

Recover a RSA private key
from a TLS session with
Perfect Forward Secrecy

(Marco Ortisi – 2016)

About me

• Netizen and IT Security enthusiast since 1996

• Penetration Tester since 1999
 In love with buffer overflow flaws

 I adore exotic vulnerabilities

• Senior/Principal Penetration tester? Just a curious guy

• Get in touch with me! marco.ortisi at segfault.it

About the topic
• Imagine you can get a server private key by sniffing TLS traffic or

interacting through the network with a TLS service. Does it look
quite exotic?

• Done via a side channel attack

• Side Channel Attack – from Wikipedia
• “…any attack based on information gained from the physical implementation of a

cryptosystem, rather than brute force or theoretical weaknesses in the algorithms
(compare cryptanalysis). For example, timing information, power consumption,
electromagnetic leaks or even sound can provide an extra source of information,
which can be exploited to break the system…”

Roadmap
Introduction
First demo
More insight into the attack
Second demo
Greetings and questions

The attack and roots with the past
• (1996) Arjen Lenstra demonstrated the usage of the so-called CRT

(Chinese Remainder Theorem) optimization put the RSA
implementations at great risk (aka private key leakage) whether a
fault occurred during the computation of a digital RSA signature.
(https://infoscience.epfl.ch/record/164524/files/nscan20.PDF)

What is a RSA signature
• RSA encryption
 public key is used to encrypt a message

 private key is used to decrypt that message

• RSA signing
 private key is used to sign a message (see it

as an encryption operation)

 public key is used to verify a signature (see it
as a decryption operation)

The attack and roots with the past
• (1996) Arjen Lenstra demonstrated that the usage of the so-called

CRT (Chinese Remainder Theorem) optimization put the RSA
implementations at great risk (aka private key leakage) if a fault
occurred during the computation of a digital RSA signature.
(https://infoscience.epfl.ch/record/164524/files/nscan20.PDF)

• (200x?) - Attack conjectured as possible on smartcards if someone
has physical access to the device and can disrupt the math behind
the RSA operations by artificially injecting hardware faults

The attack and roots with the past
• (2001) OpenPGP Attack (http://eprint.iacr.org/2002/076.pdf).

a) get a local copy of file containing the encrypted private key;

b) tamper with it in order to introduce faulty bits;

c) capture a single message subsequently signed with the modified encrypted
private key (for example an email);

d) enjoy your leaked private key

• (2015) by targeting TLS, Florian Weimer (Red Hat) unveiled the
attack can have remote impacts.
https://people.redhat.com/~fweimer/rsa-crt-leaks.pdf

Public key exposed

Recover a RSA private key: Prerequisites

• (a) Presence of a RSA signature calculated using
the RSA-CRT optimization…

• (b) The signature must be applied on values
known by the attacker…

• (c) Generated signature faulty/miscalculated…

What if the attack is successful?
• Private key is exposed

• The real server can be impersonated

• Man-in-The-Middle attack can be performed without alerting the
legitimate clients

What if the attack is successful?

DEMO
TIME (PART 1)
(enter High Voltage!)

From: http://support-public.cfm.software.dell.com/33164_sonicos_5.8.4.2_releasenotes.pdf

From: http://support-public.cfm.software.dell.com/33164_sonicos_5.8.4.2_releasenotes.pdf

(a) RSA Signature with RSA-CRT
• The modular exponentiations required by RSA are computationally

expensive

• RSA-CRT introduced a less expensive way to do RSA operations
(decryption and signing)

• RSA-CRT is used by default in almost every known crypto library out
there (openssl, OpenJDK, libgcrypto, PolarSSL, etc…)

• Condition (a) is normally satisfied

(c) Presence of faulty signature
• We identify a faulty RSA signature with the letter “Y”

• Events causing the generation of a faulty digital RSA signature can't
be predicted but they are out there

• Induced by the same vectors like in a typical bit-squatting attack:
 CPU overheating
 RAM errors
 massive exposure of hardware to solar rays
 etc…

(b) Signature calculated on known values
• We define “X” as the value to be signed

• Digital signature = plain-text value -> hashing function -> padding ->
encryption

• Padding can influence the final “shape” of “X” before being signed
and make this unpredictable…

• …but with SSL3.0, TLS 1.0, 1.1 and 1.2 the padding scheme (a
variant of PKCS1.5) is fully deterministic (not randomized) and then
predictable

(b) PKCS 1.5 Padding
• Payload:

0D3F8FF87A4D697E73FE86077FD1D10C4ECC59797E759EDD89931B
2208B8044CB4A1B96A

• Padded Payload (RSA 2048 bits):

