxref and the byte offset from the beginning of
the file to the beginning of the xref keyword in the last
cross-reference section. The startxref line should be
preceded by the trailer dictionary, consisting of the key-
word trailer.

4

4 0 obj

<</Length 24 /Filter /ASCIIHexDecode>>

stream

48656C6C6F2C576F726C6421

endstream

endobj

Figure 7: Example of an object.

Table 4: Examples of standard filters.

ASCII85
Decode

Decodes data encoded in an ASCII base-
85 representation, reproducing the origi-
nal binary data.

ASCIIHex
Decode

Decodes data encoded in an ASCII hex-
adecimal representation, reproducing the
original binary data.

DCT
Decode

Decompresses data encoded using a dis-
crete cosine transform technique based
on the JPEG standard, reproducing im-
age sample data that approximates the
original data.

Flate
Decode

Decompresses data encoded using the
zlib/deflate compression method, repro-
ducing the original text or binary data.

JBIG2
Decode

Decompresses data encoded using the
JBIG2 standard, reproducing the original
monochrome image data.

Objects

A PDF file has nine basic object types: Boolean values,
integer and real numbers, strings, names, arrays, dictio-
naries, streams, and null objects.

A stream object, like a string object, is a sequence
of bytes. A stream should consist of a dictionary fol-
lowed by zero or more bytes bracketed between the key-
words stream (followed by a newline) and endstream

(Fig. 7). One option when reading stream data is to
decode it using a filter to reproduce the original non-
encoded data. Whether to do so and which decoding fil-
ter or filters to use is specified in the stream dictionary.
The standard filters are summarized in Table 4.

Objects may be labeled so that other objects can refer
to them. A labeled object is called an indirect object. The
definition of an indirect object in a PDF file consists of
its object number and generation number (separated by
white space), followed by the value of the object brack-
eted between the keywords obj and endobj (Fig. 7).

Document Structure

A PDF document can be regarded as a hierarchy of ob-
jects contained in the body section of the PDF file. Fig-

��������	

�
�
���

������	

����
����
�
��	����

�
�� �
��

�������	

����
�
�����
�����

�������	

����
�

������
��	

��
��

������

�����

Figure 8: Structure of a PDF document.

ure 8 illustrates the structure of an object hierarchy. At
the root of the hierarchy is the document’s catalog dic-
tionary. Generally, all objects are located within the hi-
erarchy.

Encryption

PDF documents support encryption to protect their con-
tents from unauthorized access. Encryption-related in-
formation is stored in a document’s encryption dictio-
nary, which should be the value of the Encrypt entry
in the document’s trailer dictionary. Encryption applies
to most strings and streams in the document. Encryp-
tion is not applied to object types such as integers and
Boolean values, which are used primarily to convey in-
formation about the document’s structure rather than its
content. Leaving these values unencrypted allows access
to the objects within a document.

However, an encrypted file containing object streams
denies access to objects within the object streams. An
object stream is a stream in which a sequence of in-
direct objects may be stored. The purpose of object
streams is to allow indirect objects other than streams
to be stored more compactly by using the facilities pro-
vided by stream compression filters. In an encrypted file
(i.e., all object streams are encrypted), strings occurring
anywhere in an object stream should not be separately
encrypted. Therefore, an encrypted object stream denies
access to objects within it.

2.3.2 Anomalous Structures

AS6: Unaccounted-for sections

A basic conforming PDF file is constructed of four ele-
ment types (comment, body, cross-reference table, and
trailer). However, PDF files in the specimens have

5

unaccounted-for sections that are not of any of these four
types.

AS7: Unreferenced objects

PDF documents can be regarded as a hierarchy of objects
contained in the body section of the PDF file. In PDF
files in the specimens, embedded executable files were
camouflaged as an object and forcibly included into the
PDF file, ignoring the hierarchy rules so that they appear
outside the hierarchy.

AS8: Camouflaged stream

Generally, we can decode encoded streams without prob-
lems. Additionally, the length of the data processed for
decoding should be equal to the length of the stream data.

In PDF files in the specimens, a stream contains an
executable file, and stream decoding was nonstandard.
The details are as follows.

AS8-1: Camouflaged filter

Filters corresponding to camouflaged streams are some-
times incorrect, causing stream decoding to fail. We sus-
pect the following reason for why the filter was camou-
flaged by attackers.

Executable files are similar to compressed streams, in
that data entropy is high in both cases. Entropy is com-
monly associated with the amount of order or disorder.
As a measure of disorder, the higher the entropy is, the
greater the disorder is. A camouflaged stream is thus
hard to distinguish from a compressed stream in terms
of entropy. Therefore, a camouflaged filter such as Flat-
eDecode is widely used in Specimens 1.

Streams with a camouflaged filter are usually not pro-
cessed by document processors. If the software pro-
cesses the stream, the displayed content gets garbled or
the software runs incorrectly. Therefore, streams with
camouflaged filter often appear outside the PDF hierar-
chy (see AS7).

AS8-2:Extra data after EOD

Even if a camouflaged stream contains extra data such
as an executable file, the stream can be decoded with-
out problems, in some cases because of an end-of-data
(EOD) marker, as follows.

Most filters are defined such that data are self-limited;
they use an encoding scheme that limits the length of data
with an explicit EOD marker. Document processors usu-
ally do not process data after the EOD, so most streams
with added extra data can still be decoded without prob-
lems. Taking advantage of this feature, however, attack-
ers can add an executable file to the stream.

