J U LY S 0 - AUGUS T 4, 2016 / ™M ANDALAY B AY / L AS VvV E G A S

¥ blackhat LS. =01

Recover a RSA private key
from a TLS session with
Perfect Forward Secrecy

(Marco Ortisi — 2016)

¥ blackhat LS. =01

About me

* Netizen and IT Security enthusiast since 1996

* Penetration Tester since 1999
v’ In love with buffer overflow flaws
v' | adore exotic vulnerabilities

* Senior/Principal Penetration tester? Just a curious guy

e @Getin touch with me! marco.ortisi at segfault.it

¥ blackhat LS. =01

¥ blackhat LS. =01

About the topic

Imagine you can get a server private key by sniffing TLS traffic or
interacting through the network with a TLS service. Does it look
quite exotic?

Done via a side channel attack

Side Channel Attack — from Wikipedia

e “...any attack based on information gained from the physical implementation of a
cryptosystem, rather than brute force or theoretical weaknesses in the algorithms
(compare cryptanalysis). For example, timing information, power consumption,
electromagnetic leaks or even sound can provide an extra source of information,
which can be exploited to break the system...”

¥ blackhat LS. =01

Roadmap

»Introduction

» First demo

»More insight into the attack
»Second demo

» Greetings and questions

' g \’_‘A : y/ h//'(' ,-‘zl 3)
O blackhat =, =201 4 { /2 ‘ -){

f \‘A (), v '\/‘ / P
wrd . \ % &?{'"lg(/ ,f/(' ’ ,/,//

The attack and roots with the past

(1996) Arjen Lenstra demonstrated the usage of the so-called CRT
(Chinese Remainder Theorem) optimization put the RSA
implementations at great risk (aka private key leakage) whether a
fault occurred during the computation of a digital RSA signature.
(https://infoscience.epfl.ch/record/164524/files/nscan20.PDF)

¥ blackhat LS. =01

What is a RSA signature

* RSA encryption
v public key is used to encrypt a message
v private key is used to decrypt that message

* RSA signing HREE
v’ private key is used to sign a message (see it ' /
as an encryption operation) I f\
v public key is used to verify a signature (see it { V[
as a decryption operation)) | ,

' g \’_‘A : y/ h//'(' ,-‘zl 3)
O blackhat =, =201 4 { /2 ‘ -){

f \‘A (), v '\/‘ / P
wrd . \ % &?{'"lg(/ ,f/(' ’ ,/,//

The attack and roots with the past

(1996) Arjen Lenstra demonstrated that the usage of the so-called
CRT (Chinese Remainder Theorem) optimization put the RSA
implementations at great risk (aka private key leakage) if a fault
occurred during the computation of a digital RSA signature.
(https://infoscience.epfl.ch/record/164524/files/nscan20.PDF)

(200x?) - Attack conjectured as possible on smartcards if someone
has physical access to the device and can disrupt the math behind
the RSA operations by artificially injecting hardware faults

¥ blackhat LS. =01

The attack and roots W|th the past

* (2001) OpenPGP Attack (http://eprint.iacr.org/2002/076.pdf).

a) getalocal copy of file containing the encrypted private key;
b) tamper with it in order to introduce faulty bits;

c) capture asingle message subsequently sighed with the modified encrypted
private key (for example an email);

d) enjoy your leaked private key ©

e (2015) by targeting TLS, Florian Weimer (Red Hat) unveiled the
attack can have remote impacts.
https://people.redhat.com/~fweimer/rsa-crt-leaks.pdf

¥ blackhat LS. =01

Public key exposed

JS

™" Client Hello

7

Server Hello /

| Server Certificate *|
«+— Server Key Exchange *
Client Certificate Request *
Server Hello Done

Client Certificate *
Client Key Exchange
Certificate Venfy * S
[Change Cipher Spec]
Client Finished Message

[Change Cipher Spec]
Server Finished Message

Handshake Protocol

Record Protocol

Application Data — Application Data

* (a) Presence of a RSA signature calculated using
the RSA-CRT optimization...

* (b) The signature must be applied on values
known by the attacker...

* (c) Generated signature faulty/miscalculated...

¥ blackhat LS. =01

What if the attack is successful?

* Private key is exposed
 The real server can be impersonated

 Man-in-The-Middle attack can be performed without alerting the
legitimate clients

¥ blackhat LS. =01

What if the attack is successful?