0001FF
FF
FF
FF
FF
FF
FF
FF
FFFFFF000D3F8FF87A4D697E73FE86077FD1D10C4ECC59797E759E
DD89931B2208B8044CB4A1B96A

(b) Signature calculated on known values
• We define “X” as the value to be signed

• Digital signature = plain-text value -> hashing function -> padding ->
encryption

• Padding can influence the final “shape” of “X” before being signed and
make this unpredictable…

• …but with SSL3.0, TLS 1.0, 1.1 and 1.2 the padding scheme (a variant of
PKCS1.5) is fully deterministic (not randomized) and then predictable

• Of course we need the presence of a digital signature. This condition is
ALWAYS satisfied in our attack if we carefully negotiate the right
ciphersuites during the TLS handshake.

The right ciphersuite...
• RSA_WITH_AES_256_CBC_SHA

 RSA = Authentication + Key Exchange

 AES = Symmetric algorithm used to encrypt data

 CBC = Mode of operation

 SHA = Hashing algorithm to avoid data tampering

• RSA private key leaked = all TLS sessions compromised (current, past and
future ones)

• The “Certificate” message contains a Signature created with the private
key of CA
 statically embedded inside the certificate (not generated on the fly)

 the condition (b) is not satisfied

The right ciphersuite...
• [EC]DHE_RSA_WITH_AES_256_CBC_SHA
 [EC]DHE = Key Exchange
 RSA = Only used for Authentication
 [the rest is the same as previously mentioned]

• The key exchange is done using private/public keys generated on
the fly
 Compromission of a private key breaks only that specific encrypted session,

not all the previously established
 This is called "Perfect Forward Secrecy"

PFS fits REALLY perfectly to us
• RSA signature appended onto a TLS Server Key Exchange Message

TLS Client Hello (PFS ciphersuites only negotiation)

How High Voltage! works...

TLS Server Hello

How High Voltage! works...

TLS Server Certificate

n

e

How High Voltage! works...

TLS Server Key Exchange

How High Voltage! works...

TLS Server Key Exchange

Client Random Struct (Client Hello Message)
Server Random Struct (Server Hello Message)
Server Param Struct (Key Exchange Message)

How High Voltage! works...

Attacking TLS abusing PFS
• Because of “(c) Presence of faulty signature”, the attack can be carried

out only when a RSA signature is faulty. How to determine that?

• Looking for faulty signatures!!

yes

Collect all TLS messages
up to Server Key

Exchange

TLS < 1.2?

Generate offline two hash
(MD5 and SHA1) of Client

Random + Server Random +
Server Param values (O_S1)

Concatenation of the MD5
and SHA1 hashes to get the

(O_S2) value

Use the public key from the
certificate to decrypt the

signature value exposed on
TLS Server Key Exchange

(S_S1)

Remove the padding from
S_S1 to get the raw

signature (S_S2)
Compare O_S2 and S_S2

Is there a
match?

Repeat the TLS
handshake

Try to recover
the private key

no
yes

How to check if a digital signature is invalid? (TLS < 1.2)

Lenstra Attack 1996

How to check if a digital signature is invalid? (TLS 1.2)

yes

Collect all TLS messages
up to Server Key

Exchange

TLS 1.2?

Parse the TLS Server Key
Exchange Message to extract
the algorithm with which the
signature has been created

from server (ALG_x)

Generate offline a hash
using the algorithm ALG_x
on Client Random + Server

Random + Server Param
values (O_S1)

Use the public key from the
certificate to decrypt the

signature value exposed in
the Server Key Exchange

Message (S_S1)

Remove the padding from
S_S1 to get the raw

signature (S_S2)
Compare O_S1 and S_S2

Is there a
match?

Repeat the TLS
handshake

Try to recover
the private key

no
yes

Lenstra Attack 1996

What else?

• How RSA works

• RSA-CRT optimization

• 2nd DEMO

How RSA works
• c = ciphertext
• m = message to encrypt
• n, e = public key
• e = exponent (usually a value such as 3 or 65537)
• n = big semiprime number (p * q -> said "prime factors")
• d = inverse_mod(e,(p-1) * (q-1)) private key

mathematically tied with n

• getting “p” and “q” a private key can be recovered because "e" is
already a public information

encryption = c = m^e mod n
decryption = m = c^d mod n

RSA Rule 1
Gaining a prime factor of n (whatever of the two) we can determine very easily the
other one and recover the private key

• n = 77 (the public key into the certificate)

• p = 7 (leaked prime factor)

• q = ?

n = p * q
d = inverse_mod(e,(p-1) * (q-1))