���������	
����������

����	���	���
��

���� ���� ����

���

����������

�������	

����������

������ 	

����������

!�"	��	

����#��"�

$#��#�

%&���'��#"()

$#��#�

%*��()

+,�

*$
�����

,*�

+,� +,� +,�

+,�

*$ *$ *$

*$

Figure 9: Flow of checking a document file with o-
checker.

3 O-checker

We created a tool, “o-checker,” to detect the eight anoma-
lous structures described above. O-checker is a com-
mand line program written in Python that needs only one
argument, a target file path.

Figure 9 shows the flow of checking a document file
with o-checker. O-checker reads a file header, deter-
mines the file type, and examines each anomalous struc-
ture. The details of the detection are as follows.

3.1 RTF

AS1 determination method

O-checker reads one byte at a time and checks whether
the character signifies an EOF. When there is data after
the EOF, o-checker determines that the document file has
an AS1 feature.

3.2 CFB

AS2 determination method

A sector shift (2 bytes) field is present in the header at
file offset 30. A sector shift specifies the sector size as a
power of 2. This field must be set to 0x0009 (Sizesector =
512 bytes) or 0x000C (Sizesector = 4096 bytes). When
Eq. (1) is not satisfied, o-checker determines that the doc-
ument has an AS2 feature.

AS3 determination method

The number of FAT sectors (4 bytes) field is present in
the header at file offset 44. This integer field contains
the number of FAT sectors in the CFB file. We de-
fine CountFAT as this value, and calculate SizeFAT using
Eq. (2). When inequality (3) is not satisfied, o-checker
determines that the document has an AS3 feature.

6

AS4 determination method

We define the sector number of the last sector of a CFB
file as n. The CFB file should have a 512-byte header
and n+1 sectors, so the following formula should hold:

Sizefile = 512+(n+1)×Sizesector. (4)

We solve this equation for n. When the FAT value of
n-th sector is −1 (indicating a free sector), o-checker de-
termines that the document file has an AS4 feature.

AS5 determination method

We can detect unaccounted-for sectors by constructing
the hierarchy of sectors, starting from the header. We
then check all sectors to determine whether these sectors
appear in the hierarchy. To maximize o-checker’s speed,
we focus on differences between the number of classified
sectors and that of sectors of the file. When we find a
difference, o-checker determines that the document file
has an AS5 feature.

We define Countreal as the number of sectors in the
CFB file. The file size should be 512 bytes (the header
size) plus the sector size multiplied by Countreal. Thus,
the following formula should hold:

Sizefile = 512+Countreal ×Sizesector. (5)

We solve this equation for Countreal.
We define the following variables:

• CountFAT is the number of sectors comprising the
FAT.

• CountminiFAT is the number of sectors comprising
the miniFAT.

• CountDIFAT is the number of sectors comprising the
DIFAT.

• CountDE is the number of sectors comprising the
DE.

• CountStreams is the number of sectors comprising all
streams.

• Countfree is the number of free sectors.

• Countclassified is the number of classified sectors.

The following formula should hold:

Countclassified = CountFAT +CountminiFAT +CountDIFAT

+CountDE +CountStreams +Countfree.

We can obtain each variable as follows.

• CountFAT (4 bytes) is present in the header at file
offset 44.

• CountminiFAT (4 bytes) is present in the header at file
offset 64.

• CountDIFAT (4 bytes) is present in the header at file
offset 72.

The header has only the sector number (4 bytes) of
the first sector of the DE. CountDE is obtained in three
steps: The first step is reading the 4-byte integer from
the header at file offset 48. The second step is getting the
whole picture of the DE from the FAT. The final step is
counting sectors comprising the DE.

Obtaining CountStreams is more complex. The first
step is getting the whole picture of the DE, as described
above. The second step is getting all the stream entries
from the DE. Next, we obtain the number of sectors for
each stream. The final step is calculating the total num-
ber of sectors for each stream.

We obtain the number of stream sectors as follows: We
define Sizen as the size of n-th stream and define Countn
as the number of sectors for the n-th stream. The value (4
bytes) of Sizen is present in the n-th entry at offset 120.
When Sizen is less than a constant value, the stream is
stored as a “root entry” stream, and Countn is “0.” We
define the constant value as Sizemini. Sizemini is present
in the header at file offset 56. When Sizen is more than
Sizemini, Countn equals Sizen divided by Sizesector and
rounded up to the nearest integer. Therefore, Countn is
expressed as

Countn =
{

0 (Sizen < Sizemini)
⌈Sizen ÷Sizesector⌉ (Sizen ≥ Sizemini)

.

(6)
We obtain Countfree by counting the number of sectors

whose FAT value is −1.
Countreal should equal Countclassified. When a dif-

ference between Countreal and Countclassified appears, o-
checker determines that the document file has an AS5
feature.

3.3 PDF
AS6 determination does not depend on the condition of
a given PDF file. When a PDF file is encrypted, AS7 and
AS8 determination are sometimes not applicable to the
file.

Figure 10 shows the flow of checking a PDF file with
o-checker. First, it checks whether the file has an AS6
feature. Next, o-checker checks whether the file is en-
crypted according to the trailer dictionary. If the file is
not encrypted, o-checker checks whether the file has an
AS7 or AS8 feature.

Generally, encrypted PDF files can be decrypted by
two types of passwords, a user password or an owner
password. When the user password is an empty string,

7

��������	

���

����	����

�

����
������

�������

���

�������

���

��

	������������

��!

	������������

��"

	������������

��

��

��

���

���

Figure 10: Flow of checking a PDF file with o-checker.

it suppresses prompting for a password when the file is
opened. We usually do not mind whether the file is en-
crypted, because many PDF files are encrypted to avoid
detection based on pattern matching, but using an empty
string as the user password.