File Modifica Visualizza Cronologia Segnalibri Strumenti Aiuto

File Modifica Visualizza Cronologia Segnalibr & Google ¢ -
/&, Connessione non sicura X + 7 , o s e >
h é i https: v.google.nl/7gfe_rd=cr&ei=Kjs7VEfnNorH8AfSxLzoCg
& https://\ .google.nl/gfe_rd=crélei= '
g Nederland

% sicura

I gestore di www.google.l |
evitare potenziali furti di inf

o o Cerca con Google Mi sento fortunato

Segnala errori di questo tipo per aiutare Mozilla a identificare i siti

configurati in modo errato

!
0
I
.
I
]
¥
£
X
Q
v
0
C

¥ blackhat LS. =01

From: http://support-public.cfm.software.dell.com/33164_sonicos_5.8.4.2_releasenotes.pdf

Resolved issue Issue ID

A specialized RSA-CRT attack can cause private key leakage in relatively rare cases. 166825
This security vulnerability has not been publically disclosed and it is very difficult to
perform this attack. To be cautious, Dell SonicWALL recommends that customers

upgrade firmware.
Occurs when the SonicOS management interface or a port on the firewall is accessed
using SSL, and the following conditions are met:

¢ A highly sophisticated tool is used to harvest this vulnerability; this tool is not
available to the general public

¢ The Enable Hardware RSA option is enabled in the internal SonicOS settings
(by default this option is disabled, in which case the firewall is not

vulnerable)

¥ blackhat LS. =01

From: http://support-public.cfm.software.dell.com/33164_sonicos_5.8.4.2_releasenotes.pdf

Resolved issue Issue ID

A specialized RSA-CRT attack can cause private key leakage in relatively rare cases. 166825
This security vulnerability has not been publically disclosed and it is very difficult to
perform this attack. To be cautious, Dell SonicWALL recommends that customers

upgrade firmware.

Occurs when the SonicOS management interface or a port on the firewall is accessed
using SSL, and the following conditions are met:

¢ The Enable Hardware RSA option is enabled in the internal SonicOS settings
(by default this option is disabled, in which case the firewall is not

vulnerable)

¥ blackhat LS. =01

(a) RSA Signature with RSA-CRT

The modular exponentiations required by RSA are computationally
expensive

 RSA-CRT introduced a less expensive way to do RSA operations
(decryption and signing)

 RSA-CRT is used by default in almost every known crypto library out
there (openssl, OpenJDK, libgcrypto, PolarSSL, etc...)

 Condition (a) is normally satisfied

¥ blackhat LS. =01

(c) Presence of faulty signature

 We identify a faulty RSA signature with the letter “Y”

* Events causing the generation of a faulty digital RSA signature can't
be predicted but they are out there

* |nduced by the same vectors like in a typical bit-squatting attack:

CPU overheating

RAM errors

massive exposure of hardware to solar rays
etc...

AN NI NN

¥ blackhat LS. =01

(b) Signature calculated on known values

We define “X” as the value to be signed

Digital signature = plain-text value -> hashing function -> padding ->
encryption

Padding can influence the final “shape” of “X” before being signed
and make this unpredictable...

...but with SSL3.0, TLS 1.0, 1.1 and 1.2 the padding scheme (a
variant of PKCS1.5) is fully deterministic (not randomized) and then
predictable

¥ blackhat LS. =01

(b) PKCS 1.5 Padding

Payload:

OD3F8FF87A4D69 /E7/3FES007/7FD1ID1I0C4ECCS59797E759EDDE89931B
2208B8044CB4A1B96A

Padded Payload (RSA 2048 bits):

OOO1lFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFEFFFEFFFFEF
FEFFFEFEE
FFEFFFEFEE
FEFFFEFEE
FEFFFEFEE
FFEFFFEEE
FFFEFEE
FFFEFEE
FFFFFFOOOD3F8FF87A4D697E73FE86077FD1D10C4ECCS59797E759E
DD89931B2208B8044CB4A1B9%6A

¥ blackhat LS. =01

(b) Signature calculated on known values

 We define “X” as the value to be signed

* Digital signature = plain-text value -> hashing function -> padding ->
encryption

 Padding can influence the final “shape” of “X” before being signed and
make this unpredictable...

e ...butwithSSL3.0, TLS 1.0, 1.1 and 1.2 the padding scheme (a variant of
PKCS1.5) is fully deterministic (not randomized) and then predictable

 Of course we need the presence of a digital signature. This condition is
ALWAYS satisfied in our attack if we carefully negotiate the right
ciphersuites during the TLS handshake.