RSA Rule 1
Gaining a prime factor of n (whatever of the two) we can determine very easily the
other one and recover the private key

• n = 77 (the public key into the certificate)

• p = 7 (leaked prime factor)

• q = 11 77 / 7

• 77 / 11 = 7 (p)

• 7 x 11 = 77 (n)

n = p x q
d = inverse_mod(e,(p-1) x (q-1))

RSA-CRT
• RSA-CRT (CRT stands for Chinese Remainder Theorem)

• With this optimization the RSA calculation is broken down into two smaller parts

Signing with RSA-CRT
• Precompute the following values:
qInv = (1/q) mod p
dP = d (mod p - 1)
dQ = d (mod q - 1)

• …and next calculate:
s1 = m^dP mod p
s2 = m^dQ mod q
h = (s1 - s2) * qInv mod p
m = s2 + q * h

If during s1 or s2 calculation there is a fault,
a faulty RSA signature is generated and one
prime factor can be leaked with this
formula:

gcd(y^e – x, n)

Signing with RSA-CRT
• Precompute the following values:
qInv = (1/q) mod p
dP = d (mod p - 1)
dQ = d (mod q - 1)

• …and next calculate:
s1 = m^dP mod p
s2 = m^dQ mod q
h = (s1 - s2) * qInv mod p
m = s2 + q * h

If during s1 or s2 calculation there is a fault,
a faulty RSA signature is generated and one
prime factor can be leaked with this
formula:

gcd(y^e – x, n)

Rule 2
We can leak a prime factor of n from a faulty signature when RSA-CRT is used for
signing:

y = faulty/miscalculated signature (this can be taken directly from the TLS Server Key
Exchange message)
e = public exponent (found inside the Certificate)
x = the original value hashed and padded before to be signed (PKCS 1.5 padding
scheme is deterministic)
n = public key (p * q) (found inside the Certificate)

gcd(y^e – x, n)

TLS RSA-CRT Attack in “pills”
1. Establish multiple TLS handshakes until a faulty signature is detected in the Server

Key Exchange Message

2. Apply the Lenstra Attack (1996) to retrieve a prime factor (p or q) of n (Rule 2)

3. When one of the prime factors is known, derive the other one (Rule 1):

derived_prime_factor = n / leaked_prime_factor

4. Now both of p and q are known. The private key can be recovered:

d = inverse_mod(e,(prime_factor_P - 1) * (prime_factor_Q - 1))

TLS RSA-CRT Attack in “pills”
1. Establish multiple TLS handshakes until a faulty signature is detected in the Server

Key Exchange Message

2. Apply the Lenstra Attack (1996) to retrieve a prime factor (p or q) of n (Rule 2)

3. When one of the prime factors is known, derive the other one (Rule 1):

derived_prime_factor = n / leaked_prime_factor

4. Now both of p and q are known. The private key can be recovered:

d = inverse_mod(e,(prime_factor_P - 1) * (prime_factor_Q - 1))

GAME OVER

TLS RSA-CRT Attack in “pills”
1. Establish multiple TLS handshakes until a faulty signature is detected in the Server

Key Exchange Message

2. Apply the Lenstra Attack (1996) to retrieve a prime factor (p or q) of n (Rule 2)

3. When one of the prime factors is known, derive the other one (Rule 1):

derived_prime_factor = n / leaked_prime_factor

4. Now both of p and q are known. The private key can be recovered:

d = inverse_mod(e,(prime_factor_P - 1) * (prime_factor_Q - 1))

GAME OVER

TLS RSA-CRT Attack in “pills”
1. Sniff the traffic until a faulty signature is detected in the Server Key Exchange

Message

2. Apply the Lenstra Attack (1996) to retrieve a prime factor (p or q) of n (Rule 2)

3. When one of the prime factors is known, derive the other one (Rule 1):

derived_prime_factor = n / leaked_prime_factor

4. Now both of p and q are known. The private key can be recovered:

d = inverse_mod(e,(prime_factor_P - 1) * (prime_factor_Q - 1))

GAME OVER

DEMO TIME
(PART 2)
(enter Piciolla...)