If the input file is encrypted, o-checker tries to de-
crypt the file using an empty string as the user password.
O-checker can currently handle four types of encryption
method, namely 40-bit RC4, 128-bit RC4, 128-bit AES,
and 256-bit AES. When o-checker succeeds in decryp-
tion, it checks whether the file has an AS7 or AS8 fea-
ture.

When o-checker fails the decryption, it searches for
object streams. If no object stream is present in the file,
o-checker checks whether the file has an AS7 feature. If
an object stream is present in the file, evaluation of the
PDF file is finished.

The details of each evaluation method in Fig. 10 are
described below.

AS6 determination method

O-checker reads files one byte at a time, classifying them
according to the following four types:

• A comment is a line starting with a % character.

• A body consists of indirect objects, bracketed be-
tween the keywords obj and endobj.

• A cross-reference table is the lines starting from
xref.

• A trailer is the lines starting from trailer.

When unclassified data is present in the file, o-checker
determines that the document file has an AS6 feature.

AS7 determination method

O-checker constructs a hierarchy of indirect objects for
the body section of the PDF file to search for unrefer-
enced objects. First, o-checker reads all indirect objects

in the PDF file. Next, o-checker finds all links to in-
direct objects to search for unreferenced objects. If o-
checker finds an unreferenced object whose size exceeds
512 bytes, it determines that the document file has an
AS7 feature.

We exclude small (< 512 bytes) objects from the
judgment process, because these cannot contain an exe-
cutable file. In Portable Executable (PE) files, the header
consists of an MS-DOS 2.0 Section, unused (null) data,
a PE header, and so on [13]. The size of the header is at
least 512 bytes, so we set 512 as the criterion size.

AS8 determination method

O-checker can reveal camouflaged filters that use Flat-
eDecode, ASCIIHexDecode, ASCII85Decode, DCT-
Decode, or JBIG2Decode. It first tries to decode
streams using FlateDecode, ASCIIHexDecode, and
ASCII85Decode. If the decoding process fails, o-
checker determines that the document file has an AS8
feature.

In the case that a stream uses FlateDecode, DCTDe-
code, or JBIG2Decode, o-checker searches for extra data
in the stream. If there is a difference between the position
of the EOD marker and the position of the last byte of the
stream, o-checker determines that the document file has
an AS8 feature.

4 Evaluation

We evaluated o-checker’s effectiveness in three experi-
ments. The following summarizes our experiments:

• Experiment 1: True positive rate to malicious files
containing an executable file like those used in tar-
geted email attacks

• Experiment 2: False negative rate for benign files

• Experiment 3: True positive rate for all malicious
files

Table 5 shows our experimental environment. We run
o-checker on a virtual machine. The top of Table 5 shows
specifications of the host machine platform, which con-
sists of a computer with a Core i5-3450 3.1 GHz CPU
and Windows 7 SP1. We run the virtual machine in
VMware Workstation 9. The bottom of Table 5 shows
specifications of the virtual machine platform, a dual-
core CPU machine running Windows XP SP3. We used
Python 2.7.6.

The details of the experiments are as follows.

8

Table 5: Experimental environment.
CPU Core i5-3450 3.1 GHz

Memory 8.0 GB
OS Windows 7 SP1

Virtualization software VMware Workstation 9
Memory (VM) 512 MB

OS (VM) Windows XP SP3
Interpreter (VM) Python 2.7.6

Table 6: Summary of Specimens 2.
Type Ext. Num. Avg. Size (KB) Camouflaged
RTF rtf 44 554.1 40
CFB doc 35 193.8 2

xls 15 277.3 0
pps 1 1210.0 0
jtd 25 437.0 0

PDF pdf 7 753.0 0
Total - 127 415.2 42

4.1 Experiment 1
Experiment 1 evaluates o-checker’s true positive rate
(TPR) for document files containing an executable file.

We classified the eight anomalous structures from
Specimens 1. We obtained targeted emails that vari-
ous Japanese organizations received in 2013 and 2014.
We mechanically extracted the document files from these
emails, classifying them according to the file name. And
removed duplicate files as identified by hash key. We
confirmed that each specimen contains an executable file.
This resulted in 127 specimens, which we call “Speci-
mens 2.”

Table 6 summarizes Specimens 2. The extensions of
the specimens are sometimes camouflaged, so we classi-
fied specimens according to their header. The “pps” file
type is associated with Microsoft PowerPoint.

Table 7 shows the vulnerabilities exploited by Spec-
imens 2. The most exploited vulnerability is MS12-
027, and 23 specimens exploited a zero-day vulnerabil-
ity, meaning a software vulnerability that is unknown to
the vendor. The total for the Rates column (right side
of Table 7) is more than 100% because some specimens
exploited multiple vulnerabilities.

We input the specimens to o-checker, then calculated
TPR and measured the running time. Additionally, we
compared the ability of o-checker with three popular
brands of anti-virus software. Most anti-virus software
can detect well-known malware by updating a pattern
file. We wished to evaluate the TPR of anti-virus soft-
ware against unknown malware, so we updated anti-virus
software every day and performed evaluations immedi-
ately after obtaining the specimens.