¥ blackhat LS. =01

The right ciphersuite...

* RSA WITH_AES 256 CBC SHA
v' RSA = Authentication + Key Exchange
v' AES = Symmetric algorithm used to encrypt data
v' CBC = Mode of operation
v' SHA = Hashing algorithm to avoid data tampering

 RSA private key leaked = all TLS sessions compromised (current, past and
future ones)

 The “Certificate” message contains a Signature created with the private
key of CA
» statically embedded inside the certificate (not generated on the fly)
» the condition (b) is not satisfied

¥ blackhat LS. =01

The right ciphersuite...

« [EC]DHE_RSA WITH_AES 256 CBC _SHA
v [EC]DHE = Key Exchange
v' RSA = Only used for Authentication
v’ [the rest is the same as previously mentioned]

* The key exchange is done using private/public keys generated on
the fly
» Compromission of a private key breaks only that specific encrypted session,
not all the previously established
» This is called "Perfect Forward Secrecy"

¥ blackhat LS. =01

PFS fits REALLY perfectly to us

 RSA signature appended onto a TLS Server Key Exchange Message

4 Handshake Protocol:|Server Key Exchang%l
Handshake Type: Server Key Exchange (12)
Length: 521
4 Diffie-Hellman Server Params
p Length: 128
p: d67de440cbbbdc1936d693d34atd0ad50c84d239a451520b. ..
g Length: 1
g: 02
Pubkey Length: 128
Pubkey: 230274659a76831Ta4dd86cba367ea687675309f0b60d8477. ..
Signature Length: 256
Signature:|9dbac5839055498f7bf12540743c14c74ec46f3e6506164c... I
Secure Sockets Layer

0110 a . 49 8f 7b
0120 16 4c 37
0130 [: cd 46 78
0140 86 ed b9 @e
9150 ; 2e f8 4f 99

0160 30 @b 61

Frame (463 bytes) Reassembled TCP (530 bytes)
Q 7 Diffie-Hellman server signature (ssl.handshake.sig), 256 byte

How High Voltage works...

_Q

TLS Client Hello (PFS ciphersuites only negotiation)

4 Handshake Protocol: |[Client Hellol
Handshake Type: Client Hello (1)

Length: 198
Version: TLS 1.2 (©x0303)
4 Random

GMT Unix Time: May 30, 1981 ©7:53:42.000000000 ora legale Europa occidentale

Random Bytes 6179c141c844786767bd4867651955676853c5ea74dcc122

Se551on ID Length: ©

Cipher Suites Length: 30
Cipher Suites (15 suites)
Compression Methods Length: 1

TLS Server Hello

4 Handshake Protocol: |[Server Hello
Handshake Type: Server Hello (2)

Length: 70
Version: TLS 1.0 (©x0301)
4 Random

GMT Unix Time: Feb 10, 2016 19:16:19.000000000 ora solare Europa occ1dentale

‘Random Byfes 0ddbab1877d6d8d51474dfa833b2c2ed3b05516194e65b18
Session ID Length: 32
Session ID: df27d@9ed3c26a6b61d93ae@ad7bd6444abc9al548b61fco. ..
Cipher Suite: TLS_DHE_RSA WITH_AES_256 CBC_SHA (©x8039)
Compression Method: null (@)

Soggetto

alnfo chiave pubblica soggetto

aEstensioni

Chiave pubblica del soggetto

ID chiave soggetto certificato

Uso chiave certificato

TLS Server Certificate

Algoritmo chiave pubblica soggetto

Chiave identificazione autorita di certificazione

Espe

¥a|orecampo

Modulo

c9 be 01 c0

01 bo 82 ce b
3c 67 40 g9 Oa
62 a3 18 66 27
38 b 15 39 &
fc ee

f1 06 Esponente (24 bit):

] e

How High Voltage! works...

9b
56
33

=1
=}

TLS Server Key Exchange

4 Handshake Protocol: [Server Key Exchangel|

Handshake Type: Server Key Exchange (12)
Length: 521
4 Diffie-Hellman Server Params

p Length: 128

p: d67ded440cbbbdc1936d693d34atd0ad50c84d239a45F520b. ..

g Length: 1

g: 02

Pubkey Length: 128

Pubkey: 230274659a7683fa4dd86cba367ea687675309f0b60d8477. . .

Signature Length: 256

Signature: 9dbac58a905549817bf1254074acl4c74ec46f3e0506164c. ..