The bottom line
• IF:
 you have a piece of software linked to a vulnerable crypto library using RSA-

CRT &&

 that crypto library does not verify the correctness of each RSA signature
generated &&

 environmental factors occur (CPU overheating, RAM error, etc...) causing
the miscalculation of a RSA signature

• THEN you might be in trouble…

Vulnerable crypto libraries
PolarSSL < 2.1.1, 1.3.13 and 1.2.16: MBEDTLS_RSA_NO_CRT can be

defined to disable RSA-CRT but this option is off by default)

libgcrypt < 1.6.3 (equivalent to CVE-2015-5738)

Nettle < 3.1: used by GnuTLS

Java SE < 5.0u81, 6u91, 7u76, 8u40, and JRockit < R28.3.5 (CVE-
2015-0478)

EMC RSA BSAFE Micro Edition Suite (MES) 4.0.x and 4.1.x before
4.1.5, RSA BSAFE Crypto-C Micro Edition (CCME) 4.0.x and 4.1.x
before 4.1.3, RSA BSAFE Crypto-J before 6.2.1, RSA BSAFE SSL-J
before 6.2.1, and RSA BSAFE SSL-C before 2.8.9 (CVE-2016-0887)

Vulnerable crypto libraries (2)
OpenSSL <= 0.9.7 and *potentially* between 1.0.2 and 1.0.2d because of

CVE-2015-3193 only on x86_64 architectures + custom versions

Go crypto library < 1.6.2

Cryptlib up to latest 3.4.3
(CRYPT_OPTION_MISC_SIDECHANNELPROTECTION would prevent the
attack but it is set to false by default)

wolfSSL (formerly CyaSSL) < 3.6.8 (CVE-2015-7744)

Libtomcrypt < 2.00

Eldos SecureBlackbox < 13.0.280 and 14.0.281

MatrixSSL < 3.8.3

Openswan up to latest version 2.6.47 vulnerable when not compiled with
NSS

Device types mainly affected

Embedded devices

 Various network appliances (firewalls, routers, etc…)

 Consumer / SOHO devices

 SSL Accelerators

 VPN Concentrators

 TLS Reverse Proxies

 …

FORTINET (Series 300 / FortiGate < 5.0.13 / 5.2.6 / 5.4.0
observed as vulnerable)

Dell (SonicWALL< SonicOS 6.1.1.12 found affected)

F5 (Traffix SDC affected)

ZTE ZXSEC Firewall (affected models US2640B, US2630B,
US2620B)

LANCOM wireless devices (version 8.84) <- apparently
silently patched since 2014

D-Link-DCS-933L Surveillance camera

HILLSTONE NETWORKS (SG-6000 Firewall)

CITRIX

ZYXEL

NORTEL

QNO

Viprinet

BEJY

Alteon

Affected devices

The Fix
• A few of crypto libraries allow users to disable RSA-CRT (not

convenient due to performance issues)

• Most vendors have recently issued a patch to address this problem

Double-checks the correctness of RSA signatures without RSA-CRT
optimization:

if (y^e = x mod n)

then signature_is_valid

But remember...

•“…a piece of software linked to a vulnerable crypto library using RSA-
CRT…”

• Wait! Is this problem only related to TLS, right?

• No! PFS and RSA are used A LOT in IPSEC VPN (IKE), SSH, etc…

IKEv1 (Internet Key Exchange)
• It is believed that only by sniffing the network traffic is not possible

to recover a private key (just as happens for TLS) and an active
approach is requested.

• Two modes for Phase 1 (Authentication of peers and Negotiation of
SA)
Main
 Aggressive

IKEv1 Phase 1 Main Mode (Signature Auth)

IKE Phase 1 Authenticated With Signatures

Initiator Responder

----------- -----------

(1) HDR, SA -->

<-- (2) HDR, SA

(3) HDR, KE, Ni -->

<-- (4) HDR, KE, Nr

(5) HDR*, IDii, [CERT,] SIG_I -->

<-- (6) HDR*, IDir, [CERT,] SIG_R

* Indicates payload encryption

IKEv1 Phase 1 Aggressive Mode (Signature Auth)

IKE Phase 1 Authenticated With Signatures

Initiator Responder

----------- -----------

(1) HDR, SA, KE, Ni, IDii -->

<-- (2)HDR, SA, KE, Nr, IDir,

[CERT,] SIG_R

(3) HDR, [CERT,] SIG_I -->

SPECIAL THANKS

Frank Bosman for his nice drawings
http://turniphead.deviantart.com

Florian Weimer (Red Hat)
https://access.redhat.com/blogs/766093/posts/1976703
https://pagure.io/symboldb/tree/tls-experiment

http://turniphead.deviantart.com/
https://access.redhat.com/blogs/766093/posts/1976703
https://pagure.io/symboldb/tree/tls-experiment

PLEASE VISIT SICILY...

Recover a RSA private key from a TLS

session with Perferct Forward Secrecy

QUESTIONS?

High Voltage & Piciolla – http://www.segfault.it/tools/

Marco Ortisi (2016) Blog – http://www.segfault.it/

thanks!