Table 7: Vulnerability used by Specimens 2.
Vulnerability Num. Rate
MS10-087 2 / 127 1.6%
MS12-027 71 / 127 55.9%
MS14-017 3 / 127 2.4%
JS13003 15 / 127 11.8%
JS14003 19 / 127 15.0%

APSB10-21 4 / 127 3.2%
APSB11-08 4 / 127 3.2%
APSB11-30 4 / 127 3.2%
APSB12-22 1 / 127 0.8%
APSB13-07 3 / 127 2.4%

None 3 / 127 2.4%
Unknown 6 / 127 4.7%

Table 8: TPR of o-checker against Specimens 2.
Type Ext. Detection TPR Avg. Time
RTF rtf 41 / 44 93.2% 0.226 s
CFB doc 34 / 35 97.1% 0.170 s

xls 15 / 15 100.0% 0.184 s
pps 0 / 1 0% 0.171 s
jtd 25 / 25 100.0% 0.194 s

PDF pdf 7 / 7 100.0% 1.382 s
Total - 122 / 127 96.1% 0.263 s

Result

Table 8 shows the TPR of o-checker against Speci-
mens 2. The “Detection” column in this table shows the
number of detected files divided by the number of speci-
mens. O-checker could detect 96.1% of all specimens.

Table 9 shows the results of comparison with popular
anti-virus software. The “Detection” column in this table
is the same as that in Table 8. None of the popular anti-
virus software could detect even half of the specimens.
Detection characteristics varied for each anti-virus soft-
ware. A combination of all three could detect only 50.4%
of the specimens.

Table 9: Comparing TPR with anti-virus software.
detection TPR

o-checker 122 / 127 96.1%
T’s AV 46 / 127 36.2%
S’s AV 30 / 127 23.6%
M’s AV 23 / 127 18.1%

T&S&M’s AV 64 / 127 50.4%

9

Table 10: Summary of Specimens 3.
Type Ext. Num. Avg. Size (KB)
RTF rtf 199 516.2
CFB doc 1,195 106.1

xls 298 191.7
PDF pdf 9,109 101.7
Total - 10,801 112.3

Table 11: FPR of o-checker against Specimens 3.
Type Ext. Detection FPR
RTF rtf 0 / 199 0.0%
CFB doc 2 / 1,195 0.2%

xls 14 / 298 4.7%
PDF pdf 19 / 9,109 0.2%
Total - 35 / 10,801 0.3%

4.2 Experiment 2

Experiment 2 evaluates o-checker’s false positive rate
(FPR) against benign document files.

We prepared 10,801 specimens from a web site, “Con-
tagio” [17]. Contagio distributes benign files for sig-
nature testing and research from various open sources.
Some of the specimens for some reason had added
HTML data in their headers, so we removed files with
a mismatch between the file extension and the header.
These processed specimens are denoted as Specimens 3.
Table 10 summarizes Specimens 3.

We scanned these specimens using o-checker. When
o-checker detected anomalous structures, we defined the
detection as a false positive.

Results

Table 11 shows the FPR of o-checker against Speci-
mens 3. The FPR against all the specimens is 0.3%.
However, note that the FPR against xls files in the speci-
mens is a relatively high 4.7%.

4.3 Experiment 3

Experiment 3 evaluates o-checker’s detection rate against
malicious document files. We prepared 227 specimens
for Experiment 3, denoted as Specimens 4. Table 12
summarizes Specimens 4. Some of Specimens 4 do not
contain executable files, unlike the files used in Experi-
ment 1.

We obtained Specimens 4 from VirusTotal [22]. The
search conditions specified files that exploit a CVE vul-
nerability, were obtained in 2013 or 2014, and have a file
extension of rtf, doc, xls, ppt, or pdf. We mechanically

Table 12: Summary of Specimens 4.
Type Ext. Num. Avg. Size (KB)
RTF rtf 69 487.7
CFB doc 61 259.0

xls 9 298.4
ppt 2 480.5

PDF pdf 86 653.5
Total - 227 481.5

���������

��	��	��

���

��	��	��

�	�	

�����������

�	�	

�������

���

��
�����

���

��� ���

�� ��

Figure 11: Flow of o-checker combined with OMS.

obtained specimens from the search results. We classi-
fied specimens according to the file content in the same
manner as Experiment 1.

We scanned the specimens using o-checker, then cal-
culated the resulting TPR. We did not measure the TPR
of anti-virus software for the following reason. VirusTo-
tal recorded these specimens, and after several months
we obtained them. Because we updated anti-virus soft-
ware every day, anti-virus software detected almost all
anomalous structures in Specimens 4. Thus, we could
not obtain the TPR of anti-virus software against un-
known malware.

We compared the ability of o-checker with Office-
MalScanner [2] (OMS) v0.58 in place of anti-virus soft-
ware. OMS mainly scans files for generic shell code
patterns. OMS can scan both CFB and RTF files. For
CFB files, we used OfficeMalScanner.exe with the
SCAN and BRUTE options. For RTF files, we used the
RTFScan.exe tool included in OMS with the SCAN op-
tion, which scans a target file for generic shell code pat-
terns, an embedded CFB signature, or an embedded ex-
ecutable file. The BRUTE feature scans for an encrypted
CFB signature or an encrypted executable file.

We also examined the ability of o-checker combined
with OMS. Figure 11 shows the flow of combined detec-
tion. In short, when o-checker or OMS detects a file, this
method determines that the file is malicious. Because
OMS does not support PDF files, we excluded PDF files
from Specimens 4. Specimens 5 denotes these excluded
specimens.

10

Table 13: TPR of o-checker and OMS against Speci-
mens 4.

Type Ext. o-checker OMS
RTF rtf 34 / 69 12 / 69
CFB doc 44 / 61 31 / 61

xls 2 / 9 3 / 9
ppt 0 / 2 0 / 2

PDF pdf 40 / 86 -
Total - 120 / 227 46 / 141
TPR 52.9% 32.6%

Table 14: TPR of o-checker combined with OMS against
Specimens 5.