TLS Server Key Exchange

Client Random Struct (Client Hello Message)

4 Handshake Protocol: Server Key Exchange Server Random Struct (Server Hello MESSGQE)

Handshake Type: Server Key Exchange (12)

Length: 521

Server Param Struct (Key Exchange Message)

4 Diffie-Hellman Server Params

p Length:

128

p: d67ded40cbbbdc1936d693d34afd0ad50c84d239a451520b. ..

g Length:
g: 02

1

Pubkey Length: 128
Pubkey: 230274659a7683fad4dd86cba367eab687675309f0b60d8477. . .

Signature

Signature:

Length: 256
9dbac58a9055498f7bf1254074ac14c74ec46f3e0506164c. . .

N blackhat LU=~ =015 W2 ‘

o d . \

Attacking TLS abusing PFS

* Because of “(c) Presence of faulty signature”, the attack can be carried
out only when a RSA signature is faulty. How to determine that?

e Looking for faulty sighatures!!

) blackhat LS. =01

yes

Lenstra Attack 1996

, 3 A)
O blackhat L= 2015 | /250 P] } , —%%
\ ot 57\ éﬁ | o o =/

How to check if a digital 5|gnature iS mvald? (TLS 1.2)

v

TLS 1.2?
yes
Parse the TLS Server Key Generate offline a hash
Exchange Message to extract using the algorithm ALG_x
the algorithm with whichthe ——* on Client Random + Server Lenstra Attack 1996
signature has been created Random + Server Param

from server (ALG_x) values (O_S1)

¥ blackhat LS. =01

What else?

e How RSA works

* RSA-CRT optimization

« 2dDEMO

¥ blackhat LS. =01

H OW RSA WO rkS encryption = ¢ =m”e mod n

decryption = m = c*d mod n

e c=ciphertext

* m = message to encrypt

* n, e=public key

e =exponent (usually a value such as 3 or 65537)

* n=big semiprime number (p * g -> said "prime factors")

* d=inverse mod(e, (p-1) * (g-1)) privatekey
mathematically tied with n

n_ I ;

e getting “p” and “q” a private key can be recovered because "e" is
already a public information

¥ blackhat LS. =01

RSA Rule 1 n=p-q

d = inverse_mod(e,(p-1) * (g-1))

Gaining a prime factor of n (whatever of the two) we can determine very easily the
other one and recover the private key

 n=77 (the public key into the certificate)
* p =7 (leaked prime factor)

oq:?

¥ blackhat LS. =01

RSA Rule 1 n=pxq

d = inverse_mod(e,(p-1) x (g-1))

Gaining a prime factor of n (whatever of the two) we can determine very easily the
other one and recover the private key

 n=77 (the public key into the certificate)

p = 7 (leaked prime factor)
q=11->77/7

77 /11 =7 (p)
7 x 11 =77 (n)

¥ blackhat LS. =01

RSA-CRT

e RSA-CRT (CRT stands for Chinese Remainder Theorem)

* With this optimization the RSA calculation is broken down into two smaller parts

¥ blackhat LS. =01

Signing with RSA-CRT

* Precompute the following values:

»qlnv =(1/gq) mod p
»dP =d (mod p - 1)
»dQ=d (modqg-1)

...and next calculate:

»s1l=m"dP mod p

»s2 =m”"dQ mod g
»h=(s1l-s2)* glnvmod p
»m=s2+qg*h

If during s1 or s2 calculation there is a fault,
a faulty RSA signature is generated and one
prime factor can be leaked with this
formula:

gecd(y™e - x, n)

¥ blackhat LS. =01

Signing with RSA-CRT

* Precompute the following values: If during s1 or s2 cal
»qlnv = (1/9) mod p a faulty RSA
»dP =d (mod p - 1) prlme be
»dQ=d (modqg-1)
e ...and next calculate: a P“
— mA
>sl mdeod;“ gcd(yAe - X, Il)

»s2 = mMd
>h = glnv mod p

>m =

there is a fault,
erated and one
leaked with this

+qg*h

¥ blackhat LS. =01

Rule 2

We can leak a prime factor of n from a faulty signature when RSA-CRT is used for
signing:

gcd(y®e - x, n)

y = faulty/miscalculated signature (this can be taken directly from the TLS Server Key
Exchange message)

e = public exponent (found inside the Certificate)

X = the original value hashed and padded before to be signed (PKCS 1.5 padding
scheme is deterministic)

n = public key (p * q) (found inside the Certificate)

¥ blackhat LS. =01

TLS RSA-CRT Attack in “pills”

Establish multiple TLS handshakes until a faulty signature is detected in the Server
Key Exchange Message

2. Apply the Lenstra Attack (1996) to retrieve a prime factor (p or q) of n (Rule 2)

3. When one of the prime factors is known, derive the other one (Rule 1):

derived prime factor = n / leaked prime factor

4. Now both of p and q are known. The private key can be recovered:

d = inverse mod (e, (prime factor P - 1) * (prime factor Q - 1))

¥ blackhat LS. =01

TLS RSA-CRT Attack in “pills”

Establish multiple TLS handshakes until a faulty signature is detected in the Server
Key Exchange Message

2. Apply the Lenstra Attack (1996) to retrieve a prime factor (p or q) of n (Rule 2)

3. When one of the prime factors is known, derive the other one (Rule 1):

derived prime factor = n / leaked prime factor

4. Now both of p and q are known. The private key can be recovered:

= inverse mod (e, (prime factor P - 1) * (prime factor Q - 1

- GAME OVER |

¥ blackhat LS. =01

TLS RSA-CRT Attack in “pills”

Establish multiple TLS handshakes until a faulty signature is detected in the Server
Key Exchange Message

2. Apply the Lenstra Attack (1996) to retrieve a prime factor (p or q) of n (Rule 2)

3. When one of the prime factors is known, derive the other one (Rule 1):

derived prime factor = n / leaked prime factor

4. Now both of p and q are known. The private key can be recovered:

= inverse mod (e, (prime factor P - 1) * (prime factor Q - 1

- GAME OVER |

¥ blackhat LS. =01

TLS RSA-CRT Attack in “pills”

Sniff the traffic until a faulty signature is detected in the Server Key Exchange
Message

2. Apply the Lenstra Attack (1996) to retrieve a prime factor (p or q) of n (Rule 2)

3. When one of the prime factors is known, derive the other one (Rule 1):

derived prime factor = n / leaked prime factor

4. Now both of p and q are known. The private key can be recovered:

= inverse mod (e, (prime factor P - 1) * (prime factor Q - 1

- GAME OVER |

¥ blackhat LS. =01

(enter Piciolla...) | e V4

¥ blackhat LS. =01

The bottom line

* |F:
» you have a piece of software linked to a vulnerable crypto library using RSA-
CRT &&

» that crypto library does not verify the correctness of each RSA signature
generated &&

» environmental factors occur (CPU overheating, RAM error, etc...) causing
the miscalculation of a RSA signature

e THEN you might be in trouble...

¥ blackhat LS. =01

Vulnerable crypto libraries

(JPolarSSL < 2.1.1, 1.3.13 and 1.2.16: MBEDTLS RSA_NO_CRT can be
defined to disable RSA-CRT but this option is off by default)

dlibgerypt < 1.6.3 (equivalent to CVE-2015-5738)
(UNettle < 3.1: used by GnuTLS

QJava SE < 5.0u81, 6u91, 7u76, 8u40, and JRockit < R28.3.5 (CVE-
2015-0478)

(JEMC RSA BSAFE Micro Edition Suite (MES) 4.0.x and 4.1.x before
4.1.5, RSA BSAFE Crypto-C Micro Edition (CCME) 4.0.x and 4.1.x
before 4.1.3, RSA BSAFE Crypto-J before 6.2.1, RSA BSAFE SSL-J
before 6.2.1, and RSA BSAFE SSL-C before 2.8.9 (CVE-2016-0887)

9 ¢ 31 ", y, /8
. ' - Q o 4%
A ‘-4 4 i ¢
) blackhat UsA =201 ‘ { /AN e ?{,‘
W/ ‘ 57T gF ' l{ (/ / p

Vulnerable crypto libraries (2)

(JOpenSSL <= 0.9.7 and *potentially* between 1.0.2 and 1.0.2d because of
CVE-2015-3193 only on x86_64 architectures + custom versions

JGo crypto library < 1.6.2

Cryptlib up to latest 3.4.3
(CRYPT_OPTION_MISC _SIDECHANNELPROTECTION would prevent the
attack but it is set to false by default)

(JwolfSSL (formerly CyaSSL) < 3.6.8 (CVE-2015-7744)
dLibtomcrypt < 2.00

(JEldos SecureBlackbox < 13.0.280 and 14.0.281
JdMatrixSSL < 3.8.3

(JdOpenswan up to latest version 2.6.47 vulnerable when not compiled with
NSS

¥ blackhat LS. =01

Device types mainly affected

(JEmbedded devices

Various network appliances (firewalls, routers, etc...)
Consumer / SOHO devices

SSL Accelerators

VPN Concentrators

TLS Reverse Proxies

NI N N N N

¥ blackhat LS. =01

Affected devices

(AFORTINET (Series 300 / FortiGate < 5.0.13/5.2.6 /5.4.0
observed as vulnerable)