Type Ext. o-checker OMS Combination
RTF rtf 34 / 69 12 / 69 39 / 69
CFB doc 44 / 61 31 / 61 51 / 61

xls 2 / 9 3 / 9 5 / 9
ppt 0 / 2 0 / 2 0 / 2

Total - 80 / 141 46 / 141 95 / 141
TPR 56.7% 32.6% 67.3%

Results

Table 13 shows the TPR of o-checker and OMS,
with the “OMS” column showing detection by
OfficeMalScanner.exe or RTFScan.exe. The
TPR of o-checker is 52.9%, and that of OMS is 32.6%.

Table 14 shows the TPR of o-checker combined with
OMS against Specimens 5. The “Combination” column
in this table shows detection by o-checker or OMS. The
TPR of o-checker alone is 56.7%, and the combination
increases the TPR to 67.3%.

5 Discussion

5.1 Analysis of detection leakage for Spec-
imens 2

In Experiment 1, o-checker could not detect five speci-
mens in Specimens 2. We analyzed these specimens with
a focus on how the executable file was embedded. The
results revealed three methods by which detection by o-
checker was avoided. The details of these methods fol-
low.

5.1.1 Embedding by document processors

We can embed any executable file into a document file
using document processors by transforming the exe-
cutable file into an OLE object and including it into the
document file according to the specification. The re-

sulting document file has no anomalous structures, so o-
checker cannot detect any anomalies.

However, execution of the embedded file requires
manual operations such as a double-clicking the OLE ob-
ject and verifying a warning dialog. These operations re-
duce the success rate of targeted attacks, so it is rare that
executable files are embedded into document files by this
method.

5.1.2 Embedding into shell code

Generally, exploit code needs to be processed by doc-
ument processors to exploit vulnerabilities in them. In
other words, most of the exploit code is present in doc-
ument files according to the specification. In addition,
most exploit codes contain the entirety of the shell code.
When an executable file is embedded into a large shell
code, the document file does not have the anomalous
structures we described, so o-checker rarely detects this
kind of file.

However, the possible size of shell code is often lim-
ited, in turn limiting embedded executable files to even
smaller sizes. Thus, executable files are rarely embed-
ded in shell codes.

5.1.3 Camouflaged Stream in a CFB file

When a stream in a CFB file contains an executable file,
the CFB file has none of the anomalous structures de-
scribed above. Thus, o-checker cannot detect anomalous
structures in the CFB file.

If document processors process the stream, the dis-
played content is garbled, or the software leads to strange
behavior. In this case, we can predict that the stream ap-
pears outside the hierarchy of streams, like an AS7 fea-
ture in a PDF file. We expect that we can detect anoma-
lous structures in a CFB file by searching for unrefer-
enced streams, like the AS7 determination method.

Additionally, there are many parse tools for PDF files,
but relatively few for CFB files. Attackers need to learn
the specifications of the CFB format to embed a stream
containing an executable file into a CFB file. In the case
of CFB files, it is rare that executable files are camou-
flaged as streams.

5.2 False positives in Experiment 2

O-checker generated false positives for 35 benign files
in Experiment 2. We analyzed these files with a focus
on deviations from file format specifications. As the re-
sult, we can classify these false positives into three types:
data corruption, injection of extra data, and benign unref-
erenced objects. The details follow.

11

5.2.1 Data corruption

One cause of misdetection is file fragmentation. Frag-
mented document files violate the specification, creating
some of the anomalous structures we described.

Document files made by document processors usually
are not fragmented, because document processors can-
not display the contents of the fragmented file. Although
the fragmented file might be a benign file, detecting it as
anomaly file may be a good thing from the aspect of data
integrity.

5.2.2 Injection of extra data

Another cause of misdetection is the injection of extra
data at the end of the file. In all cases, the size of ex-
tra data was less than 4 KB. The size of executable files
in Specimens 3 was more than ten times this, so we
can likely avoid the misdetection through filtering. The
drawback to this is that attackers might then use an object
that passes the filter.

Then again, files made by document processors usu-
ally do not contain extra data. Although a document
file containing extra data might be benign, detecting it
as anomaly file might be a good thing from the aspect of
data integrity.

5.2.3 Containing benign unreferenced object

Benign unreferenced objects can also result in misdetec-
tion. Twelve PDF files in Specimens 3 have unreferenced
objects (AS7), for unknown reasons. These unreferenced
objects are similar to the configuration information of a
page of the document. The size of each object was less
than 4 KB, as in the case of extra data described above,
so similar pros and cons of filtering these anomalies hold
here too.

5.3 Long-term detection rate of o-checker
When we analyzed the document files used in targeted
email attacks from 2009 to 2012, we found eight anoma-
lous structures, and we created o-checker to detect these
anomalous structure. When we checked malicious doc-
ument files used in targeted email attacks in 2013 and
2014 with o-checker, we could detect these files with a
fairly high rate.

Generally, the structures of document files are com-
plex, so decoders that export data from a valid document
file are also complex. In turn, a document file containing
an executable file according to the document specifica-
tion will often have complex shell code. When the size
of shell code is limited, the shell code cannot contain an
executable file, and furthermore the decoder contained in
the shell code must have simple code. Thus, executable

files are almost always forced into document files, ig-
noring the specification. These document files have the
anomalous structures we mentioned, and we can detect
these files.