Dell (SonicWALL< SonicOS 6.1.1.12 found affected)
F5 (Traffix SDC affected)

JZTE ZXSEC Firewall (affected models US2640B, US2630B,
US2620B)

JLANCOM wireless devices (version 8.84) <- apparently
silently patched since 2014

LD-Link-DCS-933L Surveillance camera
(JHILLSTONE NETWORKS (SG-6000 Firewall)

CITRIX
JZYXEL
(UNORTEL
dQNo
dViprinet
BEJY
(Alteon

¥ blackhat LS. =01

The Fix

A few of crypto libraries allow users to disable RSA-CRT (not
convenient due to performance issues)

 Most vendors have recently issued a patch to address this problem

v'Double-checks the correctness of RSA signatures without RSA-CRT
optimization:

1f (y*e = x mod n)
then signature is valid

¥ blackhat LS. =01

But remember...

“...a piece of software linked to a vulnerable crypto library using RSA-
CRT...”

 Wait! Is this problem only related to TLS, right?
* No! PFS and RSA are used A LOT in IPSEC VPN (IKE), SSH, etc...

¥ blackhat LS. =01

A N A&

IKEv1 (Internet Key Exchange)

* |tis believed that only by sniffing the network traffic is not possible
to recover a private key (just as happens for TLS) and an active
approach is requested.

* Two modes for Phase 1 (Authentication of peers and Negotiation of

SA)
v’ Main
v’ Aggressive

Q) blackhat L=~ 2015 UM £ i it

IKEv1 Phase 1 Main Mode (Signature Auth)

Initiator Responder
(1) HDR, SA -—>
<-- (2) HDR, SA
(3) HDR, KE, Ni ——>
<-- (4) HDR, KE, Nr
(5) HDR*, IDii, [CERT,] SIG I -—>
<-- (6) HDR*, IDir, [CERT,] SIG R

* Indicates payload encryption

¥ blackhat LS. =01

IKEv1 Phase 1 Aggressive Mode (Slgnature Auth)

Initiator Responder
(1) HDR, SA, KE, Ni, IDii -—>
<-- (2)HDR, SA, KE, Nr, IDir,
[CERT,] SIG R
(3) HDR, [CERT,] SIG I -—>

. SHEY 7 4 oy \
" ~& o3 Ay / /v/.; p
13 . , - y. «

M blackhat LU=A =201 ’ e\ iy SO

SPECIAL THANKS

http://turniphead.deviantart.com/
https://access.redhat.com/blogs/766093/posts/1976703
https://pagure.io/symboldb/tree/tls-experiment

¥ blackhat LS. =01

PLEASE VISIT SICILY ...

Aeolians

ation (Lipari Islands) aay
et R Messina
e
Palermo H Tindaris Milazzo "
P - iy

¢ SsanVito \ Monreale .\ nto TTII K ﬁ
S Trapani Scopello [Bagheria Cefal Halaesa 20 Taormina
> Erice Zingaro 2 oD\ o,
S 5 Himera |11 nEBR % 11111 Naxos

Marsala Segesta[Illl = A s —— t:AADON‘E cantara ===
Mozia —

WINE HCaccamo \E T IFA
Il couNTRY SiCanjap - - -
a \ Caltanissetta Enna fj ﬁ A CatamaJllJ
a .'.'.'.E Morgantina
Selinunte Plazza
Sciacca r 1111 Armerina
e ento= Caltagirone
Pantelleria or'g .."_Iﬂ i
. i
11l Pantalica =—=__
r —_— Siracusa
& [
’ 'ﬁ'*& ¢ A noto
4
Lampedusa Ragusa 644' \Vendicari
v Val di Mazara L)

- Z The Heartland

1N " \ r g Val Demone

Ancient Medieval Nature Golf w ValdiNoto

@ Jslands Malta

Sites &Baroque

¥ blackhat LS. =01

Recover a RSA private key from a TLS
session with Perferct Forward Secrecy

QUESTIONS?

High Voltage & Piciolla — http://www.segfault.it/tools/
Marco Ortisi (2016) Blog — http://www.segfault.it/

thanks!