There are far fewer stealth techniques for hiding exe-
cutable files than vulnerabilities of document processors.
Additionally, the pace of transition of document file for-
mat specifications is much slower than that of document
processor updates. Accordingly, we assert that o-checker
can continue detecting malware with a fairly high detec-
tion rate for fairly long period.

5.4 Application of o-checker
O-checker could detect 96.1% of Specimens 2 without
virus pattern files in Experiment 1. Furthermore, the
check speed of o-checker was 0.263 sec per file. File
checks using malware sandbox analysis generally take
a few minutes, so o-checker is comparatively fast. If we
combine o-checker with a mail server, we can detect doc-
ument files containing executable files passing through
the mail server.

However, malware is not only delivered as document
files containing executable files. Thus, we used o-
checker to examine malicious document files recorded
in VirusTotal in Experiment 3, by which we could de-
tect 52.9% of the malicious files. Some of the specimens
have none of the anomalous structures we mentioned.
Therefore, improving detection rates will require com-
bining other methods with o-checker.

In the case of Experiment 3, the detection rate of OMS
was lower than that of o-checker. However, OMS some-
times detected specimens that could not be detected by o-
checker. Thus, the detection rate of o-checker combined
with OMS (67.3%) is higher than the detection rate of
o-checker alone (56.7%).

5.5 Limitations of o-checker
O-checker is file format dependent, and can only exam-
ine RTF, CFB, or PDF files. In particular, o-checker
cannot examine Office Open XML (OOXML) [10] files.
However, we have not seen OOXML files containing ex-
ecutable files and exploit code until very recently, for two
reasons.

First, the OOXML specification has a mechanism for
detecting extra files. An OOXML file is a zip container
containing many files. The specification of OOXML de-
fines a “relationship” that describe usages of all the files.
A file without a relationship is considered to be an extra
file, and document processors cannot open an OOXML
file containing extra files such as an executable file.

The second reason is that zip decoders require a large
amount of code. The size of shell code is often limited to

12

a small size, so zip decoders embedded within shell code
are quite rare.

For these reasons, we have obtained OOXML files
containing executable files only very recently, the first
appearing in 2015. This example exploited a vulner-
ability in Microsoft Office via an EPS (encapsulated
Postscript) file containing an executable file. Should
such approaches gain popularity, we should consider
strategies for scanning OOXML files.

6 Related Work

We conducted a static analysis, examined only document
files without running embedded executable files. Indeed,
we did not consider executable files at all, instead fo-
cusing only on document specifications. References [19]
and [18] are previous studies by the authors relevant to
this paper. Below is an overview of other related works.

6.1 Methods focusing on program codes
Laskov used machine learning to detect malicious PDF
files in a fast scan [11]. The method focuses on
JavaScript in PDF files. Because the method uses a su-
pervised learning model, it needs samples for learning
and the detection rate depends on these samples. In con-
trast, our method does not require learning samples.

Laskov’s method can detect whether a PDF file con-
tains an executable file. However, exploit codes use not
only JavaScript but also Flash, font, and image files.
When searching for exploit code, it is important to con-
sider various types of exploit code. Our method cannot
detect exploits in a document file not containing an exe-
cutable file, but our method does not depend on the type
of exploit codes.

OfficeMalScanner [2] (OMS) is an analysis tool for
document files. OMS scans entire files for generic shell
code patterns, an embedded CFB signature, or an em-
bedded executable file. However, OMS rarely detects
encrypted shell code or embedded files. This is why the
detection rate of OMS is lower than that of o-checker in
Experiment 3. Our method is not affected by encryption,
because it focuses on deviation from file format specifi-
cations.

6.2 Methods focusing on document file
structures

Hyukdon suggested a tool for analyzing extra data in a
CFB file [8]. The tool examines four areas of the CFB
file to search for hidden data. The four areas can contain
free sectors, so o-checker also examines free sectors. A
document file containing extra data might be malicious,
but benign CFB files often contains free sectors. Thus, if

we use Hyukdon’s tool to detect malicious CFB files, the
tool would return many false positives.

Our method distinguishes between benign free sectors
and those containing an executable file, resulting in the
low FPR of o-checker.

Xu et al. [23] and Srndic et al. [20] applied machine
learning to detecting malicious PDF files, the former fo-
cusing on filters and the latter on document hierarchy.
These methods can detect malicious PDF files not con-
taining an executable file. Because these methods use
a supervised learning model, they require samples for
learning and the detection rate of these methods depends
on these samples.

Our methods rarely detect malicious PDF files not
containing an executable file. However, the document
files used in targeted email attacks in Japan very often
contain an executable file, and our method does not re-
quire samples for learning.

7 Conclusion

We proposed a tool for detecting document files con-
taining an executable file. The tool, o-checker, exam-
ines document files according to the specification of the
document format. We demonstrated the effectiveness of
o-checker, with the result that it detected 96.1% of mali-
cious specimens at an average rate of 0.263 seconds per
file. There are far fewer stealth techniques for hiding exe-
cutable files than vulnerabilities of document processors.
Additionally, the pace of changes in document file format
specifications is quite slower than that of document pro-
cessor updates. Accordingly, we feel that o-checker can
continue detecting malware with a fairly high detection
rate for relatively long times.

Evaluation of the universal effectiveness of o-checker
is a future task. O-checker could detect document files
used in targeted attacks in Japanese organizations with
fairly high detection rates. However, it is not clear that o-
checker would be effective in other countries. Therefore,
in future studies we will examine malicious document
files obtained from organizations in other countries.

References
[1] ADOBE. PDF Reference and Adobe Extensions to the PDF Spec-

ification. http://www.adobe.com/jp/devnet/pdf/pdf_

reference.html.

[2] BOLDEWIN, F. Analyzing MSOffice malware with Of-
ficeMalScanner. http://www.reconstructer.org/

papers/Analyzing\%20MSOffice\%20malware\%20with\

%20OfficeMalScanner.zip.

[3] CVE DETAILS. Adobe Acrobat Reader : CVE
security vulnerabilities, versions and detailed re-
ports. http://www.cvedetails.com/product/497/

Adobe-Acrobat-Reader.html?vendor_id=53.

13

[4] CVE DETAILS. Adobe Flash Player : CVE se-
curity vulnerabilities, versions and detailed reports.
https://www.cvedetails.com/product/6761/

Adobe-Flash-Player.html?vendor_id=53.
[5] CVE DETAILS. Microsoft Excel : CVE security vulnerabilities,

versions and detailed reports. https://www.cvedetails.

com/product/410/Microsoft-Excel.html?vendor_id=

26.
[6] CVE DETAILS. Microsoft Powerpoint : CVE se-

curity vulnerabilities, versions and detailed reports.
https://www.cvedetails.com/product/623/

Microsoft-Powerpoint.html?vendor_id=26.
[7] CVE DETAILS. Microsoft Word : CVE security vulnerabili-

ties, versions and detailed reports. https://www.cvedetails.
com/product/529/Microsoft-Word.html?vendor_id=26.

[8] HYUKDON, K., YEOG, K., SANGJIN, L., AND JONGIN, L. A
tool for the detection of hidden data in microsoft compound doc-
ument file format. 08 Proceedings of the 2008 International Con-
ference on Information Science and Security. 2008, pp. 141–146.

[9] ISO. ISO 32000-1:2008 Document management -
Portable document format - Part 1：PDF1.7. http:

//www.iso.org/iso/iso_catalogue/catalogue_tc/

catalogue_detail.htm?csnumber=51502.
[10] ISO. ISO/IEC 29500:2012:Information technology – Document

description and processing languages – Office Open XML File
Formats, 2012.

[11] LASKOV, P., AND SRNDIC, N. Static detection of malicious
javascript-bearing pdf documents. In ACSAC (2011), ACM,
pp. 373–382.

[12] MICROSOFT. Component Object Model (COM). https://

msdn.microsoft.com/en-us/library/ms680573.aspx.
[13] MICROSOFT. Microsoft PE and COFF Specification.

https://msdn.microsoft.com/en-us/windows/

hardware/gg463119.aspx.
[14] MICROSOFT. [MS-CFB]: Compound File Binary File

Format. https://msdn.microsoft.com/ja-jp/library/

dd942138.aspx.
[15] MICROSOFT. [MS-OLEDS]: Object Linking and Embedding

(OLE) Data Structures. https://msdn.microsoft.com/

en-us/library/dd942265.aspx.
[16] MICROSOFT. Rich Text Format (RTF) Specification, ver-

sion 1.9.1. http://www.microsoft.com/en-us/download/
details.aspx?id=10725.

[17] MILA, P. 16,800 clean and 11,960 malicious files for signature
testing and research. http://contagiodump.blogspot.jp/

2013/03/16800-clean-and-11960-malicious-files.

html.
[18] OTSUBO, Y., MIMURA, M., AND TANAKA, H. Applying file

structure inspection to detecting malicious pdf files. Information
Processing Society of Japan (IPSJ) Journal 55, 10 (oct 2014),
2281–2289.

[19] OTSUBO, Y., MIMURA, M., AND TANAKA, H. Methods to de-
tect malicious ms document file using file structure inspection.
Information Processing Society of Japan (IPSJ) Journal 55, 5
(may 2014), 1530–1540.

[20] SRNDIC, N., AND LASKOV, P. Detection of malicious pdf files
based on hierarchical document structure. In NDSS (2013), The
Internet Society.

[21] TREND MICRO. Targeted Attack Campaigns
and Trends: 2014 Annual Report. http:

//www.trendmicro.com/cloud-content/us/

pdfs/security-intelligence/reports/

rpt-targeted-attack-trends-annual-2014-report.

pdf.

> python o-checker.py malware.doc

Malicious!

Figure 12: Example of o-checker input and output.

[22] VIRUSTOTAL. Virustotal. https://www.virustotal.com/.

[23] XU, W., WANG, X., ZHANG, Y., AND XIE, H. A fast and pre-
cise malicious pdf filter. Proceedings of the 22nd Virus Bulletin
International Conference. 2012, pp. 14–19.

Appendix

A The usage manual of o-checker

This section briefly describes how to use o-checker.

A.1 How to install o-checker
O-checker is available from Black Hat USA 2016 web-
site.

The requirements for using o-checker are as follows:

• Python 2.7.3 or later

• An OS that can run Python

• The PyCrypto package for Python (for encrypted
PDF files)

A.2 The basic usage of o-checker
In normal use, the path to a target file is the only param-
eter passed to o-checker.py. Figure 12 shows an ex-
ample of o-checker input and output. In this case, we ran
o-checker.py against a malicious Microsoft doc file,
which results in the Malicious! output. When the doc-
ument file does not have any of the targeted anomalous
structures, the output is None!.

A.3 Advanced usage of o-checker
O-checker is not only a detection tool but also an analysis
tool that can describe the detailed structure of CFB or
PDF document files. The details of usage are as follows.

A.3.1 Analyzing CFB files

O-checker contains msanalysis.py for analyzing CFB
files. msanalysis.py scans a CFB file, and it out-
puts analysis logs describing the final determination of
Malicious! or None!.

Figure 13 shows an example of output of
msanalysis.py against a malicious doc file with
the judgement option (-j). The result of the check
is shown in Fig. 13 as Malicious!. The following
describes the tool output:

14

> python msanalysis.py -j malware.doc
Compound File
1536
This is DocFile
Size of a sector: 512
Size of a short-sector: 64
Total number of sectors: 1
SecID of first sector of the dictionary stream 17
Minimum size of standard stream 4096
SecID of first sector of ssat 19
Total number of short-sectors: 1
0 Root Entry 20 stream size: 8064 composed size: 8192
1 U:Data 8 stream size: 4096 composed size: 4096
2 U:WordDocument 0 stream size: 4096 composed size: 4096

.

.

.
18 Empty -2 stream size: 0 composed size: 0
19 U:CompObj 124 stream size: 121 composed size: 128
suspicious file size!
00008800-000089FF:unused
00008A00-00008BFF:unused
.
.
.
0000FE00-0000FFFF:unused
00010000-000101FF:unused
suspicious unused sector!
file size: 140218
file size error!
header size: 1536
total composed size: 28672
Dictionary Stream size: 2560
unused sector 31232
unknown data: 107450
Null block size: 15360

Suspicious 2
Malicious!
run time: 0.0584909915924 sec

Figure 13: Example of msanalysis.py input and output.

• This doc file contains 20 directory entries (Nos. 0–
19).

• There is data (at file offset 0x8800 to 0x101FF) not
referred to in the FAT. (AS3)

• Suspicious unused sector means the last sec-
tor is a free sector. (AS4)

• The file size is 140,218 bytes. 140218 mod 512 =
442 (nonzero). File size error! means the file
size is anomalous. (AS2)

• 107,450 bytes of data is unaccounted for. (AS5)

From the above, this doc file has AS2, AS3, AS4, and
AS5 features, and an executable file may be present at
file offset 0x8800.

A.3.2 Analyzing PDF files

O-checker contains pdfanalysis.py for analyzing
PDF files. This tool scans a PDF file, and it out-
puts analysis logs describing the final determination of
Malicious! or None!.

Figure 14 shows an example of output from
pdfanalysis.py against a malicious PDF file with the

> python pdfanalysis.py -j malware.pdf
00000000-00000008:comment,
00000009-000006E2:obj 1 0 xref from [(8 0 R)]
000006E3-00000721:obj 2 0 xref from [(3 0 R), (8 0 R)]
00000722-0000075E:obj 3 0 xref from [(2 0 R), (4 0 R)]
0000075F-0000083F:obj 4 0 xref from [(3 0 R)]
00000840-000008D9:obj 5 0 xref from [(4 0 R), (6 0 R)]
000008DA-0000090E:obj 6 0 xref from [(5 0 R), (7 0 R)]
0000090F-0000098B:obj 7 0 xref from [(-1 -1 R)]
0000098C-000009DA:obj 8 0 xref from [(7 0 R)]
000009DB-00010E04:obj 17 0 xref from None Suspicious
00010E05-00010E09:xref
00010E0A-00010E28:trailer
00010E29-00010E38:startxref 000039AD
00010E39-00010E3D:EOF,

obj 1 0 xml form
obj 17 0 zlib decompress error
Malicious!
run time: 0.133231163025 sec

Figure 14: Example of pdfanalysis.py input and output.

judgement option (-j). The result of the check is shown
in Fig. 14 as Malicious!. The following describes the
tool output:

• This PDF file contains nine indirect objects (Nos. 1–
8 and 17).

• The indirect object references are listed (e.g., No. 8
refers to No. 1).

• No. 17 is an unreferenced object. (AS7)

• No. 1 is an XML form. (Unrelated to determination)

• No. 17 is a stream requiring the FlateDecode filter,
but the decode process for No. 17 fails. (AS8-1)

This PDF file has AS7 and AS8-1 features. This suggests
that object No. 17 (located at offset 0x9DB) in this PDF
file contains an executable file.

Analyzing encrypted PDF file

O-checker can handle four types of encryption methods,
namely 40-bit RC4, 128-bit RC4, 128-bit AES, and 256-
bit AES. When the specified PDF file is encrypted, o-
checker usually tries to decrypt it using an empty pass-
word. If the password is known, you can use the -p op-
tion to decrypt the PDF file using a specified password.

Exporting objects and streams

You can use the -o or -s options to export an indirect
object from this PDF file for analyzing exploit code.

• The -o option decodes the stream of the specified
object, and outputs the object in JSON format.

• The -s option decodes and outputs the stream of the
specified object.

15

> python pdfanalysis.py -j malware.pdf -s 1
<?xml version="1.0" encoding="UTF-8" ?>
<xdp:xdp xmlns:xdp="http://ns.adobe.com/xdp/">
<config xmlns="http://www.xfa.org/schema/xci/1.0/">
<present>
<pdf>
<version>1.65</version>
<interactive>1</interactive>
<linearized>1</linearized>
</pdf>

.

.

.
<ImageField1 xfa:contentType="image/tif" href="">SUkqADggAACQ
kJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQ
kJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQ

.

.

.
FQAH/5CQkE0VAAcipwAHuxUAB////5BNFQAHMdcABy8RAAc=</ImageField1>
</topmostSubform>
</xfa:data>
</xfa:datasets>

.

.

.

Figure 15: Example of pdfanalysis.py input and output.

Figure 15 shows an example of the command and its
output. In the above, we can find the exploit code in a tiff
image.

16

